MATHEMATICAL MODELLING AND ANALYSIS
VoLUME 11 NUMBER 4, 2006, PAGES 399412
© 2006 Technika ISSN 1392-6292 print, ISSN 1648-3510 online

EXPRESSIONS OF SOLUTIONS OF
ORDINARY DIFFERENTIAL EQUATIONS
BY STANDARD FUNCTIONS

7. NAVICKAS and L. BIKULCIENE

Kaunas University of Technology

Studenty 50, Kaunas, Lithuania
E-mail: zenonas.navickas@ktu.lt; liepa.bikulciene@ktu.lt

Received October 15, 2005; revised September 18, 2006; published online December 15, 2006

Abstract. It is well known that solutions of many ordinary differential equations
allow presentation in the power series form. In the paper we introduce and analyze
rigorous conditions under which the later series (solutions) can be reduced to a finite
sum of standard functions. Some areas of practical applicability of the proposed
algorithm are discussed.
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1. Introduction

Various dynamical systems are described by ordinary differential equations.
The power series solutions of these equations can be easily obtained using the
operator method [1]. These series must be changed to polynomials with op-
tional order in the case of a computer realization. It is possible to approximate
those polynomials by a finite sum of exponential functions, provided solutions
themselves are periodic or aperiodic functions, [2].

In the paper, representation of solutions in the form of a finite sum of stan-
dard functions is discussed. A new computational algorithm for discarding of
non-significant terms, depending on accuracy prescribed, is presented. The
developed approach has been successfully applied to solve a system of ordi-
nary differential equations, used to describe reduction of wind or wave power
into electrical energy. In the paper, the model has links with self-vibrations
that are transformed into rotational motion. To say more, implementation of
trigonometric functions not only facilitates evaluation of dynamical character-
istics but also makes determination of the existence domains for steady modes
more precise.
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2. The General Part

All the necessary notations, definitions and theorems associated with formu-
lation of conditions, under which the power series solution of a differential
equation can be reduced to a finite sum of standard functions, are presented
below. In particular, the Newton’s binomial coefficients and relevant expres-
sions are to be used for j, k € Zy:

: 0, 0<j<k, . :
AR | J I\ ik .— 0,5 #k, 9.1
B) T - k< 2 ' : 21)

RG -k "= Lk=j.

2.1. The Van-der-Mond determinants

The Van-der-Mond determinant, as well as its generalized version, is intro-
duced in this section. Let us note, that Van-der-Mond determinants are dif-
ferent from zero for all possible values of their elements.

DEFINITION 1. The set of numbers A1, A2,..., A\, € C,n € N, is called Van-
der-Mond set (i.e. V-set), provided A, # A, for k # r.

Whatever the V-set, non-zero Van-der-Mond determinant can be written
as:

IR VD C D Vs

IEDYIDY D Vo
Vn()\l,/\g,...,/\n) = 2 2 2 = (/\2 — )\1)()\3 — )\1)(/\3 — /\2)

1 A, A2 ... An-t

X O = A = A2) o O = A1) £0. (22)

Obviously, V1 (A1) = 1.
Let {A1, A2,..., Am} be a V—set. Consider the following expressions:

o A(T) . _A(T) .
AI(CO)(]') = A, Al(€r+1)(j) — ki1 () k (j),

Netri1 — Ak
r=0,1,...; 1<k<m-r—1. (2.3)

It can be easily seen that these expressions (thoroughly described in [3])
are symmetric polynomials with the same degree terms in A\;, Ao, ..., \,,. For
instance,

Moy = N SR .
ﬁ: Z Ayt J=1,2,3,...,
RHLTAR ke 2o,

AP ©0) =0, AV() =

AP (0) = AP (1) =0,



Ezxpressions of Solutions of Ordinary Differential Equations 401

Aoz Nern Ak i1
(@) MmN Mg § : Al AT ;
Ay (j) = 3 3 = A A1 ey J 2> 2.
k42 — Ak
k, l, IS Z()

k+l+r=5-2

On the basis of (2.1), (2.2) and (2.3), the following relationships are obtained:

0),. 1 r+1), . 1
oAl S Ak er s v e
X Vit My Akt 1y -+ 5\k+r)5\']i+r+1 A Y1 Vit Vs« s M1y M)
X 5\%” o A Y10Vt (M1, Aoy - - /A\k+r+1)5\i)7 (2.4)
where v, = (—1)" T 1=0,1,...,r +1.
For the coefficients ~,41;, we have
(r +1 )
Yrt1r41Yr+1r " Yrr10 = (—1) 2/ (2.5)
where the Van-der-Mond determinants satisfy the relationship
Vi es Mot 15 -+ s Negr—1) Ve ks« + + 3 Negrr—2 Mg ) - - - (2.6)

X Vi (Mt 15 Motz oo Mer) = VI ey Mot - ooy Aer)y 72> 1

For instance,

1 o R .
AVG) = — (ViGN = Vi) M),
i (7) VQ()\k,/\k+1)( 1AM = Vi(ks1)AL)
1 . 1 .
A(Q)(j) = - _ Mo - _ M
: Merz = M) Mgz = Aern) 0 Ciern — M)Az — Agn)
1 I 1 JU .
= ——= — A\ = ————— (Vo (g, A1)\,
(M1 — Ak) (kg2 — Ak) F V3 (A1, A2, Az) ( b2
- ‘/2(5\167 5\k+2)5\i+1 + ‘/2(5\k+17 5‘k+2)5\‘]];)7 .7 = Oa ]-7 27 .
Since A;T) are polynomials in 5\1, Ao ... , S\m, the following limit is valid
. lim A (j) = (J> N (2.7)
)\k7>\k+17-~;)\k+7‘")‘k r

Now, let {5\1, oy.. S\n} and {\1, A2, ..., A} be two V-sets and mq, mo,
..., my, be natural numbers, satisfying the condition

mi+moe+...+my, =m.



402 Z. Navickas, L. Bikul¢iené

Then, by using A1, Ao, ..., Am and expressions A,(:) () we get the following
form of the determinant

A ) ATy AT (- 1)

Dy s, omn( A5 A2y ooy Am) 1= A§23+1(0) A§23+1(1) . Af,,?iJrl(m -1)

Alm2= Dy Alm2- gy o Alme Dy )

mi+1 mi1+1

here we use a notation

. mpy—1 .
D(j) = A§n1+m2)+...+mn,1+1(])-

By using (2.4), it can be shown that

¢m1,m27...,mn(5\1a 5\27 ey 5\m) = Vm(5\175\2a .. 75\m)/Vm1 (5\17 .. ~75\m1)

X sz ()‘m1+1a ceey )‘m1+m2) et an ()\m1+~~~+mn71+17 ) )‘m)'
Determinant @, m.,....m., (5\1, 5\2, .. .,S\m) is a polynomial (not necessarily
symmetric) in A1, Ao, . .., Am; besides,

¢m17m2,...7mn (S\L 5‘2; ceey 5\m) 7£ 0.

Now, using the V-set {\1, A2, ..., \,}, we can construct the determinant
Vi (A A ) =
(A (A (" 5 e
(DA D T R P

0 0—m1+1 1 T—mi+1 m—1 . m_1—mi+1
(A (L e

wee o (med

o gt

(o

0 0—ma+1 1 l—mat1 m—1 . m_1—mat1
P e SR e B RO

—-m —-m m—1 m—1—m
et (L et (e
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DEFINITION 2. Vm1,m2,...,mn(/\17 A2, ..., An) is called the generalized Van-der-
Mond determinant.

Equality (2.7) implies that

le,m27...,mn(Ala)\27'~'7)\n) = llf}l ¢m1,m27...,mn()\1a)\27'~'a)\m)~
A1,A2,0 5 Amy — A1

)\Tnl+l7-~;>\m1+7n2 —A2
)\m1+...+mn,1+17--->)\m—’)\n

Consequently, the generalized Van-der-Mond determinant is a polynomial in

/\1, )\2, ceey )\n; besides, le,mg,...,mn (/\1, )\2, ceey )\n) 7& 0.
We notice here that

‘71,1 ..... 1(>\1;/\27---7)\n):Vn(AlaAQ;---;/\n)a ‘777,(>\k):17

and so on.

Ezample 1. Given two V-sets {5\1,5\2,5\3},{>\1,)\2}, with m; = 2,mg = 1,

then we easily derive:
AP0) A1) 2P (2)

Po1 (M, A2, 03) = | AP 0) A1) AP @2) | = (s — M) (A5 — A2) #£0.

AP7(0) AP (1) a9 (2)

Then we get:

) IDYIPY:
Vai(A1, A2) = |0 1 2\ | = (A2 — A)2 #0.
1 M3

2.2. The algebraic progressions

In this section, the concept of an algebraic progression — generalization of an
arithmetic/geometric progression — is presented. Some properties of the alge-
braic progressions are disclosed. Let a sequence of complex numbers (p;;j € Z)
be given. Then, for every m € N and fixed jy € Zy, it is possible to construct
the Hankel matrix H j(;n) and the extended matrix H J(;n)(p) (see [4]):

Pjo Pjo+1 -+ Pjo+m—1

g .|| Pio+1  Pjo+2 -+ Pjotm

JO ’ DY DY ’

DPjo+m—1 Pjo+m - -+ Pjo+2m—2

Pjo Pjo+1 --- Pjo+m
—(m) Pjo+1  Pjo+2 --- Pjo+m+1

H; " (p) = .
pjg—i-m—l pjo+m CIE pj0+2m—1
1 p ... p"
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DEFINITION 3. If for a sequence of complex numbers (p;;j € Z), ro satisfies

the condition ro = max rankH ((:n)7 then the rank of the sequence of complex

meN J
Jo€Zo

numbers (p;;j € Z) is equal to ro.
Let us denote H.(pj;j € Z) =1o.

Example 2. H,(ag + jd;j € Zy) = 2, provided d # 0. H,.(j%j € Zy) = 3. Tt
can be proved that H,(a;j' +a; 15" +... 4+ ao;j € Zy) = 1 + 1, for a; #
0,1 € N. Also, H,(ag,a1,...a,,0,0,...) =n+ 1, for a, # 0. Here we assume
that H,(0,0,...) = 0. The sequence (j!;7 € Zp) doesn’t have H,, because

det H$) 0, for all m € N and j € Z,.
Some corollaries follow from the definition of H,..
Corollary 1. Let g; = pj1n, where n € N is fixed and m; < mg. Then

H,(p;j;j € Zy) > Hy(qj;7 € Zo), rankH](-;nl) < mnkHJ(»;nz).

Corollary 2. If H,.(p;;j € Zy) = 1o, then det Hém) # (0 and det Hj(-TOHJrn) =0,
J:m € Zo. So, Hy(pj;j € Zo) = maj;\grankHém).
me
Corollary 3. The given sequence (p;;j € Zy) has H,, satisfying equality
Hr(pj;j S Zo) =m,m € ZQ,

if and only if constants Ay, A1, ..., Ay,—1 € C are independent of j and satisfy
the condition

A()pj + Alpj+1 +...+ A7n—1pj+m—1 = Pj+m, \V/j S Zo. (28)
Equality (2.8) makes no sense for m’ < m.

By taking j = 0,1,...,m — 1 in (2.8) we get a system of linear equations,
for finding all coefficients Ay, A1, ..., A;,—1. The matrix of this system is equal
to H((,m) and det Hém) £ 0. As example it is possible to prove that for sequence

(aljl + alfljlil +...4ap;j € Zo)

the coefficients are defined as

AT:(—l)lr<l+l>, r=0,1,...,1.

r

The correctness of this relationship follows directly from the combinatorial
equality, [3]

l
Z(—l)l—’”<l+1)(j+r)"=(j+l)", n=0,1,...,1; [ €N.

r
r=0



Ezxpressions of Solutions of Ordinary Differential Equations 405
Corollary 4. Two sequences of complex numbers, (p;;j € Zo) and (g;;j € Zo)
are equal if and only if H,(p;;j € Zy) = H,(g;;j € Zo) = m and p; = g;,for
j=0,1,...,2m — 1.

Lemma 1. Let (p;;j € Zy) be a sequence and

pj = peAl. (2.9)
r=1

Let {A1,...,A\m} be a V-set. Then we get the following equalities:

det H™ = (uipiz - ) A de - A V2L A2, ), (2.10)
det H{™ (p) = det H{"™ (p = \1)(p = A2) -+ (p = Am)- (2:11)
Proof. Really,
det H™ = (upiz - ) M Ag -+~ A )? det [AEF 72|y, (2.12)
(r1,725 ")
where summation is performed over all possible permutations (ry, 7o, ..., 7m)

of integer numbers 1,2, ..., m. Since

> det AEFTR Ly = (det A2 kI=1,...,m,

(71,72, esTim)

the proof of identity (2.10) is obtained. The proof of identity (2.11) is carried
out in a similar way. B

Remark 1. For all V-sets {\1, A2, ..., A, }, the relationship (A\;Ag -+ Ap)? =1
is valid.

Corollary 5. If p; is specified by (2.9), then det HJ(-m) =0 for all j € Zy and
n > m + 1. Therefore, H,(p;;j € Z) = m, provided 1, p2, . .., ftm # 0.

Now, using V—set {\1, Aa..., A\, }, it is possible to form a sequence of numbers
(pj; j € Zo), which is given by

n mp—1

=YY um(,ﬁ INTF my,ma, ... m, €N, pei, € C. (2.13)

r=1 k=0 "

DEFINITION 4. The sequence of numbers, specified by (2.13), is called the
algebraic progression, the coefficients A1, A2 . .., A, are said to be denominators
of multiplicity m1, ma, ..., my,, respectively, and p,, are called coefficients of
the algebraic progression.

Remark 2. The sequences of numbers, proposed in the above examples and
specified by (2.9), are algebraic progressions. Respective denominators can be
found immediately. For instance, denominators of the sequence (p;; j € Z),

p; = ag + jd, are given by A1 2 =1, i.e., p; = apl/ + d({ )11t
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Thus, arithmetic and geometric progressions are algebraic progressions.
Notice that the sequence

(A( (4), 1€ Zy), T=1,2,...,m—k
is an algebraic progression, besides,
HT(A(T)( ), j € Zo) =1+ 1.
For instance, by using identity (2.10), the limit calculus and relationships (2.1)

TN j € Zy) satisties the

we observe that H,. of the sequence of numbers (( !

relationship:
Ho ()N € Zo) =141,
besides,

det HOHD = d(1)0 2 A oy

0, r>1+1.
Really, lemma 1 and relationships (2.5) and (2.6) imply that the deter-
minant det H ](ZH) of the Hankel matrix H J(-Hl) for the algebraic sequence

(A](:) (4), 7 € Zp) can be expressed as follows:

[+1 R R R R
( 2 )Vz()\ka---a)\lwrlfl)‘~'~'V2()\k+17'~7)\k+l)

VI ey ey M)
(l + 1)
K Aks oo Aest) V2 e Aeg) = (1) 2
Then,

detH("" = (~1)

(j\ka ceey 5‘k+l)j'

(l + 1)

lim  det HTY = (—1) 2 A

Akseon A b1 — Ak

By taking into account properties of A,(:) (j) we state that expression (2.13)
can be derived from (2.9) by passing to the limit:

mi— 1 mo— 1

. hm E :u’lklA E ,u2k2 m1+1 )+
X )\17)\27“;7)\777,14’)\1; k1=0 ka—0

)\m1+1,~~~1Am1+m2_’A27
5\m1+.,.+nzn_1+17-~~;5\m")\n
my—1 n mp—1
(kn) J Er _

+ E: [y A R E: E: firk, ( k’r = Dj>

kn,=0 r=1 k,.=0

where my + mg + ... + m, = m; besides, {A1,A2,..., Ay} € C is a V—set.
Then, H,(p;; j € Zo) =m
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Corollary 6. If the j-th term p; of the algebraic progression (p;; j € Zy) is de-
scribed by (2.13), then Hankel matrices H j(m) and H J(m) satisfy relationships:

det H™ = 0,y (AT A2 L AT,
det A™ = det H™ (p— \)™ (p = Ao)™ . .. (p = Au)™,

provided o, = det Hém) #0 and det H j(-m) is independent of j, i.e.

(75 )+ ("5 )+ (5)
/Lrlrirlll—luglrrzm—l cee uZiZn_l

x V2 (/\1,/\2,...,/\n).

M1, M2,y My,

Om =(-1)

Theorem 1. H, of the algebraic progression (pj; j € Zy), specified by (2.13),
satisfies the relationship:

H(pj; j € Zo) =m1+ma+...+my, where [, , #0.
The following two conclusions can be made.

Corollary 7. Let (p;; j € Zo) and (g;; j € Zo) be two algebraic progressions
and a,b € C are fixed numbers. Then

(apj +ba;; 5 € Zo), (pjaj; j € Zo), (CLP? +bq;; j € Zo), ...
are algebraic progressions and

H, (ap; +bajs j € Zo) < Hy(pjs j € Zo) + Hr(a53 5 € Z0);

H, (pjas 5 € Z0) < Hy(pji § € Z0) Hy (053 5 € o).
Corollary 8. Let H j(m) be Hankel matrices of algebraic progression (p;; j € Zy).
Then, (det H ;m); j € Zy) are algebraic progressions, for all m > 1.
Theorem 2. If a sequence of complex numbers (p;; j € Zy) has

H,(pj;j € Zp) =m < 400,

then this sequence is an algebraic progression.

Proof. First, using (2.8), a system of linear equations is formed. The ma-
trix of this system is given by Hém), and det Hém) # 0. Then coefficients

Ag, Ay, ..., A, _1 are found. Expending the determinant det H’ém)(p) with re-
spect to the last row, we get

det HS™ (p) = det H™ (Ag + A1p+ ...+ Ap_1p™ " = p™).
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Let roots A1, A2, ..., A, of the algebraic equation ﬁém) (p) = 0 be of mul-
tiplicity mq,ma, ..., m, respectively (here, m; + mso + ...+ m, = m). Then,
from (2.13) we obtain

pm+j — Am_lpm_1+j — . A()pj = pJ(p — )\1)m1 et (,O— /\n)m",j € Zy,
and
j+ m m+j—k __ ]+ m—1 m+j—1 .] m—k
(" P = A (P o)

forr=1,2,...,n,k=0,1,...,m, — 1,j € Zy. Since the determinant of the
coefficient matrix of the constructed linear system

my—1

Xn: Z ( )AJ M g, =y §=0,1,..,m 1,

represents a non-zero generalized Van-der-Mond determinant, there are no
problems to find the coefficients u,r, and to form the algebraic progression
(g5 j € Zoy) described by the relationship

n mp—1

QJ—ZZ,UTIC( )T-kT,jEN.

r=1 k,.=0

The equality ¢; = p; holds true for j = 0,1,...,m — 1. Besides, taking suc-

cessively 7 =0,1,...,m — 1, we find out
n " +m —
Qj+m = Z [rk, (j ))\” b
r=1 k,.=0
- Am,l(z Z (] tm e )A{*’“) +
+ Ao (Z Z ( ))\J Fr ) = Am—1Dj+m—1 + Aopj = Djtm.
Thus, ¢; = pj, for j =m,...,2m — 1. Now, the above corollaries imply that

Dy :qj‘,fOI'j € Zy.

Remark 3. The proof of Theorem 2 gives us a computational algorithm for
finding all denominators of the algebraic progression and coefficients of the
progression.

2.3. The algebraic functions

In this section a special type of analytical functions (algebraic functions with
finite rank) is described. The relationships between these functions and alge-
braic progressions is established.
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Let a power series of a real variable z be given
+oo (33 - xo)j ;
y(m)zij%', lpjl < M7, 0 <M < 0. (2.14)
J=0 7
This series is convergent for all values of z,z9 € R (x¢ being fixed).

DEFINITION 5. A function, specified by (2.14), is called an algebraic function
with finite rank, if it can be represented as a finite sum:

y(@) =Y Qrla)e, (2.15)
r=1
where )
Qr(ﬁ) = Z Qrk, T, My > ]-7 ark, € Ca
k=0

besides, a,m, -1 # 0.

Theorem 3. Power series (2.14) can be reduced to the form (2.15) if and
only if coefficients p; in (2.14) represent an algebraic progression (p;; j € Zy);
besides, H,(pj; j € Zo) = mi1+ma+ ...+ mp.

Proof. The proof is based on the following transformations:

Iz _ z+oo(/\33)j_ ,+Oo AN L
x'e —a:Z T —(l.)Z(l))\

.
=0 -

Corollary 9. Algebraic function y(x) (expression (2.15)) can be reduced to the
form

y(@) = po+ Y (e cos(Ar(z = 20)) + v sin(vr (z — 20))),

r=1

if and only if the sequence (p;; j € Zo) is an algebraic progression, satisfying
relationships (2.9), besides, the real parts of its denominators are zeros.

Corollary 10. If sequence (p;; j € Zp) is an algebraic sequence, then the series
(2.14) is convergent, for all x € R.

Based on the above theorems and corollaries, the following conclusion can
be made.

Corollary 11. Let function y(x) be specified by power series (2.14) and it sat-
isfies relationships (2.15). Then sequence

(Pr; k € Zy), pr:=ylkh+x0), h,z0 € R
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is an algebraic progression with denominators A, = ", r =1,... n, if A,
are the denominators of algebraic progression (p;; j € Zy) and they compose
a V—set. In general case a set {41, Aa,..., A,} is not a V—set, i.e. some A,

A, can satisfy the relationship A,, = A,,, when 1 # rq, besides, A, # 0,7 =
1,2,...,n. As a result, we get

H,(pr: k € Zo) < Hy(pj:j € Zo).

3. Applications

Let a solution of a differential equation is given, i.e.:

t
ft):ZpkH, k=0,1,2,...,t € R.
k=0

We are interested in representing this solution as a finite sum of exponential

functions, namely:
m
)= e, (3.1)
r=1

The following fact is taken into consideration
max(l: 1€ N, detH™ # 0) =m. (3.2)

Next, by using some methods of linear algebra, we find coefficients p, and A,
in expression (3.1) from

detﬁém)(p) =0, pr :Z)\fur, k=0,1,2,...,m— 1.

Suppose, p1,p2,---,pm is V-=set. Then, pp = \p, k=1,2,...,m
Ezxample 3. Let

2k+1

x? x
=92 3k 1 k

Z P+ Z AT

be a solution of a differential equation. Obviously, the power series coefficients

are:
9.3k1  j—9k
[T S S B 2
3% j=2k+1,

and H,(p;; j € Zp) = 2. Condition (3.2) implies

Po P1 P2
pipaps|=—(p*=3)=0, M\ =V3 \=-V3
L pp
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i.e.
_ pa + p2 = 2/3,
y(@) = peV" + ppe= V3, {
V3 — 23 = 1.
Thus,
2+ 2 2 —
12 = 6\/57 y(x) = +6\/§€\/§w + 6\/§67\/§w-

Ezample 4. Let a system of ordinary differential equations

lo" — 2" sinp+ Hy' =0,
(3.3)
2"+ p?r — ' + g32" — p(p” sinp + ¢ cos ) =0

be given. Here H,p, q1,qs3, n are parameters, whose numerical values should
be chosen to provide autonomous vibration x(¢) and to stimulate rotational
motion ¢ = ¢(t). In particular, H is a dissipative coefficient, p stands for the
self frequency of the system, ¢; and ¢3 are self-vibration parameters, u express
the mass of rotor.

One of the main steady modes of the system is characterized by the uniform
rotation of the rotor. For instance, such a mode is ensured if the parameter
values are chosen to be

H=005 pu=01, p=1, ¢ =05, g3 =175
and initial conditions
2(0) =2'(0)=0.1, ©(0)=0.1, ¢'(0)=1.
By applying the operator method we get the following result (see [1])
¢ (t) = 0.7678 4 0.0531¢ + 0.2877t> — 0.0309¢> — 0.0839¢*
+0.0054¢° + 0.0098t° — . ..

By using the adapted operator method, we obtained a finite sum of trigono-
metric functions

@' (t) = 0.9324 + 0.1646 cos 1.87t — 0.0283 sin 1.87¢. (3.4)
The accuracy of the approximation is up to four decimal places.

Since the proposed method discloses influence of higher harmonics to the
solutions obtained, it appears to be easier to find out other dynamical char-
acteristics and existence domains for stable modes.

Ezample 5. Let the function

7

+oo J N
y(x) = p; oy = 0.003e” — 702702 90,124¢2137 4 512270

- 7!

Jj=0

— cos(\/ﬁ)efo'leﬂw —0.082¢967 4 /70T

1
4 0.175¢0-801z 4 §7re*0'914"’” + \/5\/%672.18\/51
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be a solution of a certain differential equation.
In this case H.(p;; j € Zo) = 11. Let us suppose that only the values of

this function y(0.4k) = pg, k € Zy are known. The determinants det Hék) of

matrices Hék), k=0,1,2,... which are composed using sequence (px; k € Zp)

vanish monotonically. Then it is estimated that det Hé6) := 0, as really

det Héﬁ) ~ 10~°. The estimation yo(x) of function y(z) is computed:

400 j
(@) =" qj% = 2514887 4 367083 _ 90 65¢0-3
=0

+ 0.55¢1197 4+ 0.62¢! 317,
It is noticed that H,(q;; j € Zy) = 5, besides,

lyo(x) —y(x)] <107°, 2 e [-1,1].

4. Conclusions

Some new concepts, associated with functions and sequences of series coef-
ficients, are introduced. Conditions for the representation of power series as
a finite sum of standard functions are formulated. Usable expressions and
computational simplifications for the coefficients of a dynamical system are
developed. The method can be applied to both the detection of existence do-
mains for the solutions of stable differential equations and the analysis of the
influence of higher harmonics to the type of the solution.
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