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Abstract. We investigate the model problem of flow of a viscous incompressible
fluid past a symmetric curved surface when the flow is parallel to its axis. This
problem is known to exhibit boundary layers. Also the problem does not have solu-
tions in closed form, it is modelled by boundary-layer equations. Using a self-similar
approach based on a Blasius series expansion (up to three terms), the boundary-
layer equations can be reduced to a Blasius-type problem consisting of a system of
eight third-order ordinary differential equations on a semi-infinite interval. Numeri-
cal methods need to be employed to attain the solutions of these equations and their
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derivatives, which are required for the computation of the velocity components, on a
finite domain with accuracy independent of the viscosity v, which can take arbitrary
values from the interval (0,1]. To construct a robust numerical method we reduce
the original problem on a semi-infinite axis to a problem on the finite interval [0, K],
where K = K(N) = In N. Employing numerical experiments we justify that the
constructed numerical method is parameter robust.

Key words: body of revolution, numerical methods, parameter robust, boundary
layers

1. Introduction

In this paper we consider a model problem of viscous fluid flow past a body
represented by a symmetric curved surface. The flow is taken parallel to the
axis of the body, this gives rise to boundary layers on the surface of the body.

Some linear and nonlinear two-dimensional problems arising in the boun-
dary-layer theory (see, e.g., [5, 6]) have been treated numerically using piece-
wise uniform meshes (see, e.g., [1, 2, 3, 4, 7, 8] and the bibliography therein).
For boundary layers on the curved body under study here we have to deal
with more complicated geometries and singularities of the solution related to
the stagnation point. Assuming a curvilinear coordinate system we denote the
length along a meridian from the stagnation point by x, and the coordinate
at right angles to the surface by y. The contour of the body of revolution
is represented by radii r(z), which essentially represents the sections taken

at right angles to the axis of the body of revolution. We will assume that
2

ro. .
is continuous) and,

there are no sharp corners along the meridian (i.e., )
x

2
T ..
moreover, — does not become large. We further assume that the minimum
radius of curvature of the meridian arc for the body of revolution is much
larger than the thickness of the boundary layer. Furthermore, we denote the
velocity components as u parallel to the surface, and v normal to the sur-
face. The potential flow is denoted by U(z). The steady-state boundary-layer
equations for this problem can be written as [6]
Ou  Ou 1 9p 0%u

“or oy T por Vo

(1.1)
O(ur) n d(vr) 0
Ox oy
with the boundary conditions
u(z,0) =v(z,0) =0, lim u(z,y)="U(x), (1.2)
y—o0

where p is the density, v is the viscosity of the fluid and p is the pressure. Stan-
dard magnitude analysis shows that the pressure gradient in the y—direction
is approximately of order one [6]. It is now possible to assume that the pres-
sure gradient of the potential flow velocity U(x) is acting on the boundary
layer in the following manner:
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U 19p
PR (1.3)

For the purpose of our analysis here we will consider the body contour to

be defined by
z 1z 12°
=R{Z - 4 1.4
r(@) {R 3!R3+5!R5}’ (14)
where r is the radius of the section of the surface. The velocity distribution
at the surface of the body is given by

3 x 1 23 1 z°
U(x)inW{§_§ﬁ+ﬁﬁ}’ (1.5)

where U is the free-flow velocity parallel to the z-axis. In (1.4) and (1.5) &
denotes the central angle measured from the stagnation point. We emphasize
that in this paper we study a computational method and not a flow prob-
lem. These days, for solving flow problems around geometries like described
in Fig. 1, the full Navier-Stokes equations are to be preferred above the
boundary-layer equations.

The simple geometry of the body given by (1.4) is chosen merely in order to
demonstrate a computational method. This method turns out to be applicable
in practice for bodies of revolution with more general contours for which the
minimal radius of curvature of the meridian arc remains much larger than the
thickness of the boundary layer arising in the flow problem in question.

It is known that as the viscosity v of the fluid changes, the thickness of the
boundary layer is affected. It is desirable to have numerical methods for which
the associated errors for the velocity components u, v are independent of the
viscosity v. Although from a physical point of view v may not approach zero,
nevertheless we will consider the full range of its values v € (0, 1], for some
fixed vy, for the purpose of testing our method. A self-similar approach to
generate the velocity components using a Blasius series expansion up to two
terms, i.e., a curved body with a parabolic profile is discussed in [3], where we
solve a system of three ordinary differential equations numerically. The work
that will follow in the succeeding sections concerns a self-similar approach to
finding the velocity components using a Blasius series expansion up to three
terms. Here a system of eight ordinary differential equations needs to be solved
numerically. The approach here is similar to the approach introduced in [3] for
the boundary layer on a body of revolution and to that in [2] for the boundary
layer over a flat plate, respectively. However, only one ordinary differential
equation was required in [2] and three ordinary differential equations were
required to find the solution in [3]. Here the problem is more complicated
as simultaneous numerical solution of eight ordinary differential equations is
required. On the basis of the assumption (1.4), we draw the body profile
including the third term. The body is an axially symmetric curved surface,
see Fig. 1, where R = 1.

Our approach is build on the work of [3] but we solve the extra five differ-
ential equations. As we shall show in Section 4, the obtained results together
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with the results in [3] allow us to compute the velocity components. We will
employ monotone methods similar to [2], [3] to find the self-similar solution
of problem (1.1)—(1.5).

As noted in [6, Section 11], a Blasius series approach is applicable for
bodies of revolution of any form, but it is most tedious. In this connection it
is important to develop efficient robust numerical methods for implementation
of this approach in practice.

The method suggested in this paper is indeed parameter robust, and it
allows us to determine numerically the velocity components and their deriva-
tives with controllable accuracy which is defined only by the number of mesh
points used. Robust methods of this type are attractive to be applied to other
problems with boundary layers whose solutions exhibit self-similar behaviour.
The present paper shows the efficiency of the developed numerical method for
the study and computation of the flow over symmetric curved surfaces in that
case when the thickness of the boundary layer is small as compared to the
radius of curvature of the meridian arc at each point of the streamlined body.

2. Problem Formulation

As mentioned in [3], it is worth noting that no explicit solutions are known for
problem (1.1)—(1.5). Following the analysis of [6] employing a Blasius series
approach, it is possible to attain a semi-analytical, self-similar solution ug =
(up,vp) which can be written as

un(e.9) = 55 vnlay) = =52 - 2500, (2.1

where ¢ is the flow function. Using (1.3), (2.1) reduces equation (1.1) to

Y 9%y _(aw 1 dr )a%p UdU 83y

9y ooy \oz " ran? TV
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with the boundary conditions

U(x,0) = 5_¢($70) =0, lim M

3 Jim =2 =U(x).

In [3] we considered the case of a simple geometry with the first two terms
of the Blasius series expansion. Here because of the geometry given by (1.4),
our aim is to consider the Blasius series expansion with three terms, that leads
to the flow function

vlea) =57 ppnin - (5) s+ 55 (5) 5]
with
U R
n= % T (2.2)

We are interested in finding up, i.e., the self-similar solution of problem (1.1)—
(1.5) in the rectangular domain {2 = (0,1) x (0, 1). Thus, in accordance with
(2.1) the velocity components are given by

_ Ux
2R

3U
80R?

un(e,y) = 5= filn) - =0 i) + o= fn),

(2.3)
vn () = | = (o, ()1 n) — 0, () s () + v, () fs(0)}

where

120R* — 4022 R? + 32* 80R* — 202°R? + 2t 22
UB; (33) Bo (33) =

T 20RT— 2022k + 22 0 ¢ 120R* — 2022R2 + % ) R?’

(2.4)

T2R* —162%R? + 2% \ a4

B, (1) = 1 22 1 4 ) Spd
120R* — 20z“R* +z* ) 8R

and 7 is given by (2.2) and the viscosity v can take arbitrary values in the half

interval (0, 1]. Thus, both components u(x,y) and v(z,v), (z,y) € 2 depend
on the parameter v. Here f1(n) is the solution of the problem

(f2(n) —1), 0<n<oo,

N~

(n) = —fi(n) f'(n) +

f1(0) = f1(0) =0, limy o0 f1(n) = 1.

(2.5)

The function f3(n) can be represented by the sum of two functions

f3(n) = gs(n) + hs(n), (2.6)

where the function g3(n) is the solution of the boundary—value problem

g5’ (m)=—rf1(mgs (n)+2f1(m)gs(n) =21 (ngs(n)—1, 0<n < oo,
1 (2.7)

95(0) = g(0) = 0, lim, e gh(n) = 5.
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and the function hs3(n) is the solution of the boundary—value problem

Ry () == fr ()5 () +2.f1 ()i (n) = 27 (n)hs (n) = 5.1 () £ (), 238)
hs(0) = R4(0) = 0, limy,_oo h4(n) =0, 0<17 < . '
The function f5(n) can be represented by the sum of five functions
10 10 | 10
F5(n) = gs(n) + hs(n) + —ks(n) + 5js(n) + 545(n), (2.9)

where the functions g5(n), hs(n), k5(n), j5(n), and ¢5(n) are solutions of the
following boundary-value problems

g5’ (n) = —f1(mgs () +3f1(mgs(n) — 31 (Mgs(n) — 1,

1 (2.10)
95(0) = g5(0) =0, lim, o0 g5(n) = 30 0<n<oo;
hy'(n)=—fi(n)hg (n) + 3f{(m)hs(n)=3f1 (n)hs(n)— 5 fr(n) f' (1), 211)
hs(0) = hL(0) = 0, limy oo () =0, 0 <7 < o0; '

kY (n) = = fu(n)kE (n) + 3f1(mkE () — 3f1 (n)ks (n)
—2g8(n) — 39394 — 3, (2.12)
k5(0) = k5(0) = 0, lim, oo k5(n) =0, 0 <n < oo;

Js'(m)=—f1(m)g5 () +3f1 ()5 (n) =31 (n)s(n) +4 g5(n)h3(n)
—3(g3hy +h3g¥) —2(f{' 95+ [195), 0<n<oo, (2.13)

J5(0) = j5(0) = 0, limy o0 j5(n) = 0;

@' (n) = —fr(m)gd (n) + 3F1(n)as (n) — 31 (n)gs(n) + 2h%
—Shshf + 3 f1f! — 2(f1h + flhs), 0<n<oo, (2.14)
q5(0) = ¢5(0) =0, lim, . g5(n) = 0.

As mentioned earlier, the system (2.5)—(2.8) has already been solved nu-
merically (see [3]), here our aim is to construct a robust numerical method
for the singular system (2.5)—(2.14), i.e., a method for which the accuracy
of the components up(z,y) and vp(x,y) given by (2.3)—(2.4), respectively,
is independent of the parameter v, and is defined only by the number of
mesh points used to solve problem (2.5)—(2.14) on [0, 00). To construct such
a robust method in accordance with (2.3)—(2.4), it is sufficient to have an



Robust Numerical Methods for Boundary-Layer Equations 371

accurate method to approximate f1(n), fs(n) (or gs(n),hs(n)) and f5(n), (or
g5(n), hs(m), ks5(n), j5(n), q5(n)) and all respective first derivatives uniformly
on the semi-infinite axis [0, 00).

Note that when the parameter v is bounded from below, i.e., v > vy > 0,
then 7 varies on the bounded interval [0, 7], for all (z,y) € £2, where

1 [3UxR

770: R 1% ’

It is worth noting that the computation of the components ug(z,y) and

’UB(fvvy) for ($7y) € “Q: v e [V071]7 if f{(nO)a 9&(770), hé(nO)a 9/5(770)7 h%(WO);
EL(no), gt (no) and ¢f(no) are given, is a simple problem, i.e., no specific ro-
bust method is required.

3. The Numerical Solution

In the succeeding subsections we first construct numerical methods to solve
problems (2.10)—(2.14), which give us the approximations to gs, hs, k5, j5 and
s, respectively, which in turn give us f5. For brevity we outline the principles
of our numerical methods and then we demonstrate explicitly our constructed
numerical method by solving problem (2.10). Finally, using these numerical
solutions i.e., the numerical approximations of f1, f3 and f5 we compute
the required velocity components. In section 4, we will show with the aid of
numerical experiments that the constructed numerical method is robust.

The equations and boundary conditions for problems (2.10)—(2.14) have
been defined in Section 2. All the equations are linear. As discussed in [2] and
[3], instead of solving problems (2.10)—(2.14) on a semi-infinite domain [0, co)
we solve them on a finite domain [0, K7, for an increasing sequence of values of
the length K, where K is an auxiliary parameter. To determine approximate
solutions on the domain [K, c0), we extend the function, e.g., Fk, by using
the following extrapolations

Fg(n) =0, Fr(m) =L, Vn=K (3.1)
Fr(m)=L(n-K)+Fg(K), Vnz=K, (32)

where (3.2) can be obtained by integrating both sides of (3.1) from K to n
and L is the limiting value of the first derivative of any function F'.

To solve problems (2.10)—(2.14) we use a finite-difference approximation
on a uniform mesh on the interval [0, K] with N mesh nodes [2]

IV ={n;| ;i =iN"'Ky, 0<i<N}, (3.3)

where Ky = In N and we compute numerical approximations F, D*F and
D¥DYF to fx, fj and f}. respectively, at the mesh points IV using the
linear finite-difference method:
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Find F such that Vn; € IV

0*(D™F)(m) + Fi(n;) D* (D™ F)(m:) — C (D F1)(n: ) (D™ F)(m:)
+C D= (DT Fy)(ni)F(ni) = R

F(0)=D*F(0) =0, D°F(ny_.)=1L,

(S5)

where C' is a constant, R; is the righthand side, which depends on previously
determined functions e.g., f1, g3, hs and so on.

It is worth mentioning that the use of the backward finite-difference D~ F
in the finite-difference scheme (S7) ensures that this numerical method is
monotone, its solution exists and is unique with the given boundary conditions
[2]. Further, we mention that the use of the centered finite-difference operator
DY which is a higher-order approximation of the first derivative [2], in the
righthand boundary condition also ensures the monotonicity of the numerical
method.

3.1. Numerical solution of problem (2.10)

The equations and boundary conditions for problems (2.10)—(2.14) have been
defined in Section 2. As mentioned earlier, we proceed by solving problem
(2.10) on a finite domain [0, K], where K is an auxiliary parameter. Thus we
can express (2.10) as

955 () + fric (M5, () = 311, (g

95, (0) = 95,,(0) = 0, g5, (K) =

5 (M) +3f1 (g5 (n) = —1,
1 (3.4)
g .

To determine approximate solutions on the domain [K, o), we extend the
function g5, by using the extrapolation

o) = 5 (1= )+ g5, (K), V2 K. (35

And from (3.5), we have

1
g5, () = 3 95.(n) =0, Vn>K. (3.6)

Thus, the auxiliary problems (3.4)—(3.6) for given fi, (1), fi,. (1), f{; (n) are
defined by the parameter K. The solution g5(n) of the problem (2.10) is the
limiting solution of the problem (3.4)—(3.6) for K — oco. Considerations similar
to those given in [2] for flow over a flat plate (see Chapter 11, Section 3) lead
to the relation

1 1
9%(77) -3 ‘ ~ MeXP(—§ 772)7

for sufficiently large 7). The boundary condition for g5 _(K) in (3.4) is obtained
taking into account the behaviour of the derivative gf(n) for large values of 7.
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To solve problem (3.4) we use a finite-difference approximation on the
uniform mesh (3.3) on the interval [0, K x| with N number of mesh nodes [2].
Problem (3.4) is approximated by the following finite-difference scheme

§*(D™Gs)(mi) + Fiye (n:) DT (D~ G5)(n:) — 3(D T Fupe ) (mi)

x(D~Gs5)(mi) + 3D~ (DF Fuo)(n:)Gs (i) = —1, 37
G5(0) = D*G5(0) =0, D°Gs(yy_1) = %
where
D*de)z‘aﬂm)zfdmfﬂ7 D*Gﬂm);(%O””Z_GﬂmX
52G50h)5‘D+(%(m);;[r1?dn0’ DOGs () = G5@h+ﬂé;530h_ﬂ

K
and the mesh spacing is defined as h = =N

The discrete function Fi, (n;) is an approximation of the function fi(n),
which is the solution of problem (2.5) (see [3]). For n € [Kn, o), we use

1 —
G (i) = 3 (0 — Kn) + G5, (Kn), Vi 2 Kn. (3.8)
The solution of the problem (3.7)—(3.8) depends on two parameters K and
N. Similar to [2], one can justify that under the condition

Ky =InN, (3.9)

the solution G, i.e., solution of the problem (3.7)—(3.9) depends on the pa-
rameter N only and converges to the function gs(n) uniformly on [0, c0) (we
use here the technique similar to that given in [2, Chapter 11, Section 6]). Em-
ploying the above mentioned principles of the constructed numerical method
we solve problems (2.10), (2.11), (2.12), (2.13) and (2.14) jointly with (2.5).

4. Numerical Experiments

In this section we present the results of computations performed using the
numerical method outlined in the previous section. To proceed to the error
analysis we first introduce some notions related to the errors and orders of
convergence that we will employ here. For any mesh function W on IV,
we denote by W, the numerical solution on the finest mesh IV', which

— N~ . . . .
here corresponds to N* = 32768, and by W we define its piecewise linear
. — N~ . .
interpolant. We take W as the reference solution. We define the maximum
pointwise errors

N

FN = max [[WN =T . (4.1)
I
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We also analyze the errors in the numerical solutions in a different way, which
does not depend on a priori knowledge of the exact solution. We introduce
the computed pointwise two-mesh differences

DY = max [WN - ", (4.2)
I

which is the difference between any two consecutive meshes. We also define
the orders of convergence RN = log, (D" /D*V), which are based on the two
mesh differences.

We introduce the computed global two-mesh differences EN, which have
to be computed over three sub-intervals [0, Ky), [Kn, Kon) and [Kay, 00)
separately.

For 1 € [0, K ), the two-mesh difference for W is max, WY W and
y AN
for DFW it is max IDFW" — D*W2N|\. For € [Ky, Kan), the two-mesh
y AN

difference at n for W is max ||[W2N(n) — WN(Ky) — L(n — Ky)|| and
[Kn,Kan]

for DYW is |[DtW?2N — L||. We consider L = 1 for f5. Note that Koy =
In2N. The two-mesh difference in the sub-interval [Kay,o00) at n for W is
[W2N(Kan) — WN(Ky) — L In2|| and for DYW it is zero. In this manner
we compute the global two mesh differences D" over [0, oo] for various values
of N. We finally define the orders of convergence RY = log, (D" /D), which
are based on the computed global two mesh differences.

We will now compute EV, DN RN DN and R" for the numerical solution
of the problem for f5 in the following subsections.

4.1. Computed solution and error analysis for fs

A graph of the function F5(n) for N = 8192 on [0, K] is given in Fig. 2.
Here in comparison to f; and f3 (computed in [3]), we note that the function
f5 shows non-monotonic behaviour. This is clearly seen from Fig. 2 (see parts
(a) and (b)). The results given in Table 1 correspond to the solution Fs.

Table 1. Maximum pointwise errors F'~, computed two-mesh differences DV
and computed orders of convergence RY for F; for various values of N.

N 128 256 512 1024 2048 4096 8192 16392

FN 1.980D-02 1.110D-02 6.273D-03 3.447D-03 1.831D-03 9.247D-04 4.237D-04 1.495D-04
D" 9.575D-03 4.822D-03 2.826D-03 1.616D-03 9.062D-04 5.010D-04 2.741D-04 1.495D-04
RN 0.99 0.77 0.81 0.83 0.86 0.87 0.87

In Tables 2 and 3 the results for approximation of the derivatives DT Fy and
DT DT Fy are given, respectively.

We note that all tables reflect a uniform convergence on IV. The order of
uniform convergence of the numerical solution F5 to the exact solution f5,



Robust Numerical Methods for Boundary-Layer Equations 375

(a) 7 (b) K

Figure 2. (a) A plot of the solution of F5 for N = 8192, (b) a zoomed boxed area.

Table 2. Maximum pointwise errors F¥, computed two-mesh differences D
and computed orders of convergence RY for D F; for various values of N.

N 128 256 512 1024 2048 4096 8192 16392

FN 2.700D-02 1.556D-02 8.750D-03 4.790D-03 2.538D-03 2.280D-03 5.855D-04 2.060D-04
DV 1.145D-02 6.809D-03 3.959D-03 2.251D-03 1.258D-03 6.943D-04 3.795D-04 2.060D-04
RN 0.75 0.78 0.81 0.84 0.86 0.87 0.88

Table 3. Maximum pointwise errors F~, computed two-mesh differences DV
and computed orders of convergence R™ for D+ D™ F; for various values of N.

N 128 256 512 1024 2048 4096 8192 16392

FYN 9.295D-02 5.271D-02 2.926D-02 1.589D-02 8.380D-03 4.214D-03 1.924D-03 6.760D-04
DV 4.023D-02 2.345D-02 1.337D-02 7.508D-03 4.166D-03 2.290D-03 1.249D-03 6.760D-04
RN 0.78 0.81 0.83 0.85 0.86 0.88 0.89

on [0, Kn]| is better than 0.8 for all N > 512. We observe similar orders of
convergence of the discrete derivative D F; to the derivative fi for N > 512
on [0, Kn]. The orders of convergence of the discrete derivative D* D' F; to
the derivative ff' on [0, K] are better than 0.8 for all N > 256.

It can also be observed that the maximum point-wise error FV and the
convergence rate of the computed two-mesh difference D"V of the numerical
solution Fy and of the discrete derivatives DT Fy and DT D™ F; to the exact
solution f5, and to the derivatives f5,_ and fg respectively, on [0, K] reflect
the uniform convergent behaviour. In other words notice the trend in columns
labeled EV and D in Tables 1, 2 and 3, where the errors are reducing as N
increases.

The global two mesh differences given in Table 4 correspond to the function
F5, and in Tables 5 and 6 the global two mesh differences correspond to the
derivatives Dt F5 and D+ D+ F5, respectively. Function F5 and derivatives
D+F5 and DtD*F5 are convergent uniformly on [0, 00) and the computed
global orders of convergence for F'5 are better than 0.8 for all N > 512. We
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Table 4. Computed two-mesh differences DV and computed orders of
convergence RY for F's on [0, 00) for various values of N.

N 128 256 512 1024 2048 4096 8192 16392

I?N 9.533D-03 4.833D-03 2.829D-03 1.617D-03 9.065D-04 5.011D-04 2.742D-04 1.495D-04
RN 0.98 0.77 0.81 0.83 0.86 0.87 0.87

observe similar orders of convergence of the derivative DT F5 for N > 512.
In addition, the orders of convergence of the derivative D+ D+ F'5 are better
than 0.8 for all N > 256.

Table 5. Computed two-mesh differences DV and computed orders of
convergence RY for DT F5 on [0, o) for various values of N.

N 128 256 512 1024 2048 4096 8192 16392

DV 1.157D-02 6.849D-03 3.974D-03 2.255D-03 1.260D-03 6.947D-04 3.796D-04 2.060D-04
RN 0.77 0.79 0.82 0.84 0.86 0.87 0.88

Table 6. Computed two-mesh differences D" and computed orders of
convergence RY for D+ D+ F'5 on [0, 00) for various values of N.

N 128 256 512 1024 2048 4096 8192 16392

DY 4.023D-02 2.345D-02 1.337D-02 7.508D-03 4.166D-03 2.290D-03 1.249D-03 6.760D-04
RN 0.78 0.81 0.83 0.85 0.86 0.88 0.89

Thus, the numerical approximations F5, D+ F5 and DT D+ F5 are robust,
i.e., their accuracy in the maximum norm depends only on the value of N.
Moreover, for increasing N the orders of their convergence are better than 0.8
for N > 512.

4.2, Computation of the semi—analytical solution

The computation of the self-similar semi-analytic solution up is now carried
out using the numerical approximations F'5 and 751 = D+ F5, which are substi-
tuted for the exact solution f5 and for the discrete derivative fZ, respectively.
In an analogous way F1, F{ = D+F,, F3 and Fé = D+F5 are substituted
(see [3]) for fi1, f1, fs and f4, respectively. The relations (2.1) are used for
each (z,y) in the rectangular domain 2 = [0, 1] x [0, 1]. We define

3UOO -/ Uoo -/ 3UOO —/
Up(z,y) = ﬁxFl(n) - 2—R3x3 Fs(n) + 80R5x5 Fy(n),

0% {up. () Fr(n) — v () F(n) + v, () F ()}

VB(may) = -
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where (2.4) represents vp, (), vp, (), vp, (z) and n = (0, c0) is given by (2.2).

Graphs of the resulting approximate solution up are given in Figure 3 for
v = 275 Note that we set U,, = 1 and R = 1 for the computations. These
graphs are constructed using the data of the Blasius solution for F'y, F'3 and
F'5 corresponding to N = 8192.

Figure 3. Graphs of the semi-analytical solution (Ug,Vz) for v = 275 generated
from the numerical solutions F'1, F's & F's. Graphs are given for a 32 x 32 mesh.

Having the robust approximations F';, F3, F5 and their discrete deriva-
tives up to second order, one can compute the components Ug(z,y), Va(x,y)
and their first derivatives in x and y that are also parameter robust (see
[2, Chapter 11, Section 7] for flow over a flat plate).

5. Conclusions

The aim of this work was to construct a robust numerical method to obtain
a semi-analytical solution for the problems (1.1)—(1.3), (1.4), (1.5) over the
symmetric curved surface on the domain (2 based on the approach given in
[6]. The body contour of the surface defined by (1.4), with associated velocity
distribution on the surface defined by (1.5), results in the model flow on the
surface being represented in terms of the functions f;, f3 and f5, which are
defined on the semi-axis [0, 00). To obtain a robust method for the velocity
components up and vp on the domain (2 it is sufficient to have an accurate
method to approximate f1, f3 and f; with their respective first derivatives,
which are convergent uniformly on the semi-infinite axis [0,00). In [3], we
have considered a similar problem where the surface contour is represented
by a third order polynomial, resulting in the model flow being represented by
the functions f; and fs, which involves a system of three ordinary differential
equations. Using a similar approach we have constructed a robust numerical
method to obtain a semi-analytical solution for the problem (1.1)—(1.3), (1.4),
(1.5) on the domain 2.

In this paper, we solve a system involving eight ordinary differential equa-
tions. In particular, we solve a system of five complicated auxiliary equations
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to find g5, hs, ks, j5 and g5 which generate f5. Here the surface geometry is
more complicated as the contour of the surface is represented by a 5th or-
der polynomial. We note that in comparison to f; and f3, the solution for f5
shows non-monotonic behaviour, however, the discrete solution F; and its dis-
crete derivatives DT Fy and D+ D Fjy reflect uniform convergent behaviour on
[0,00). The results we achieved here are not only the immediate extension of
[3], we have indeed shown here that the constructed robust numerical method
is applicable to more complicated surfaces for model problems in comparison
to the body studied in [3].

The authors would like to thank the referee for some valuable comments
on this paper.
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