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VORTICES ON A SPHERE
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Abstract. We consider flows on a spherical surface and use a streamfunction for-
mulation to derive a nonlinear equation governing steady-state flows in that geom-
etry. We present some new vortex solutions to this equation.
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1. Introduction

In two-dimensional hydrodynamics, the equation governing a motion of an
inviscid incompressible fluid can be written in terms of a streamfunction

Y(x,y,t) as

9 (v, V1)
2, G\W VY
VO Sy
where 9 (a.b)
a,b) B
FIERD = agby — ayb,

is a Jacobian and V? = g—; + 8‘9—; is the two-dimensional Laplacian. This
equation admits steady-state solutions of the form

Vi3 =F (1.1)
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for any function F. A number of solutions are known for plane two-dimensional
hydrodynamics, including two solutions which represent rows of vortices: co-
rotating Stuart vortices [11]

¥ = log [coshy — e cos z],

with V21 = (1 — ) e*¥, and counter-rotating Mallier-Maslowe (M&M) vor-
tices [9]

coshey —ecosz
Y =log | ————

coshey + ecosz

with V2 = —1 (1 — £2) sinh 2¢.

2. Vortices on a Sphere

In the present paper, we are interested in the counterpart of equation (1.1)
for a spherical surface. In particular we want to find steady-state vortex solu-
tions on such a surface. In what follows, we will work in spherical coordinates
(r,0, ), so that the surface is defined by 0 < 6§ < 27, 0 < ¢ < 7, while the
radial distance r is constant.

In this coordinate system, we write the velocity as v = (u,v,w) with
u = 0, since there is no radial motion. Let us introduce a streamfunction via
v = YPgcsch and w = —1Py. Then the inviscid incompressible equations of
motion become

1 oW
" orsing 0(0,9)

(2.1)

together with a radial pressure gradient p, = r~! [¢i csc? 0 + 92 |. In equation
(2.1) we denote 2 = r?V2y, where

0? 0 0?
202 — .2

r“V* = csc 9@+cot9% + 202
is the Laplace-Beltrami operator. The equation (2.1) admits steady-state so-
lutions of the form

Q2 =F@). (2:2)

This formulation is not new, and has been used by a number of authors
to study vortices on a sphere. However, very few exact smooth solutions to
this equation are known for flow on a sphere. Crowdy’s generalization of the
Stuart vortices to the sphere [2] is the most recent, and possibly the most
substantial. Crowdy solved the counterpart of Liouville’s equation on a sphere,
2 = ae® + ¢, using a stereographic projection, which according to Lamb [8]
was used by Kirchoff in 1875 to study electrical conduction in a spherical sheet.
According to Crowdy, the only other exact distributed vortex equilibria (as



Vortices on a Sphere 359

opposed to point vortices) on a sphere known to him were the exact solutions
on a rotating sphere presented in [12, 13] and Crowdy’s own work [3] involving
a combination of vortex patches and point vortices.

The bulk of the research to date on vortices on a sphere can be split
into two main threads. The first thread, point vortices on a sphere, has a
long history, with Lamb [8] discussing how some of the 19th century work
on electrical conduction by Boltzmann, Kirchhoff, Topler and others could be
applied to this problem. More recent works are given by [1, 4, 7] and the work
on streets of point vortices is presented by [6].

The second thread involves using numerical methods, such as contour
surgery, to study the motion of vortex patches on a sphere, which was pi-
oneered by Dritschel and co-workers [4, 5, 10]. Although such analysis has
revealed the richness of vortex motion on a sphere, the results were numerical
rather than closed form expression.

Returning to (2.2), we will work directly with this equation rather than

using a projection. If we assume that ¢ = G (sin@sin (;NS), where ¢ = o+ do
and ¢ is a constant, then we find

n= (1 — sin? §sin? (;;) G’ (sinﬁsin é) — 2sinfsin ¢ G (sin@ sin (;;) .

We see that (2 is also a function of sin 6 sin ¢, so that ¢ = G (sin@sin (;NS) is a
solution for any function GG, and streamlines are lines on the sphere for which
sin fsin ¢ is constant.

When ¢¢ = 0, this solution is trivial, because in spherical coordinates,
sinfsin¢ = y/r, so the streamlines are lines on the sphere for which y is
constant, and the flow is symmetric about the y axis. One example of this is
given by

¥ =In {1 +e (sin@sin (;5) n} , (2.3)

2 = ne2 (% — 1) l(n_ew) <ef_ 1>2/" —(n+e¥)

for n a positive integer, with the velocity components given by
AN
ne (sin 0 sin ¢)
~\ N
sin ¢ [1 + € (sin@ sin gzﬁ) }

(u,v,w) =

(0, cot ¢Z, — oS 9)

and the pressure gradient given by

n2e? (sin 6 sin (;NS) e (1 — sin? @ sin? (;NS)

" r{1+a(sin0sin£s)n}2

For the case n = 1, we recover 2 = (1—¢?)e 2¥ — 1, the counterpart of
Liouville’s equation, while for n = 2, we have
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N=21+¢) (2 —e¥) -2.

Two particular values of ¢y are special cases. For ¢9 = 0, w is zero at the
poles for all n, while v = 0 at the poles for n > 1, but for n = 1, v = ¢ at
¢ =0and v = —¢ at ¢ = 7. At the equator, ¢ = 7/2, v = 0 for all n, while

nesin™ 1 0 cosb

w=- 1+ esin™ @

As discussed above, this solution is in a sense trivial, because the flow is
symmetric about the y axis. A similar, but less trivial, case is ¢9 = 7/2, so
that sin ¢ = cos ¢, where v is zero at the poles for all n, but

nesin” ! 6 cos 6

= ()7
14 esin™ 0 ¢
w = I
(=1)"nesin"" " O cosd
— = Tr.
14 (—1)"esin" 6
At the equator, w = 0 for all n, while v = —e for n = 1 and v = 0 for n > 2.

Another vortex solution is defined as

1+e¢ (Sinﬁsiné)n

Y =1In (2.4)

1—¢ (sin@singz;)n ’

2/n
2= g (6721/) - 1) lnew +2e% +n— (new —2e¥ + n) (etanh %) 1 .

For n = 1, we get a form of the double sinh Poisson equation
= —% (1 —€?) (2sinhe) + sinh 2¢))
while for n = 2,
Q=e][e-1)e"+e+1] (1+¢€").
The velocity components are given by
2nz (sinfsin @)

sin @ [1 — g2 (sin 0 sin gz~5) 21

(u,v,w) =

(0, cot ¢, — cos 0)

and the pressure gradient given by
~ -\ 2n—2
4n?e? (1 — sin? @ sin? (b) (sin 0 sin gzﬁ)

o 2
r [1 — g2 (sinGsin (;;) }

Dr =
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For the special case ¢y = 0, w is zero at the poles for all n, while v = 0 at the
poles for n > 1, but for n =1, v = 2¢ at ¢ =0 and v = —2¢ at ¢ = 7. At the
equator, v = 0 for all n, while

2nesin™ ! 6 cos
1—e2sin?" 0

w = —

Once again, this solution is in a sense trivial. For the case ¢g = 7/2, v is zero
at the poles for all n, but

_2n5 sin™ ! 9c0597 6=0,

1 —e2sin*" 0
(—1)"2ne sin™ ' § cos §

- ) ¢:7T'

1—e2sin?" 0

At the equator, w = 0 for all n, while v = —2¢ for n = 1 and 0 for n > 2.

3. Examples

The streamlines for these vortex solutions (2.3), (2.4) coincide, and correspond
to sin #sin ¢ = const, they are plotted in Figures 1-3.

a) b)

Figure 1. Vortices with ¢o = 7/4 as seen (a) from the y-axis; (b) from the z-axis.

Figure 1 shows a general case with ¢9 = w/4, while Figures 2 and 3
show the special cases ¢y = 0, for which the streamlines are circles centered
on the y axis, and /2 respectively. In these figures, the figure labelled (a)
shows the streamlines seen from the positive y axis, that labelled (b) shows the
streamlines seen from the positive x axis, and Figure 3(c) shows the view from
the positive z axis. Figure 3(c) bears something of a resemblance to Figure
2(a) of [4], although they are seen from different viewpoints. These figures
illustrate that for the general case, the solutions (2.3), (2.4) represent a pair
of vortices in each of the northern and southern hemispheres. When ¢y = 0,
each of the northern hemisphere vortices merges with its counterpart in the
southern hemisphere, so that we have two vortices centered on the equator.
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a) b)

. |

Figure 2. Vortices with ¢o = 0 as seen (a) from the y-axis; (b) from the z-axis.

2

Figure 3. Vortices with ¢o = 7/2 as seen (a) from the y-axis; (b) from the z-axis;
(c) from the z-axis.

a) c)

When ¢y = 7/2, the northern hemisphere vortices come together to produce
a dipole-like structure, as do the southern hemisphere vortices.

Although the streamlines of solutions (2.3), (2.4) coincide, the stream-
function will take different values on the streamlines in the two cases, and
different values for different n. In Figure 4, we plot {2 on the line ¢ = 7/2,
or equivalently z = 0, for several values of n, taking ¢ = 0.25. (2.3) and (2.4)
are plotted in Figure 4 (a) and (b) respectively for ¢y = 0 and in Figure 4 (c)
and (d) for ¢g = w/2.

Solutions (2.3), (2.4) to nonlinear equation (2.2) presented here are just
two specific examples, and it is likely that a number of different exact non-
linear vortex solutions exist, just as they do in the plane two-dimensional
case. Indeed, this is strongly suggested by the numerical results presented in
[4, 5, 10], where various vortex flows were studied.



Vortices on a Sphere 363
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N B O X X0

DS 5555

Figure 4. 2 = r?V?¢y along the line ¢ = 7/2. (a) (2.3) with ¢o = 0; (b) (2.4) with
@0 = 0; (c) (2.3) with ¢o = 7/2; (d) (2.4) with ¢ = 7/2.
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