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Abstract. Two-point boundary value problems for the fourth-order Emden-Fowler
equation are considered. If the given equation can be reduced to a quasi-linear
one with a non-resonant linear part so that both equations are equivalent in some
domain D, and if solution of the quasi-linear problem is located in D, then the
original problem has a solution. We show that a quasi-linear problem has a solution
of definite type which corresponds to the type of the linear part. If quasilinearization
is possible for essentially different linear parts, then the original problem has multiple
solutions.
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1. Introduction

Consider the nonlinear differential equation

e = f(t,2), tel:=]0,1], (1.1)
with the boundary conditions

2(0) = 2/(0) = 0 = z(1) = 2/'(1). (1.2)

Function f : I xR — R is supposed to be continuous together with the partial
derivative f,. Then the unique solvability of the Cauchy problem

2(0) = zo, 2'(0) =x1, 2”(0) = z2, 2" (0) =23

is ensured as well as the continuous dependence of solutions on initial data.
Our research is motivated by the papers of R. Conti [1], L. Erbe [2], L. Jackson
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and K. Schrader [3], who studied oscillatory properties of solutions of two-
point boundary value problems.
Consider also the quasi-linear equation

(Laz)(t) =2 — k'z = F(t, ), (1.3)

where F, F,,: I x R — R are continuous and F' is bounded, that is, there
exists M € (0,+00) such that

|F(t,x,)| <M V(t,z)elxR.

If the linear part (L4x) (t) is non-resonant with respect to the given boundary
conditions (1.2), that is, the homogeneous problem (L,z)(¢t) = 0, (1.2) has
only the trivial solution, then boundary-value problem (1.3), (1.2) is solvable.
Suppose that equations (1.1) and (1.3) are equivalent in a domain

D(t,z) ={(t,z); 0<t <1, || <N}

If some solution z(t) of the problem (1.3), (1.2) is located in this domain of
equivalence D(t, ), in other words, if z(t) satisfies the estimate

z(t)| < N Vel

then it solves also the problem (1.1), (1.2). We will say for brevity that the
problem (1.1), (1.2) allows a quasilinearization with respect to the domain
D(t,z) and the linear part is defined by (Lsx)(t).

If equation (1.1) can be reduced to another quasi-linear equation

(laz) () = Fu(t, @),

which is equivalent to (1.1) in different domain D1 (t,x), then the original
problem (1.1), (1.2) in some cases has a solution z1(t) € D1 (¢, z). In this way
we were able to obtain multiplicity results for the problem (1.1), (1.2). Similar
approach was used in [8] for the second-order BVPs.

2. Quasi-Linear Problems and Types of Solutions

First we prove results for quasi-linear problems of the type (1.3), (1.2) if the
following condition is satisfied for any (¢, x)

E* + (Z_Z;(t’ z) > 0. (2.1)

In our investigation we use the oscillation theory developed by Leighton-
Nehari [5] for the fourth-order linear differential equations

@ — p(t)z =0, p(t) > 0. (2.2)

We use their definition of a conjugate point.



Multiple Solutions of the Fourth-Order Emden-Fowler Equation 349

DEFINITION 1. A point n is called a conjugate point for the point ¢t = 0, if
there exists a nontrivial solution z(t) of equation (2.2) such that

2(0) = 2'(0) = 0 = 2(n) = 2/ (n).

For example, if the linear equation is *) — k*z = 0, then conjugate points 7
satisfy the nonlinear equation

cos kn coshkn = 1.

The conjugate points (or double zeros) in the oscillation theory for the
fourth-order linear differential equations play the same role as the ordinary
zeros in the oscillation theory for the second-order equations.

We define i-nonresonanse of the linear part and an i-type solution similarly
as for the second-order quasi-linear problems [7, 8].

DEFINITION 2. The linear part (Lyz)(t) := #*) — k%z is i-nonresonant with
respect to the boundary conditions (1.2), if there are exactly 7 conjugate points
in the interval (0,1) and ¢ = 1 is not a conjugate point.

For example, the linear part (L4x) (t) := @ — k4

any k=7mn, n > 1.

x is (n — 1)-nonresonant for

DEFINITION 3. Function £(¢) is an i-type solution of problem (1.3), (1.2), if
for small enough a, 8 > 0 the difference

u(t; o, B) = x(t; o, B) — £(t)

has exactly 7 double zeros (or conjugate points) in the interval (0, 1) and
u(1; @, B) # 0, where z(t; o, 3) is a solution of (1.3), which satisfies the initial
conditions

2(0;a, 8) = £(0),  2'(0; e, B) = £'(0),
2”050, 0) = £"(0) + o, 2"(0; 00, 8) = €7(0) - 6.
In what follows we call the solution z(¢; v, 3) a neighbouring solution.

Remark 1. An i-type solution £(t) of the problem (1.3), (1.2) has the following
characteristics in terms of the variational equation: if a linear equation of
variations

y@ — kly = F.(t,£(t))y

has exactly i conjugate points in the interval (0, 1) and ¢ = 1 is not a conjugate
point, then £(t) is an i-type solution. However, if ¢ = 1 is a conjugate point,
then £(¢) may be an i-type solution, or it may be an (i + 1)-type solution, or
its type may be indefinite. The respective examples can be constructed.

The following theorem is valid (see [6, 9]).

Theorem 1. The quasi-linear problem (1.3), (1.2) has an i-type solution, if
the condition (2.1) is fulfilled and the linear part (Lyz)(t) = ) — Kz is
1-nonresonant.
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3. Green’s Function

Consider the homogeneous differential equation with the linear part (Lsx)(¢)
W — Ktz =0,

where k satisfies the non-resonance condition cosk cosh k # 1. We have con-
structed the Green function for the oscillatory fourth-order linear problem

{x(4) —k*z =0,

z(0) =2/'(0) =0==(1) = 2'(1) (3.1)

and we give the respective formula and the estimate of the Green function
below.

Proposition 1. The Green function of the problem (3.1) can be written in
the form

1

Z( —u*(t,s)-v(l) —u(l) -v*(t,s) + by [u(r) -v(t+s—7)

—u(r=1) vt +s—1-7)—u(t—7) - v(r—s)]), 0< s <t <1,
Gi(t,s) = .

Z( —u*(s,t) - v(1) —u(l)-v*(s,t) + by [u(r) -v(t+s—7)

—u(r=1)-v(t+s—1-7)+u(t—7) v(r—s)]), 0<t <s<1,

(3.2)

where A\ = 4k3(coskcosh k — 1) and u,v are vector-functions such that

u(r) = [—sinkr, coskr], wv(7) = [cosh kT, sinh k7],

u(t,s) = [—sink(s —t+1), cosk(t+s—1)],

(
v*(t, 8) = [cosh k(t+ s —1), sinhk(s—t+1)],

and u - v denotes the scalar product.

Proof. The Green function is constructed as an element of Green’s matrix
by reducing the linear problem (3.1) to a matrix form

{X’(t) - PX(t)=0,

(3.3)
A1X(0) + A, X (1) = 0,

where X : [ — R*, P, A; € R**4 (i = 1,2). The Green matrix can be obtained
by formula
Gt Y () (A Y (0) + AoV (1)) A Y(0)Y " Y(s), 0<s<t<I,
t,s) =
—Y(#)(A1Y(0) + AV (1)) T AY ()Y "(s), 0<t<s<1,

where Y (t) (Y : I — R**%) is a fundamental matrix of system in (3.3) [4]. B
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Proposition 2. Function G (t,s) can be estimated by

(5 +V/2)Vcosh 2k + sinh k + 1
4k3| cosk cosh k — 1| '

‘Gk(t,s)‘ <I}:= (3.4)

Proof. The proof follows from a property of the scalar product |u-v| < |ul|v|
taking into consideration that

lu(r)| <1, |v(r)|] < Vcosh2k,
lu*(t,s)] < V2, |v*(t,s)| < Vcosh2k.

We can improve this estimate for some numbers k. For instance, if & = 7n,
(n=1, 2,...) Green’s function Gy(t, s) can be simplified. We express hyper-
bolic sine and cosine in terms of the exponential functions and obtain the
following estimates

(1+f>’“

|Gr(t,s)| < I =:I1(k), k=(2n—-1m, (3.5)
ek
Gi(t, )| < % —. Iy(k), k= 2nm. (3.6)

4. The Emden-Fowler Equation

We apply the obtained estimates (3.5), (3.6) and Theorem 1 to the Emden-
Fowler type equation
@ = \2|z|P sign x (4.1)

with the boundary conditions (1.2), where A #0, p > 0, p # 1.

Theorem 2. If there exists some k in the form k = mi, (i =1, 2,...), which
satisfies one of the following inequalities

RN

) < ﬂ|p — for k= (2n-—1)m, (4.2)
k FoT
k(l(; \_/51))6 < ﬂ;_ ik for k=2nm, (4.3)

where B is a positive root of the equation B = 5+ (p — 1) -pﬁ, then there
exists an (i — 1)-type solution of problem (4.1), (1.2).

Proof. Let us consider instead of equation (4.1) the equivalent one

2@ — k*z = N2|z|Psignx — Kz,
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where k satisfies cos k cosh k # 1. Denote
fu(z) := N2|z|P signz — k.
We can calculate the value of function f;(z) at the extremum point Z¢y,.. Set

2 kt\FE
M = |fireanr)l = A7 (=) p =11 (44)

Choose Ni > 0 such that
lz(t)] < N = |fe(z)| < My, Vtel

(similar type arguments were used in [8] for the second-order problems). Com-
putations give that

Ny, = (’;—z) ﬁﬁ, (4.5)

where 3 is a positive root of the equation
B =F+(p—1)prr.
Next we consider the quasi-linear equation
e — ke = p(z) - {\? - |zPsignz — Kz} =: Fy(x), (4.6)
where Fi(x) := ¢(z) fr(z). Function p(z) satisfies

L, |z[ < N,
p(z) =
0, |z|>Ng+er

and 0 < ¢(x) < 1 for remaining values of x. Then

max |Fk(x)| < My + &9,
tel,zeR

moreover £ and €5 can be made arbitrarily small. So it can be assumed that
function Fj(z) is smooth and bounded by Mj.
Quasi-linear problem (4.6), (1.2) can be written in the integral form

1

2(t) = / Gt $) Fe((s)) ds,

0

where Gy (t, s) is the Green function given by (3.2). Then
|:E(t)| < I'y My,
here I’y is an estimate of Green’s function in (3.4). If moreover the inequality
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holds, then equations (4.1) and (4.6) are equivalent in the domain
2, = {(t,ac) :0<t<1, |:L‘| < Nk}.

In other words if inequality (4.7) holds, then the original problem (4.1), (1.2)
allows for quasilinearization with respect to the domain §2; and the linear
part (Lyz)(t) = 2™ — k*z.

Notice that in the domain of equivalence {2, condition (2.1) is fulfilled

dF;

(ie. E*+ SN 0). So it follows from Theorem 1 that if the linear part
x

(Lyz)(t) = 2™ — k*z is i-nonresonant, then the quasi-linear problem (4.6),

(1.2) has an i-type solution, if moreover the inequality (4.7) holds, then the

original problem (4.1), (1.2) also has an i-type solution.

Let us consider values k of the form k& = 7,7 > 1. For such k the linear part
(Lyz)(t) = 2 — k*z is (i — 1)-nonresonant and the Green function Gy (¢, s)
satisfies either the estimate I'1(k) (see (3.5)) or Ix(k) (see (3.6)). It follows
from (4.4), (4.5), (3.5), (3.6) that the inequality (4.7) reduces respectively
either to (4.2) or (4.3). The proof is complete. B

Corollary 1. If there exist k = i, ¢ = 1, 2, ..., m, which satisfies inequalities
(4.2), (4.3), then there exist at least m solutions of different types of problem
(4.1), (1.2).

5. Example

In Table 1 given in Appendix the results of calculations are provided. They
show that certain k given in the form k = 7n, n =1, 2 ... satify inequalities
(4.2) and (4.3). For instance, if p = £, then there exist three values of k
(k = 7, k = 27, k = 3m), which satisfy the inequalities above, that means
that there exist at least three solutions of different types.

We have computed different solutions for the problem

2@ = 810|z|? signz,
(5.1)
z2(0) =2/(0) =0 =x(1) = 2'(1).

The solid line in Figure 1 indicates a trivial solution of problem (5.1) and
dashed line presents the corresponding neighbouring solution (see Definition
3). Their difference has no double zeros (the conjugate points) in the interval
(0, 1), so a trivial solution is a 0-type solution.

Figure 2a illustrates the second solution of problem (5.1) (solid line). It is a
1-type solution, because the difference between neighboring solution (dashed
line) and this solution has exactly one double zero (conjugate point) in some
point of the open interval (0, 1) (see Figure 2b). The initial data of the 1-type
solution is given by

2"(0) = 1.1, (0) = —5.03461937.
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Figure 2. a) 1-type solution of the problem (5.1), b) the difference between neigh-
boring solution and 1-type solution

40000 0. 0001
20000 0. 00005
0.2 0.4 \0.6 0.8 0.2 0.4\06 0.8
-20000 -0. 00005
- 40000 -0. 0001
a b

Figure 3. a- 2-type solution of the problem (5.1), b - difference between neighboring
solution and 2-type solution

Figure 3a illustrates a 2-type solution of problem (5.1). It is difficult to
show the graph of the respective neighboring solution, because two lines almost
coincide. Nevertheless, the difference between neighboring solution and this
solution is presented in Figure 3 b and it has one simple zero and one double
zero in the open interval (0, 1). The initial data of the 2-type solution is
essentially different from previous one:

2" (0) = 4099959.008, " (0) = —31634999.21.
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Table 1. Numbers  and values of k of the form 7i (i =1, 2 ...)
for certain values of p.

P B k;
4

p:g B~ 1.3632 k1 =m; ke =21
p:% B~ 1.3553 k1 =m; ke =21
p:g B~ 1.3499 k1 =m; ke = 2m; ks = 3w
ng [~ 1.3461 k1 =m; ke = 2m; ks = 3w
p:g [~ 1.3431 k1 =m; ke = 2m; ks = 3m; ka = 4m
p:% B~ 1.3407 k1 =m; ke =2m; ks = 3m; ka = 4m
ng [~ 1.3388 k1 =m; ko = 2m; ks = 37m; ka = 4m; ks = 57
p:% B~ 1.3373 k1 =m; ke = 2m; ks = 3m; ka = 4m; ks = b7
p:% [~ 1.3359 k1 =m; ko = 2m; ks = 37m; ka = 4m; ks = 57
p:g 6 ~ 1.3065 k1 =m; ke = 2m; ks = 3m; ka = 4m; ks = 57
p:% 06 ~ 1.3053 k1 =m; ke = 2m; ks = 3m; ka = 4m; ks = 57
p:% 6~ 1.3038 k1 =m; ke = 2m; ks = 3m; ka = 4m
p:% 6~ 1.3019 k1 =m; ke = 2m; ks = 3m; ka = 4m
p:% G =~ 1.2998 ki1 =m; ke = 2m; ks =3m
p:% G =~ 1.2969 k1 =m; ke = 2m; ks =3m
p:g 6~ 1.2933 k1 =m; ke = 2m; ks =3m
p:g 0~ 1.2884 ki1 =m; ke =27
p:% 6~ 1.2813 ki1 =m; ke =27




