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Abstract. We study certain isometries between Hilbert spaces, which are gener-
ated by the bilateral Laplace transform

Fo(z) = / et &(t)dt, z € C.

In particular, we construct an analog of the Bargmann-Fock type reproducing kernel
Hilbert space related to this transformation. It is shown that under some integra-
bility conditions on @ the Laplace transform F(2),z = = + iy is an entire function
belonging to this space. The corresponding isometrical identities, representations of
norms, analogs of the Paley-Wiener and Plancherel’s theorems are established. As
an application this approach drives us to a different type of real inversion formulas
for the bilateral Laplace transform in the mean convergence sense.

Key words: bilateral Laplace transform, Hilbert space, Sobolev space, real in-
version formula, Fourier transform, Hermite polynomials, Bargmann transform,
Plancherel theorem

1. Introduction

Let us consider the following Hilbert space H comprising all entire functions
F(z), z = x + iy with finite norms

1 ) 1/2
Flu=—=% F(2)]Pe™" dad < 0. 1.1
17 = (7 [ [ 1P anay) < o0 (1)

We will call this space as the Bargmann-Fock type space (cf. [9], Ch. 28]). In
this paper we will show that the image of the space Lo(R; etzdt) of all square

integrable functions &(t) with respect to the measure ¢!’ dt under the bilateral
Laplace transform [2, 7]
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Fap(z) = / T eta() dt, (1.2)

— 00

coincides with the reproducing kernel Hilbert space (1.1) admitting the repro-
ducing kernel H(z,u) = ﬁe(”ﬂ)Q/ 4. Moreover, the bilateral Laplace trans-
form (1.2) is an isometry of the space Ly (R; e’ dt) onto the space (1.1). These
results will give us an approach to derive a real inversion formula for the
transformation (1.2) Fg(z),z € R. In fact, as far as we aware there is a gap
in real inversion theory for the case of the bilateral Laplace transform. Mean-
while, the reproducing kernel approach was extensively used, for instance in
[8] to obtain inversion formulas for different kind of integral transformations.
Concerning the probabilistic approach to get real inversion formulas see [5].

We will need in the sequel an auxiliary information about the system of
Hermite’s orthogonal polynomials H,, (z), x € R, n=0,1,... (see |1, 3, 4, 6]).
It is defined by the equality

3
2dh

Hp(r) = (=1)"e dx”eﬂ ,n=0,1,... (1.3)

and has the following integral representation
z? oo
e 2 ,
(@) = 2"(=i)" [ T 01 (1)

This system is orthogonal on R with respect to the weight e~*". The normal-
ized factor is given by

/ e_””QH,QZ(a:) dr = /72"n!, n=0,1,.... (1.5)

For an arbitrary € R when n — oo it has the following asymptotic behavior
(see [3], Ch. 4)

nm

e_zz/QHn(x) = ay, (cos (mx - 7) + rn(x)) , I — 00, (1.6)

2n n+1
n — r 3
RV ( 2 )

2n+1
e 2 (),
m(2n+1) \2

when n is odd. Here I'(z) is Euler’s Gamma-function ([1], Vol. I). With the
use of Stirling’s formula for Gamma-function [1] we easily verify that

where

for an even n and

_an1/2
Qy ~ (2"+1n"e ”) , N — 00.

Moreover, r,(z) has the uniform estimate, namely
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|x|5/2

|7“n(x)| < COHSt.W,

where the constant does not depend on z and n.
From ;che theory of generalized Fourier series it follows that every f €
L2(R; et dt) can be represented in terms of the series

fl@)=> caHn(2), (1.7)
n=0
where -
Cp = ﬁ / f(t)Hn(t)e_tzdt, n = 0, 17 e (18)

Series (1.7) is convergent with respect to the norm in Lo (RR; e*tzdt), ie.

N
If— Z ann(x)HLQ(R;e—t? dt)

n=0
o0 2
= (/ eit
—o0

Moreover, the Parseval equality takes place

N
f(t) - Z Can(t)‘?dt) 2 — O, N — oo.
n=0

”f”ig(]R;e_tht) = ﬁz 2nn!|cn|2. (19)
n=0

2. Mapping Properties

We begin this section establishing the existence an(21 analytic properties for
the bilateral Laplace transform (1.2) of @ € Ly(R; et dt). Indeed, we have

Lemma 1. Let &(t) € Lo(R;e! dt). Then the Laplace transform (1.2) ezists as
a Lebesgue integral, which converges absolutely and uniformly on any compact
set of C. Moreover, it defines an entire function of the second order having
the type % and satisfying the following estimate

2
|Fp(2)| < . VERE /2H¢||L2(R;e‘2dt)' (2.1)

Proof. Indeed, by the straightforward estimation invoking Schwarz’s inequal-
ity we derive (z = = + iy)

‘Fq&(z)‘ < (/00

— 00

oo

ot +2at dt) 1/2( [

2
— pl/4ge /2|

2 ., \1/2
‘@(t)‘ ¢t dt)

< pl/aglel?/2

|¢||L2(R;et2dt) = H¢||L2(]R;et2dt)'
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Moreover, the integrand in (1.2) is analytic in C with respect to z and as we
have seen integral (1.2) is absolutely and uniformly convergent on any compact
set of the complex plane. Therefore Fg(z) is an entire function satisfying
estimate (2.1). It is not difficult to prove that the order of this entire function
is 2 and the type is 3. Lemma 1 is proved. B

Lemma 2. Under conditions of Lemma 1 we have the following isometric
identity for the bilateral Laplace transform (1.2)

g | LR anty= [ fowf e @)

oo

Proof. We begin by employing the Parseval equality for the Fourier transform
[5] to treat the left-hand side of (2.2). Hence we substitute (1.2) into (2.2) and
after integration with respect to y we derive

2, [e%S) [e'S) w242t
‘F(p(z)’ e ¥ dxdy =27 e v T
C —o0 J —o0

Hence integrating with respect to x we easily arrive at (2.2). Lemma 2 is
proved. B

@(t)rdxdt.

As an immediate consequence of this lemma we will show that under the
Laplace transform (1.2) the Hilbert space (1.1) forms a reproducing kernel
Hilbert space, which admits the reproducing kernel

H(z,u) = / e TGy =\ fre(Hi)?/4, (2.3)
In fact, the corresponding inner product gives the result

(Folo). H( 1) = 5y [ [ FolGme = dady

_ / L B(t)e= Uit = Fy(u),

that is the reproducing property is verified. Furthermore, it is straigthforward
to get that the set of functions {e**, z € C} is complete in Lo(R; e’ dt), i.e.
the equality Fg(z) = 0 yields & = 0 almost everywhere. Thus the bilateral

Laplace transform is an isometry from L (R; et dt) onto H (an analog of the
Paley-Wiener theorem).

For the real bilateral Laplace transform Fg(z),x € R we prove the follow-
ing lemma.

Lemma 3. Let ¢ € Ly(R; et2dt). Then Fg(x) is infinitely smooth, i.e. Fg €
d'n,

C*>®(R). Moreover, all derivatives T (e‘fz/QFqs(a:)) ,n € No belong to

Lo(R; dz) and satisfy the following inequality

[e'e) dr 2
/ (6712/2&(9”))‘ de < 2l [II7 g o gy = 01,2, (24)

oo | dx™
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Proof. We have

e " 2 Fy(z) = / h B(t)et’ ~(@=D?/2) gy

— 00

Hence, it is not difficult to verify that on any compact set of R we can dif-
ferentiate through with respect to x in the latter integral. As a result we
obtain

oo

d’I’L 2 2 an 2
o —x2)2 _ t2/2 Y —(z—t)*/2
o (e Fg (x)) / d(t)e 5 € dt

—0o0

o —t
= (-1 "2—"/2/ ()20 2 (S ar, (25
(122 [ o) d (25)
where H,(y), n € Ny is the system of Hermite polynomials (1.3). Applying the
Schwarz inequality, making elementary substitutions and taking into account
the value of the normalized factor (1.5) we derive the estimate

g 2 _ o [T 2 12— (z—t)2/2 T e s —t

- < L

L (e )| < [J@(t)| ¢ at [ 3 ( — )it
— 27n+1/2/ |q-5(t)|26t2,(;p7t)2/2dt/ einHEL(y) dy
= \/27m!/ B(t)[2et” ~ @072y (2.6)

Hence integrating through with respect to x in (2.6) we change the order of
integration via Fubini’s theorem and we get the inequality

oo n 2 o z—)2
/ d—(€7w2/2F¢(x))‘ dx < \/27m!/ |§Z5(t)|2et2/ e = dudt

o0
ool dx™ oo oo

P / B(1)[2et dt,

— 00

which yields (2.4). Lemma 3 is proved. B

3. Plancherel’s Type Theorem

In this section we establish an isometry between two Hilbert spaces, which is
realized by the bilateral Laplace transform (1.2) of real variable. The main
result will be Plancherel’s type theorem for this case of the Laplace transfor-
mation.

Let us consider a Sobolev’s type space of the infinite order W3°(R) of
complex-valued functions on R that are n times differentiable in a sense of
generalized derivatives for all nonnegative integers n. In fact, this is a comple-
tion of the corresponding pre-Hilbert space equipped with the inner product
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Z / dnf dn
n! dxm dx”

The norm of this space is given accordingly

1/2

[ fllwse®) = (3.1)

n'

Theorem 1. [Plancherel’s theorem|. The map &(t) — e~/ 2Fs(x), where
Fyp(z) is given by (1.2) is a continuous linear map from Lo(R;2met”dt) into
W$°(R) which is an isometry, i.e. Plancherel’s formula holds

_12
e 12 Fg () lwge i) = 1811, ommeray (3.2)

Furthermore, if &, W € Lo(R; 2met’ dt) then Parseval’s equality holds

PR ppp— 1 dn [ e S p—
27T/Ret @(t)@(t)dt:nz:%E /Rw(e () o (e PR (0)) do,

(3.3)
where the series in (3.3) is absolutely convergent.

Proof. By Lemma 1 ¢=* /2Fy(x) is well-defined and by Lemma 3 (see (2.4))
all derivatives are bounded as linear operators Lo(R; etht) — Ly(R; dz). Fur-
ther, employing representation (2.5), invoking (1.8) and making elementary
substitution we easily see that

(e_x2/2F¢(ﬂj))
= (—1)"2_(”_1)/2/ Bl — V2y)e TV R () dy
=V2r(=1)"n2"2¢, (z), (3.4)

where we denote by c¢,(x) Fourier coefficients (1.8) of the function &(x —
V2y)e@=V20)*/2 for each z € R, namely

en(x) = &(x — ﬁy)e(z_ﬁy)z/z_yQHn(y) dy, n=0,1,....

1 o0
2nply/m /_00
Hence combining with (3.4) the Parseval equality (1.9) yields

oo 2 o
/ ‘@(x - \/iy)‘ @V = gy — /7 Z 2"n!|cp ()2

n=0
e (772710

2

=3 \F Z — (3.5)
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Therefore integrating through in (3.5) with respect to x we use Fubini’s theo-
rem and after straightforward calculation of the inner integral we express the
left-hand side of the obtained equality as

00 00 2 B 2 .2
[ an [ o= vE| VI = GRIBIn

Meanwhile, the order of integration and summation on the corresponding
right-hand side can be inverted appealing to Levi’s theorem. Thus we easily
come up with isometric identity (3.2) and we prove the continuity of the map
e~ /2Fp(x) from Ly(R;2met’ dt) into W5°(R). Finally, relation (3.3) follows
immediately by using the parallelogram identity. The absolute convergence of
the series in (3.3) can be easily established with the Cauchy-Schwarz inequal-
ity. Theorem 1 is proved. B

Remark 1. We note that in [9], Chap. 28 the reproducing kernel approach has
been used as a way of getting isometric identities for the Bargmann transform.

Combining with Lemma 2 we arrive at the following corollary.

Corollary 1. Any entire function F'(z) with a finite integral (1.1) satisfies the
following identity

%//@w(zn%fdxdy:g%/R

Corollary 2. Almost for all ¢ € R it has the following left inverse operator for
the bilateral Laplace transform (1.2)

et d 1 d" 2 o" 2,5e% —1
) — - - el —x /QF —z®/2% T~ )
®) 2m dL‘nz:;J n! /R dx™ (e qs(a:)) oz <e x ) d

jm—nn (e*w2/2F(x)) ‘2 dz.  (3.6)

(3.7)
Moreover, if e~ /2Fp(z) is such that
“n+1 d"” 2 2
—x=/2
nz:% - /R T € Fp(z)| dx < oo, (3.8)

then (3.7) can be written in the form

—t2 X 1\n on 5 5
0 S [ (o, ()

n=0

(3.9)

Proof. Indeed, the Parseval equality (3.3) gives a key to prove (3.7). Putting

B 1, ify e 0,4,
Lp(‘y)_{o, if y € R\[0, 1],
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calculating Fy and differentiating through in (3.4) with respect to ¢ we arrive
at the inversion (3.7).

In order to establish (3.9) we should motivate the passage of the derivative
under signs of the series and the integral in (3.7). In fact, we will appeal to
the condition (3.8), the Cauchy-Schwarz and Schwarz inequalities to verify
the absolute and uniform convergence with respect to ¢ in the right-hand side
of (3.7) after formal differentiation. Precisely, it is not difficult to proceed the
following estimates

—z2/2 " ettt 2/2 ‘
? () e

dn 5 2 1/2 on 1/2
< = —22/2 ‘ (z—t) /2‘
- 27r n' /‘dw” Fo(x) / 695” dx)
1 n —|— 1 2 2 1/2

—x°/2 ‘

27r — /’dx” Fol )) dx)

x (gm/ ~(a- t>2H2(x\/_;) da:)l/2. (3.10)

The latter integral in (3.10) can be calculated, in turn, by representation (1.4)
and the Parseval equality for the Fourier transform. Hence we obtain

~E=)” 2 (x _t> do = \/i/oo —27 g2 (
e =z T = e 2(y)dy
/R NG .
1 [~ 1 [ 2 2
_ = - —(t/2)*+tyiyn
= e t"dt

& 1
= \/5/ et /22ng — onp (n + 5) .
0

Substituting this value into (3.10) and invoking again Stirling’s asymptotic
formula for the Gamma-function ([1], Vol. I) we come out with the following
uniform estimate

% nij;) %‘ /]R dcilt—n” (e_IZ/QFqs(m)) %e“_fz/Qdm‘
- QL = nﬂ/ ‘dx” wQ/qub(x))‘zdf)%i%)E
B n+1/‘dxn % ))‘dx) (o(i#))iw.

Therefore making elementary manipulations in the right-hand side of (3.7) we
arrive at (3.9). Corollary 2 is proved. B

\ /\

dy
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Remark 2. Tt is easily seen that functions g(z) = e~* /2Fy(z) satisfying con-
dition (3.8) form a subspace of the Sobolev space W5°(R) with respect to the
norm (3.1).

4. A Reproducing Kernel Approach

As we could see above in Lemma 2 the map & — Fp is an isometry from
Ly(R; etzdt) onto the Bargmann-Fock type space H with the norm (1.1). As
we show next, this map is not just an isometry, but it is, in fact, an invertible
isometry from Lo(R; e!” dt) onto H. This approach will drive us to an inversion
formula for the bilateral Laplace transform (1.2) in the mean convergence
sense.

Theorem 2. Let F' € H. For any non-negative integer we set

Fn(z) = %i%/R d” (e_zz/QF(a:)) % (e_rz/QH(a:,z)) dx, (4.1)

dam x
where the reproducing kernel H(z,u) is defined by (2.3). Then Fy € H and
the sequence {Fn}3_, converges to F' in H. Moreover, reciprocally

e

Dn(t) = 627T /OO "= F(2)Py(z — t) da (4.2)

where the polynomials Py (§) are expressed by
N

Peie =Y S, ()

n=0

converge to @ when N — oo with respect to the norm in the space Lo(R; et’ dt)
and Fp, = Fy. Finally, the bilateral Laplace transform (1.2) is an invertible

isometry from La(R; et dt) onto H, F(z) = Fp(z) and the Plancherel identity
(2.2) holds.

Proof. Recalling (2.3) by straightforward calculations we derive

—(e*ﬁ/?H(a:,z)) = 8877;(67"”2/2 /:)O eft2+(w+z)tdt)
an

_ / 67t2/2+Zt—€7(w7t)2/2dt.
oo ox™

Substituting the latter integral into (4.1) and invoking (1.2) we obtain that
Fn(z) = Fg,(2), where

2

Dy (t) = 3 /Oo d—"(e—fz/QF(x))d—"e—<f—t>2/2dx. (4.3)

2w n! dx™ dx™
n=0 oo
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Consequently, by Lemma 2 we get
IEN 13 = IFan 17 = 1ON17, o0 ary-

Meanwhile, invoking (1.1), (1.5), (3.6), the Minkowski, generalized Minkowski
inequalities and Cauchy-Schwarz’s inequality for the series we find

||¢)N ||L2(R;et2 dt)

/ } Z = /Oo dd;; QF(Q,‘)) %e—(z—tP/Qdm‘?dt) 1/2
N oo n 2 877, 2 1/2
S%Z%U\/QW”WWEWW”%&ﬁ

N 2 1/2
] ] 0 8 v 2 dn 2 2 /
T n tn mn

n=0
<§§5/dﬂ#ﬂu2;«mwwmeﬂw
= % ,ﬁ_o %(/O:O jTZ(e*tQ/zF(t)) th) i /O:O ‘%6712/2‘@0
(S [N o) a) (5 A e #far))’

2y 1/2

Hn(x)}dx) )

1 N o,
(S ([
=Pl (3 (e

N
1 1 e e N+1
<—2ﬁ1/4||F||H(1§n!2n/ooe e Y A

Therefore &y € La(R; etht) for each N € N. Hence we get that Fy is a
member of H and invoking (2.2), (3.6), (4.1) we derive for N, M — oo

o~ — ¢M|\L2(R;et2dt) =Fn — Fulln

o
oxm

_IQ/QF(Q:)) (e_rz/QH(a:,z)) dxHH

- H 21 W n' dx”

1 a 1 d” 2 2
—_— _ v —zF/2
- 2m n§+1 n! /R ‘ dam F(m)‘ dz — 0,N —oco. (4.4)
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Thus {&n}F_, is a Cauchy sequence in Lo (R; et dt). We denote its limit as
&. The sequence {Fn(z)}3_; converges to some function G(z) € H. We will
prove that G(z) = F(z) = Fg(2). Indeed, first we observe that (4.1) is a
partial sum of the corresponding series, which is equal to F'(z) according to
(3.3), Lemma 2 and reproducing property of the kernel (2.3). Furthermore,
invoking (3.6), (4.4) with Cauchy-Schwarz’s inequalities for the integral and
series we deduce for any compact set of C that

|Fn(2) = Fau(2)]

= " (e
B X L
M dn 2 12
( SR L dx> (2l
V2 =N+1 ®
Ny 1/2
7"E2/2F ) da: ) e(Rez)2/2
<n ;ﬂ n! / }dxn }
1/2
< const. / — _IZ/QF (z)| dx ) —0, N —oco.
(n ¥+1 nl ‘dx ‘

Consequently, the sequence { Fn(z)}%%_; converges uniformly on any compact
set to F'(z). Since it converges to G(z) in H we have that F'(z) = G(z) in C.
Hence passing to the limit in (4.4) when M — oo we obtain

I /\

”FN - F”H = ||F45N - F‘PHH = ||¢N - QSHLg(]R;e‘zdt) — 0, N — oo.

This yields F(z) = Fg(z). Moreover, the Plancherel identity (2.2) holds and
(4.3) is a right inverse operator. In order to establish the representation (4.2)
we integrate by parts n times in (4.3) eliminating integrated terms and invok-
ing (1.3) with straightforward calculations.

To complete the proof of the theorem we finally show that Fg is an in-
vertible isometry, i.e. (4.3) is left inverse too. Indeed, employing (2.5) we
substitute it into (4.3). Making elementary changes of variables we arrive at
the equalities

—t2/2 N (_1)77, oo gn
_ ¢ b —@-t)?/2
Pn(t) = 2m = nl2n/2 /_OO dzn (45)

oo 42 N
x/ B(y)el N2y, T dydzz—e t/QZ—l
V2 T

o0

> x—1 > 2 (a2 r—1Y
" -0?/2py ( >/ BB~ >/2Hn< >dd$
/Oo 7)) (y) 5 Y
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et /2 N
Z 12n // eUQmH”(u)
o n R2

I, (u N f—_y) e 2= =D VD? gy

V2

where the latter double integral exists due to Fubini’s theorem and the ab-
solute convergence of the iterated integral in (4.5). The inner integral with
respect to u can be calculated invoking (1.4) and Parseval’s identity for the
Fourier convolution ([6], Ch. 2). As a result we come out with the equality

= L=YY P (ut(t-9) VD)
H,(u u+ du
|t ( ﬁ)
_ CEUT - 02 /ag, < —t>.
2

27L+1/2

Substituting this into (4.5) and appealing to the summation formula (4.5.1.5)
in [4] we obtain the following representation

P (—I)N > 2 o (02 y—t dy
S e o P

By using again (1.4) and the Fourier transform technique we deduce the for-
mula

/ e_I2H2N+1 () d?x = (-1)Ny/m N122N+L

— 00
Hence we have

(=Y

2@y (1) - B(1)] = JrENTIN

X / [qj(y)ey2/2 _ ¢(t)et2/2} ef(yft)2/4H2N+1 (yT_t> gji (4.6)

- —t

Calling formula (1.6) of the asymptotic behavior for Hermite’s polynomials
of the odd order we substitute into (4.6) its right-hand side. Invoking the
reduction formula for the Gamma-function [1] we find

2N +1 F(N+%)
VAN +3 T(N +1)

X /OO [@(y)eyz/Q - @(t)etz/g}e_(y_t)z/s

— 0o

et/ [ (1) —Q’i(t)} -

X (sin (\/m(y — t)) +rons1(y — t)) % (4.7)

Meanwhile, the asymptotic behavior of the ratio of Gamma-functions [1] yields
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2N +1 F(NJF%)
VAN +3 I'(N +1)

:1+O(N72), N — 0.

Thus

ot2/2 [@N(t) _ @(t)} _ %/700 [@(x + t)e(w+t)2/2 _ @(t)et2/2:| o—72/8 (4.8)
X (sin (x\/m) + rgNH(x)) d?x
+0(N"2) /_ N (B + )e=+07/2 — g(t)e*/2] e/

. dx
x (sm (a:\/N n 3/4) n 7"2N+1(x)) == Iv(t) + In ().
Hence employing the estimate (see (1.6))

5/2
X
[ran+1(2)| < const. |N|T/4’

the Schwarz inequality and the elementary inequality |sinx| < |z|, it is not
difficult to verify that Jy(t) — 0, N — oo for any @ € Lo(R; etht) andt € R.
In the same manner we get

e d
/ {Q’J(x + t)e(w+t)2/2 - @(t)et2/2 ewa/SrgNH(a:)?x —0,N — 0. (4.9)

Further, let us approximate ¢ by a sequence of smooth functions {¢, }°2
with compact support such that

Hds - SO"”LQ(]R;e‘zdt) <eg, n > Ne

for any ¢ > 0. Moreover denoting by f,(t) = ¢n(t)e!"/2 we find
oz +1t) — folt) = fl(t +0z)x, 6€(0,1)

and the derivative f/ (t+ 6z) is bounded for all n € N. Consequently, for each
t € R the function

6712/8

(fn(x+t)_fn(t)) ELI(R§d$)7

and due to the Riemann-Lebesgue lemma [6] we have

1 /Oo (falz +1) = fu(t))e ™ /Bsin (m\/N+ 3/4) df 0, N — 0. (4.10)

T J-c0

Thus combining (4.10) with (4.8), (4.9) we derive that limy_co onn(t) =
©n(t), where o, is defined accordingly (cf. (4.3))

—t?/2 N oo gk k
e 1 d 2 d 2
= —_ —x%/2 —(z—t)*/2
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Furthermore it is easily follows from the discussions above that {&x}3_,
{oNn}F_, are Cauchy sequences in Ls(R; et’dt). Hence with Minkowski’s
inequality we obtain

@ _¢||L2(]R;et2dt) <o~ — (PN7n||L2(]R;et2dt)
+ lenn — ‘PnHLz(R;etht) + llen — QSHLQ(R;et?dt)- (4.11)
But for n > n. the latter norm is less than /3. Since we have
lonn — SDM,nHLQ(R;etht) <e¢e/3, when N,M — oo,

then the second norm in (4.11) is less than ¢/3 via Fatou’s lemma. Finally we
estimate the norm |®n — o nllp, g2 41)- To do this we employ (4.3), (4.8)
to write for n > n.

e"/2[@n(t) ~ on.alt)

2 [ ot - eat)]er =00 i (1 - VN 37E) L

T J—-
1 _ > 2/ 2 dy
+ (— +O(N 2)) / [sl”(y +1) — @n(y+t)}e(y“) Py (y) =
7r oo Y
0 d
+ O(N’2) [é(y +t) —pnly + t)} WD /2=v7/8 iy (y N + 3/4) =
o Y
=L n({t)+ I n(t) + I3 n(2).
Hence

3

18 = onnll Ly@sezary < D 1o N | La@sary-
i=1

Meanwhile with generalized Minkowski’s inequality we derive
1 -2
(2, N 1| Lo(iar) < (; +O(N ))

o0 .2 dy
x / 12(y +-) — en(y + ‘)||L2(R;e(y+t>2dt)€ Y /8|7“2N+1(y)|m

1

<,
dt) N1/4 ‘/7006 Y /8|y|3/2dy—>0, N — oo.

< const.[|D — on| 1, g2
Analogously,

© .2
T, x| £ (Riar) < O (N—3/2) @ — ¢n||L2(R;et2dt)/ eV B4y 0, N — .

—00

Integral I v we treat appealing again with the Parseval equality for Fourier’s
convolution. We have
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V/N+3/4

1 o 2 2 .
L) =5 [ [B) = paly)]er /2075 / "W dudy
| 27 J oo —/N+3/4
1 \/ N+3/4

2 eﬂ}m/ B(y) — paly)|e? /2~ W0/ dyqy,
2 —/N+3/4 ,Oo[ }

where the change of the order of integration is due to the absolute and uniform
convergence of the latter integral with respect to y. Further, Theorem 64 in
[6] and an elementary integral like (2.3) yield immediately the representation

o0

/ [@(y) — on(y)] €y2/2—(y—t)2/8+iuydy _ 2/ o (5)6—2(u—§)2+1’(u—§)td§7

— 0o — 0o

where ¥ is the Fourier transform of the function ¥, (y) = (2(y) —wn(y))eyz/ 2,
Therefore by virtue of the uniform convergence of the latter integral with
respect to u from the interval [—/N + 3/4, /N + 3/4] we end up with

00 ] v N+3/4
Ln(t) = % / W (€)e it / e 240" qude.

n

oo —/N+3/4

Hence by the Plancherel identity for the Fourier transform we get

2 0o 2 v N+3/4 2 1/2
111, N 2omiar) = \/;(/ W*(S)‘ (/ / 6*2(“*5)2du) dg)
—00 —y/N+3/4

g@(/"; v ([

o0
e
= ||5pn||L2(]R;dt) = ||¢_ (PnHLQ Reet2dn) < 30 T > M.
(R; ) T3

w2 2 1/2 N
e du) de) " = 195 g

Combining with (4.11) we verify that
P8 = Pl 1, moer2ar) <& N = Ne

and we conclude the proof of Theorem 2. B
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