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Abstract. The error estimation for quadrature formulas based on equally spaced
nodes is discussed in this paper. The error estimates use embedded formulas and they
are obtained for Newton-Cotes and Hermitian quadrature formulas. The coefficients
of these formulas and error estimates are presented. The locally adaptive integration
procedures implementing the truncation error estimation method proposed in this
paper were developed in MATLAB and results of appropriate comparative tests are
presented.
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1. Introduction

b
Numerical approximation of integrals If = [ f(z)dz is one of the most fre-

quently used numerical procedure. Numerousatechniques that are available for
analytical evaluation of integrals are inadequate for many problems that arise
in the real physical world. Consequently the value of the definite integral must
be approximated by some numerical methods.

Most numerical integration methods involve constructing the interpolating
polynomial of f(x) and then integrating this polynomial in order to obtain an
approximation to the integral of f(x). All interpolatory quadrature formulas
are uniquely characterized by the choice of their nodes z1,xo,...,z,. The
most important sets of interpolatory quadrature formulas are the following.

Closed Newton-Cotes formulas. Closed Newton-Cotes formulas QY n > 2
are interpolatory formulas based on equidistant nodes

b_
wi=a+(i—Dh, i=1,2....n, h=—2

n—1
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and can be presented as
Qnf= hzwiyi; (1.1)
i=1

where w; are the coefficients called the weights, y; = f(x;) are the values of
the integrand evaluated at the nodes x;, and h is an integration step.

Closed Hermitian quadrature formulas. Closed Hermitian quadrature for-
mulas QX are also based on interpolation functions constructed on equidistant
nodes and can be presented as

QEf =h) wiyi+1* Y wi y/, (1.2)

=1 i=1

where w!l, w!" are coefficients called the weights, y; = f(z;) and v} = f(z;)

are the values of the integrand and its derivative evaluated at the nodes z;.

Gaussian quadrature formulas. Gauss-Legendre quadrature formulas Q¢
are also based on interpolation functions constructed on the nodes chosen as
zeros of orthogonal Legendre polynomials and can be presented as

Qif=h)_ wiy;, (13)
i=1
where w{ are coefficients called the weights.

DEFINITION 1. [2]. A quadrature formula @, has degree d if it integrates

exactly all polynomials of degree < d and fails to integrate exactly f(x) =
d+1
x4t

DEFINITION 2. The truncation error for the quadrature formula is the differ-
ence between the numerical and analytical (exact) values of the integral.

The truncation error for the quadrature formulas (1.1)-(1.3) is given in the
form

Che fP(g), (1.4)

where C' is a constant, « is an integer dependent on the degree of quadrature
formula, [ is an integer indicating the order of the derivative, and £ is some
point in the interval (a, b).

b
Suppose that we want to approximate integral [ f(z) dz to within a spec-

a
ified tolerance £ > 0. For solving this problem we need: a quadrature formula,
an integration strategy, and a formula for estimation of the truncation error.

An important problem associated with automatic numerical integration
problem is that of error estimation. It is difficult to compute error estimates
that are both reliable and accurate. An obvious way to obtain an error esti-
mate is to compare a pair of integration formulas @),,; and @,2. The assump-
tion that @, returns significantly better results than @,; implies that error
estimate formula
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A=1Qmf — Qnaf (1.5)

gives a sufficiently accurate estimate of the truncation error for a large class
of integrands. A necessary condition in this technique is the assumption that
the degree of accuracy Q2 is larger than Q.

A simple way to obtain two different estimates Q,1 and Q2 for If is to
use compound rules. Integration formula @, is applied first to [a,b] and then
to the two subintervals [a, (a+b)/2] and [(a+b)/2, b]. Adding up the results of
both subintervals leads to the formula @3, which is more accurate than @,.
If f is a sufficiently smooth function and @,, has the degree p then formula

_ Qan_an
-

E (1.6)

may be used as an error estimation formula.

The main drawback of formula (1.6) is necessity to approximate definite
integral twice. Therefore for minimization of computation costs the estimates
@Qn1 and @, are calculated using embedded formulas. Suppose the n + 1
nodes are fixed and a unique interpolatory quadrature formula Q.2 = Q41
of degree d is constructed. The formula @,,; may be constructed removing one
or some points from the initial set of nodes checking that the interpolatory
rule based on the remaining nodes actually has lower degree of accuracy than
the formula Q2.

DEFINITION 3. [2]. A rule

Nf=) uif(x:) (1.7)

=1

is a null rule if it has at least one nonzero weight, and in addition

n
i=1

A null rule is said to have degree d if it integrates to zero all polynomials of
degree < d and fails to do so with f(x) = 291, A null rule N and interpolatory
rule @, based on the same set of points, are equally strong if the null rule is
scaled such that || N2 = ||Q]|2, where

¥l = (3 0)") @l = (3 u?)"”
=1 =1

1= 1=

and w; are the coefficients of rule (). The term null rule was first used in 1965
by J. N. Lyness [15]. The general theory of null rules was presented in 1991
by J. Berntsen and T.O. Espelid in [2].

Gauss formulas have one severe drawback: two arbitrary Gauss formu-
las Q% and Q%, with ny > n; do not have any identical nodes (except,
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perhaps, for the interval center). The usual procedure for obtaining a prac-
tical error estimate by formula (1.5) requires too many integrand values and
therefore too much computational effort. This disadvantage was overcome by
using a seemingly obvious method proposed by A. S. Kronrod in 1965 [17].
Suppose that n nodes 1, xs,...,x, are the abscissas of Q%,, then formula
Q%, with (2n + 1) nodes is constructed in such a way that its degree of ac-
curacy is the highest possible, i.e. new nodes are contained in the intervals
(a,21), (x1,22), ..., (T, b).

Since the first automatic algorithm for the numerical calculation of def-
inite integrals was given by McKeeman [16] in 1963, many new algorithms,
including non-adaptive, adaptive (locally and globally), and double adaptive
(locally and globally), have been developed [3, 4, 5, 6, 7, 8, 9, 13, 14].

Recently Gander and Gautschi [9] published a paper describing two new
adaptive quadrature Matlab codes adaptsim and adaptlob based on Simpson’s
and the four-point Gauss-Lobatto rules respectively. Espelid in [3] discussed
null rules based on divided differences and constructed error estimator us-
ing sequences of null rules with the intention to increase the reliability for
both adaptsim and adaptlob codes. In addition two new Matlab codes coteda
and coteglob are developed, they use a locally and a globally double adaptive
strategy respectively. Both algorithms use sequences of null rules in their lo-
cal error estimations. These new codes make use of both the five-point closed
Newton-Cotes rule and the nine-point closed Newton-Cotes rule.

The aims of this paper are:

1. To compute the null rules with the smallest truncation error for Newton-
Cotes and Hermitian quadrature formulas.

2. To develop and to test adaptive Matlab procedures based on the con-
structed null rules and the nine-point closed Newton-Cotes and the four-
point closed Hermitian quadrature formulas.

3. To compare numerical results with Gander—Gautschi and Espelid results
from the well known test kit given in [3, 9].

2. Truncation Error Evaluation

Suppose that quadrature @ is based on nodes zg = a,x1,29,...,2, = b and
it has the degree d and quadrature ()7 is based on the same nodes except
of nodes x,,... x5, ki € {1,2,....,n—1},i = 1,¢,¢ > 1 and it has degree
dy < (d—q). Usually, the nodes x,,7 = 1, ¢ are chosen in such a way that the
quadrature formula (1 would have the smallest theoretical truncation error,
i.e. that the absolute value of the constant C in the truncation error formula
(1.4) would be the smallest.

Suppose that A and A; are the values of truncation error for formulas @
and Q; respectively. Thus,

If=Qf+A=1f + A1 (2.1)

Equivalently, (2.1) can be rewritten as
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§=1Qf —Quf| = A1 — 4] (2:2)

It is obvious that formula (2.2) is the null rule of degree dy = min(d,d;). It
implies that formula (2.2) can be used for local error estimation.

We may expect that error estimate formula (2.2) on the narrow integration
interval will be exact enough because

|f(x) = Po(2)| = [Ppyi(z) — Pu(x)],

when interpolating step is sufficiently small, where P,(z) and P,41(z) are
interpolating polynomials for f(z) [1]. This statement can be proved by using
the Taylor series in the interval [z, z;41].

Formula (2.2) for the closed Newton-Cotes rules can be written as

0 =Qf = Quf| = [h(wy: + wiyr + ...+ whyn)), (2.3)
where w = w? — win,i =0,...,n, and the coefficients wZQ and wZQ are the

weights in formula (1.1) for the quadrature formulas @ and Q; respectively.
In a similar way formula (2.2) for closed Hermitian rule can be written as

§ = |h(wiys +wiys + ...+ whyn) + A2 (wd Y +wd yh+...+wd yh)|. (2.4)

3. The Error Estimation for Newton-Cotes Quadrature
Formulas

Suppose that the closed Newton-Cotes quadrature formula @ is based on
equally spaced nodes z;,i = 0,n and it has the degree n. In this section we
will discuss a procedure for construction of a closed interpolatory quadrature
formula @1, which is based on the same nodes x; except of one node zy, k €
{1,2,...,n — 1} and the truncation error of which is the smallest possible.

The construction of quadrature (Q; consists of the following steps.

1. Substitute the integrand function f(x) with the Lagrange interpolating
polynomial P, () that agrees with f(x) at nodes z;,i = 0,n,i # k, k; €
{1,2,...,n—1}.

2. Write the resulting approximation of the integral

b b "
/f(x)dacm@lf:/Pn,l(x)d;v:h Z wy;. (3.1)

i=0,i#k

w

. Foreach k = 1,2,...,n—1 evaluate the truncation errors of formula (3.1).

4. Choose the smallest theoretical truncation error. Let z; be a node for
which this error is received.

5. Calculate the coefficients w;** in formula (3.1).
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The theoretical truncation error A; for quadrature @ is calculated using
the error formula of the interpolating polynomial P,,_;(x) and the Intermedi-
ate Value Theorem. It can be written as

Tn=b
PR AR de. (3.2
1= (x—z0)(x—21) ... (T—2)—1) (=T 31) - . . (T—2) d, (3.2)
where ¢ is some point in the interval (a,b). Using substitution ¢ = 7% — [,
where h = b;—“,l = 5, formula (3.2) can be written as
!
A —f(n)(f)h”’L1 t+1 -1 l—k+1 l—k—1 l)d
1= (t+DE+1=1)...(t+l=k+1)(t+I-k—1)...(t=1)dt.
=1
(3.3)

Formula (3.3) is more convenient for calculation, because it does not depend
on the actual values of z;.

The coefficients in formula (3.1) can be computed using the method of
undetermined coefficients. Formula (3.1) must be exact for polynomials of
degree < (n —1). In this case, we need to solve the following system of linear
equations

w5 (l0) + wi o (h) + -+ w95 (1) -
+ka_,’1_1Q0j(lk;+l) +...+ wgle(ln) =my, j=0,n—-1,

!
where ¢;(l;) = (=l+i)?, m; = [ aidx,foralli=0,1,2,...,k—1,k+1,...,n,
)

and j =0,n — 1.
Table 1 shows coefficients of the closed Newton-Cotes quadrature formulas,
closed interpolatory quadrature formulas Q1 and error estimation formula

f(ﬁ_l)(g) tildep
G-

The table is divided into several parts, each of which consists of the three rows.
The coefficients of the closed Newton-Cotes quadrature formula (quadrature
Q) of the degree p are put in the first row of each part. The calculated co-
efficients of the quadrature (); with the smallest truncation error and of the
degree (p—2) are given in the second row, and the coefficients of the truncation
error formula (2.3) are listed in the third row (denoted 74,”). These coeffi-
cients give the difference between coefficients in the first and in the second
TOWS.

The column "n” represents the number of equally sized subintervals into
which integration interval is divided. The column ”p” gives the degree of
quadrature formulas, and the column ”cA” displays theoretical formulas for
evaluation of the truncation error. For example, if n = 4, then the truncation

A=ca(p)
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Table 1. The coefficients of the symmetric embedded Newton-Cotes formulas
and truncation error estimation formulas.

n P wo wy w2 w3 w4 ws ca p
1 4 1 —4
3 3 3 ™ 5
2 1 0 1 = 3
1 4 1
&2 3 3 3
4 U 64 24 64 14 —128 o
15 15 a5 a5 15 21
2 16 16 2 32
4 3 9 9 0 9 9 15 5
5 4 —16 24 —16 4
4 I3 45 15 45 15
AL 216 27 272 27 216 —1296 9
140 140 140 140 140 140 5
14 81 110 81 324
6 50 %0 0 30 0 %0 E
5 9 —54 135 —180 135 54
6 700 700 700 700 700 700
3956 23552 —3712 41984 —18160 41984 —606208 {7
14175 14175 14175 14175 14175 14175 33
8 7 1908 10496 0 16128 —4144 16128 —118784 g
6615 6615 6615 6615 6615 315
5 —928 7424 —25984 51968 —64960 51968
8 99225 99225 99225 99225 99225 99225
10 80335 531500 ~ —242625 1362000  —1302750 2136840 —53854-10 g
209376 299376 299376 209376 209376 209376 273
10 9 11690 65125 0 97500 —23250 106110 —647-10" 14
10824 10824 10824 10824 10824 99
5 —16175 16175 ~ —727875 1941000  —3396750 4076100
10 3osi28 898128 808128 808128 808128 808128

error estimate formula (2.3) for the five point closed Newton-Cotes quadrature
is presented as

4

b= 12

h(yo — 4y1 + 6y2 — 4ys + ya)|. (3.5)
Remark 1. If n = 2 or 4, then we can use the composite rule for estimation
of the truncation error: the composite trapezoid rule for n = 2 and the com-
posite Simpson’s rule for n = 4. In these cases we will get four times less the
truncation error values than the corresponding values reported in Table 1.

Remark 2. Table 2 shows the ratio between the absolute values of the the-
oretical truncation errors of error estimation formulas §,(zx). Here 4, (xg)
denotes the theoretical error estimate for the n degree quadrature formula
based on equally spaced nodes zg, x1,...,Tk—1, Tkt -.,Tn. Values |0, (xk)]
and |0, (z,—r)| are equal.

It follows from Table 2 that optimal error estimator is obtained for 4, (x2).

This fact can be explained in the way that for the even integer n the value
Tp=b

of integral [ (z — zo)(x — x1)...(x — zp—1)(x — Tg41) ... (¢ — 2,) dz has
To=a

the smallest value if x;, = z4. It based on the properties of polynomial (z —
zo)(® —x1) ... (¢ — xp—1)(® — Tpt1) ... (x — 2 [12].
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Table 2. The values of the ratio { On (@) ’
On(x2)
n xr1 X2 T3 T4 x5

4 1 4

4
6 20 1 &£ 1 20
8

644 1 164 227 164
29 29 116 29

10 6378 1 1362 5211 35614
647 647 4529 23645

4. The Truncation Error Estimation for Hermitian
Quadrature formulas

The construction of the (2n + 1)-th order Hermitian quadrature formula @,
which is based on equidistant nodes, consists of the following steps.

1.

Divide the given integration interval [a, b] into equally sized subintervals
by nodes z; = xg + ih,i = 0,n, where g = a, h = (b —a)/n, x, = b.
Substitute integrand function f(x) with the Hermite interpolating poly-
nomial H(z) obeying the following equalities:

Write the resulting approximation in the form

b b
/f(x) dx ~ /H(x) dx = h(woyo + wiyr + - + Wnyn)

+ B (whyh +wiyy + -+ whys). (4.1)

4. Calculate the coefficients w; and wy.

The coefficients in formula (4.1) are computed using the undetermined coef-
ficients method. Hence, like for the Newton-Cotes formulas, we need to solve
the following system of linear equations

wop;(lo) +wip;(l) + -+ wnp;(ln)
(4.2)

+wie’s(lo) +wiwi(l) + - +wii(ln) =my, j=0,2n+1,

where

pi(li) = (=In/21 + ), @i(li) = j(=[n/2] +4i)’~", i=0,n,
n—[n/2]

m; = / ¥/ dr, j=0,2n+ 1.
—[n/2]
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The theoretical truncation error A for Hermitian quadrature Q can be
computed using the truncation error formula of the Hermitian interpolating
polynomial and the Intermediate Value Theorem. This formula like (3.3) can
be written as follows

f(2n+2) n

A=21_——>7 T2l 2"+3/Ht—l (4.3)

_ b—
T h= 2

Suppose that Hermitian quadrature formula () is based on equally spaced
nodes z;,= 0,n and it has degree p = 2n + 1. Then Hermitian quadrature
formula @1 of degree (p — ¢q) for integer ¢ > 0 is obtained by the following
steps.

where t =

1. Substitute integrand function f(z) with the Hermite interpolating poly-
nomial H;(z) obeying the following equations

Hi(z)=vy;, i=0,n, Hi(x)=vyi, i=0,n,1i%#ki k... kg

where x;,7 = 0,n are the nodes of the quadrature Q. The nodes

xg, € {zo,T1,..., 20}, i=1,q

are chosen in such a way that the theoretical truncation error for quadra-
ture (1 would be the smallest.
2. Write the resulting approximation in the form

b b n n
/f(a:) dx%/Hl(a:) da::thiyi—FhQZw;‘yg, (4.4)
s s i=0 i=0

where w; =0,i=1,¢.
3. Calculate the coefficients w; and wy.

The coefficients in (4.4) are computed by using the undetermined coefficients
method. Formula (4.4) has degree p1 < (2n+1 —q).

The theoretical truncation error A; for Hermitian quadrature @ is cal-
culated using the error formula of the Hermite interpolating polynomial and
the Intermediate Value Theorem. This formula like (4.3) can be written as
follows

f(2n+2 9 (¢

2n+3
Ay = (2n+2_q q/Ht—l (4.5)

where t = 274 h =% andif | = k;, i = T,¢ then s = 1 else 5 = 2.
Tables 3 and 4 show calculated coefficients of the Hermitian quadrature
formulas @ and Q1. The structure of both tables is the same as that of Table 1.

Tables 5 and 6 show coefficients of the truncation error formulas of Her-
mitian quadrature.
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Table 3. The coefficients of the embedded Hermitian quadrature formulas.

n 0 wo w1 wWa w3 o ws we
1 1
3 3 2
1 2 1 2
3 3
7 16 7
5 15 15 15
2, 4 16 10
5 15 15
7 93 243 243 93
224 224 224 224
3 5 s 51 81 39
30 90 90 30
9 3202 8192 11232 8192 3202
8505 8505 8505 8505 8505
4 7 434 1024 864 1024 434
945 945 945 945 945
1] 319085 691875 1270000 1270000 691875 319085
912384 912384 912384 912384 912384 912384
5 9 175515 455625 457500 457500 455625 175515
135456 135456 135456 135456 135456 135456
13 3310219 5014656 11161125 21088000 1161125 5014656 3310219
10010000 10010000 10010000 10010000 10010000 10010000 10010000
6 1] lasar 377784 475875 314000 475875 377784 144341
385000 385000 385000 385000 385000 385000 385000

Table 4. The coefficients of the embedded Hermitian quadrature formulas.

nd w wi w3 w3 wy w3 we ca P
1 —1 1
) 3 1 5P E
—1 1
20 5 4
1 —1 16
9 5 15 0 15 105 7
4 2 4
40 R s 6
7 5T —81 81 —57 81 9
3 1120 1120 1120 1120 70
3 1 81
5 0 0 0 10 140 7
116 —512 512 —116 10240
4 9 o533 335 U 2835 2835 o5 11
20 —20 2048
7 31 0 0 0 3155 315 9
1] _36975 —314375 —272500 272500 314375  —369975 3610625 13
1064448 1064448 1064448 1064448 1064448 10644483 12012
5 g 1725 —3750 0 3750 1725 68125 19
36288 36288 36288 36288 924
13 30711 —409536 726975 0 726075 400536 30711 1306368 {5
6 10010000 10010000 10010000 1001.10¢8 1001.103 1001.10% ~ 143
111 —486 486 —111 8374752
11 7755 350 U 0 0 2750 2750 5005 19
5. Numerical Results

The MATLAB locally adaptive (the subintervals are processed from left to
right until the integral over each subinterval satisfies the relative error require-
ment) integration procedures: ncg9 and hermith were developed. Procedure
ncg9 uses the closed nine-point Newton-Cotes quadrature formula. Procedure
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Table 5. The coefficients of the truncation error formula of Hermitian quadrature.

n o

wo w1 w2 ws waq Ws We
1 1 -1

T
1 1 —1

26 35 0 5

3 52 —81 81 81 —81
3 1120 1120 1120 1120

4 52 =704 —1024 3456 —1024 —704
4 8505 8505 8505 8505 8505

5 §2 1021875 —5518125 6540000 6540000 5518125 —1021875
5 19180064 19180064 19180064 19180064 19180064 19180064

6 §2 —442647 —4807728 _1211625 12024000 —1211625 —4807728 —442647
6 10010000 10010000 10010000 10010000 10010000 10010000 10010000

Table 6. The coefficients of the truncation error formula of Hermitian quadrature.

néd wg wi wy w3 wj w3 wg
1 1 1
1 1 4 1

20 3 5 5

3 62 =20 —81 81 27
3 1120 1120 1120 1120
2 —64 —512 512 64

4 03 2835 2835 0 2835 2835

5 §2 —40875 _613125 _817500 613125 40875
5 3103344 3193344 3103344 3193344 3193344

G 62 —=9693 232632 726975 0 726975 232632 —9693
6 10010000 10010000 10010000 10010000 10010000 10010000

hermith uses the closed five-point Hermite quadrature formula. Both formulas
have degree of precision equal to nine. Formulas (2.3) and (2.4) are used for
local error estimation in procedures ncg9 and hermith respectively.

Rounding error may influence both the estimate of the local integral and
the evaluation of truncation error. We will, as in [3], define a certain noise level
for the problem. All local errors below this noise level in both procedures ncg9
and hermith are defined to be zero, thus avoiding subdividing such intervals
further. The noise level in both procedures is: is * 10717, where is # 0, is a
rough estimate of a modulus of the integral.

In both procedures we are using the conventional termination criteria over
each subinterval [u, v] of the initial interval [a, b]:

V),

where m = (u+ v)/2 and § is the truncation error value over [u, v].
In comparing adaptive quadrature routines, the most important charac-
teristics are [9]:

(is+0 =14s) or (m=u)or (m= (5.1)

e efficiency, as measured by the number of function evaluations required to
meet a given error tolerance;
e reliability, the extent to which the requested error tolerance is achieved;
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e tolerance responsiveness, as measured by the efficiency of sensitiveness to
changes in the error tolerance.

We have tested both procedures ncg9 and hermith discussed in this paper
on 23 test problems used in [3, 9]. They are picked from two different sources:
the 21 first problems come from Kahaner [11] and the last two are picked from
[10].

1

1
1. /exp(x) dz. 2. b/f(iv) dz, where f(z) = {1’ if z>0.3,

0, else.
0
1 1 03 1 p
x
0 21 0
1 1

6/\/ 3 du. /—da: S/de 9/#@:

' ot T ) 24sin(10mz)
0 0

1 . 1
1
10. / der. 11. / der. 12. / * dr.
1+ 1+e® er —1
0 0 0
/ 100 r V50 r 25
T )

13. i der. 14. —————dz. 15. ———dx.
/sm( X ) v /exp(507mc2) v /exp(25ac) v
0,1 0 0
7 50 / 50sin (507x)

sin (50mz

16. —————d=x. 17. ——d
/ 7(250022 + 1) / (Gomz)z "

0 0,01
10

18. /cos (cos(x) + 3sin(x) + 2 cos(2z) + 3sin(2z) + 3 cos(3x)) d.
0

/ 1 if 2> 10717 /
ogx, x> 10777,
/f(x) Xy f(l’) {0’ clse. /1 005_’_$2
0 ~1
1 . 1
21. /Zl cosh(207(z — 21)) dr. 22. /47T2xsin(207mc) cos((2mx)) dx.
0 = 0
1
23 / ! dx
©J 1+ (2302 — 30)2
0

We compared our results with results of MATLAB 7 function quadl [9]
and with results of procedure coteda [3]. The procedures gquadl and coteda
as ncg9 and hermit5 have degree of precision nine. The function quadl uses
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the same stopping criterion (1.5) and is based on a four-point Gauss-Lobatto
rule with a three-point Kronrod extension. The second Kronrod extension of
applied to the initial interval [a, b] provides the estimate of is in formula (1.5)
(procedures ncg9 and hermit5 also use this formula for rough estimate of the
modulus of integral).

The procedure coteda uses both the five-point closed Newton-Cotes rule
and the closed nine-point Newton-Cotes rule in a locally doubly adaptive
fashion based on bisection. The code is allowed to stop either because the
five-point estimate is considered good enough or because the nine-point esti-
mate is considered good enough. The nine-point estimate requires four new
points to the five-point estimate, but these are the same points needed in
two applications of five-point rule after bisection of the the interval [3]. The
procedure coteda uses a sequence of null rules of decreasing degrees [2].

We have tested both new procedures ncg9 and hermith, as in [3] for twelve
different error tolerances ¢ = 1071,1072...,107'2. Some results of calcula-
tions are presented in the following tables. Here we report the number of
function evaluations used by each of the four codes. The results of column
coteda are taken from [3] and all results of the other columns are calculated.
A minus sign in front of number indicates that the requested accuracy was
not achieved by the given code in this particular case.

Table 7. Test problem 3. Table 8. Test problem 4.
€ ncg9 hermb quadl coteda € ncg9 hermb5 quadl coteda
107t 9 10 18 9 1071 9 10 18 9
1072 9 34 18 21 1072 9 10 18 9
1074 41 66 48 41 1074 9 10 18 9
107% 73 106 78 73 1076 9 10 18 9
1078 121 162 168 113 1078 17 18 18 17
1071 185 242 348 193 1071 33 34 48 33
1071 265 330 438 241 107 33 50 48 33
10712 329 410 588 297 10712 49 50 48 65
Table 9. Test problem 13. Table 10. Test problem 17.
€ ncg9 hermb quadl coteda € ncg9 hermb quadl coteda
1071 -17 250 -18 513 1071 33 66 18 41
1072 257 306 -78 513 1072 65 146 -48 265
107* 505 530 738 961 107% -193 362  -138  -297
107% 969 1018 1218 1089 107 -321 674 618 905
107% 1233 1938 3138 2017 107% 1025 954 1068 1185
10719 2041 2962 5718 3273 1071° 1529 2090 1998 2017
1071 3129 3970 6978 3977 10711 2162 2506 2958 2273

1072 4025 4298 -10068 4081 1072 2537 3458 3888 2849
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Table 11. Test problem 21. Table 12. Test problem 22.

€ ncg9 hermb quadl coteda € ncg9 hermb5 quadl coteda
107' 33 18 18 49 107' 65 90 168 129
1072 48 -18 48 77 1072 105 122 168 129
107 73 74 78 -93 1072 121 136 228 177
107*  -81 106 168  -129 107% 145 242 408 257
1075 -105 -106 -228 -161 1075 257 258 648 257
1079 -129 -186 -228  -193 1076 257 354 798 289
1077 -185 -226 -348 381 1077 369 498 1038 465
107% -233 -306 -438 461 1078 505 506 1248 505
107 465 -402 888 581 107 505 842 2208 529
1071 577 434 1248 737 1071° 873 1002 3018 833
1071 729 946 1608 913 107 1009 1122 3978 985
10712 953 1146 2268 1117 10712 1169 1866 5418 1033

The following observations can be made.

1. The results ncg9 and coteda are very similar in both reliability and
efficiency. It can be explained that the code ncg8 uses the closed nine-point
Newton-Cotes formula for integral approximation and the same strong 7-th
degree of exactness null rule for locally error evaluation. The code coteda, as
it was already mentioned, uses both closed five-point and nine-point Newton-
Cotes formulas for integral approximation and a sequence of null rules of
decreasing degrees for locally error evaluation. The code coteda in contrast
to code ncg9 uses the locally doubly adaptive strategy [3]. It is known that
usage of the the null rules of lower degrees usually requires computation of
larger number of integrand functions. But a doubly adaptive strategy usually
requires computation of less values of integrand function than a single adaptive
strategy. Therefore only in 99 cases from all 23 x 12 = 276 cases code ncg9
required a smaller number of computations of integrand functions than code
coteda.

2. Only for four tests: test 3 (the singular problem) for tolerance 1071,
test 13 (the nonlinear oscillatory problem) for tolerance 107!, test 17 (the
nonlinear oscillatory problem) for tolerance 10~°, and test 21 (three peaks
problem; peak in the vicinity = = 0.6 is very narrow) for tolerances 10~7 and
1078 code coteda gives better results than ncg9. It can be explained that for
this difficult tests the 7-th degree of exactness null rule is too "optimistic".
The error estimation procedure based on sequence of null rules of decreasing
degrees presents more exact results for these cases.

3. The codes hermitb and quadl based on the nine degree Hermite and
Gauss-Lobatto rule with a three-point Kronrod extension respectively in all
cases demonstrate worse results in efficiency than codes ncg9 and coteda. It
can be explained that in the procedures hermitb and quadl integration step
is larger than in codes ncg9 and coteda.
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4. In terms of reliability the procedures ncg9, hermith and coteda demon-
strate very close results. The reliability of code quadl is slightly worse than
reliability of other discussed procedures.

6. Conclusions

In automatic quadrature algorithms the estimate of the truncation error is a
very important step: it governs the decision on whether to return the current
approximation and terminate or to continue calculations. Both the efficiency
and the reliability therefore depend heavily on the error estimating procedure.
Consequently the coefficients of the highest degree null rules with the smallest
errors based on the same set of the points for 3, 5, 7, 9, and 11 point Newton-
Cotes quadrature formulas are calculated in this paper. The coefficients of the
2, 3,4, 5,6, and 7 point Hermite quadrature formulas and the coefficients of
their error estimation formulas are calculated. The calculated Hermitian error
estimation formulas have the highest degree and the smallest error also.

In view of these (admittedly limited) test results we can conclude that both
codes cteda and ncg9 show the best and very closed results in both reliability
and efficiency. We can conclude:

1) The closed nine-point Newton-Cotes formula puts up better perfor-
mance than the same degree Gauss-Lobatto formula;

2) Reliability of both error estimation formulas (based on one null rule
and on a sequence null rules) are the same for the tolerances < 10™%;

3) For the tolerances > 1072 the error estimation formula of procedure
ncg9 gives less reliable results than the error estimation formula of code cteda.
Therefore the error estimation formulas, presented in this paper, can be used
for approximation of definite integrals, in particular, if the required tolerance
< 104, Efficiency of code cteda can be explained that it uses double adaptive
integration procedure.

The procedure hermit5 shows results of reliability better than results of
the same degree procedure ncg9. But efficiency of code hermith is worse than
of procedure ncg9. Therefore, Hermitian quadrature can be used for approxi-
mated of integrals if calculation of the values of derivates of integrand function
is not very complicated.
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