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1 Introduction

Over recent years the analysis of the boundary-layer flows of viscous fluids
resulting from continuously moving or stretching/shrinking surfaces has many
important applications in both engineering processes and the polymer industry.
Examples of such technological processes concerning polymers include the cool-
ing of continuous strips or filaments, glass blowing, the continuous stretching
of plastic films and artificial fibres, the continuous casting of metals, the spin-
ning of fibres, hot rolling, wire drawing and paper production, see Fisher [11]
for example. A viscous fluid subject to a stretching surface was analyzed first
by Crane [8] where an exact and closed form similarity solution was obtained.
Gupta and Gupta [13] discussed the heat and mass transfer due to a perme-
able stretching sheet. They also presented the analysis for both the suction
and blowing cases. Banks [4] described a class of similarity solutions depend-
ing upon a parameter for the boundary-layer equations caused by a stretching
wall. The existence and uniqueness of stretching flows is discussed by McLeod
and Rajagopal [20].

Chen and Char [6] studied the heat transfer characteristics on a stretching
sheet with a variable surface temperature in the case of suction or blowing. Ali
[2] considered the thermal boundary layer on a stretching surface using power-
law velocity and temperature distributions. More recently, Crane’s original
problem [8] has been extended to treat the various aspects of the flow and heat
transfer characteristics with linear or power-law surface velocities by several
authors, in particular by Magyari and Keller [18], Liao and Pop [16], Liao
[15], Ishak et al. [14], Vajravelu [27], Cortell [7], Bataller [5], Sajid et al. [25]
and literature therein. Wang [29] has reviewed the similarity solutions with
an assumption that the stretching surface is large such that edge effects are
negligible.

The three-dimensional flow due to the bi-axial stretching of a flat surface,
including an axisymmetric stretching surface, was studied by Wang [28] in a
quiescent fluid, and by Wang [30] in a fluid with uniform outer flow. These
problems lead to the exact solutions of the Navier-Stokes equations. Ariel [3]
has demonstrated that highly efficient and very accurate solutions in terms of
series of exponentially decaying functions can be obtained by using the Ack-
yord’s method in solving the generalized three-dimensional flow caused by a
bi-axial stretching sheet in a quiescent fluid. More recently, Magyari and Wei-
dman [19] investigated the problem of three-dimensional flow induced by mov-
ing boundaries where the surface can be moved along and/or transverse to the
direction of the stretching at uniform velocities in either quiescent fluids or in
fluid with an external uniform shear.

Miklavčič and Wang [24] have investigated the two-dimensional flow to-
wards a shrinking sheet with constant velocity in a viscous fluid and obtained
the exact solutions of the full Navier-Stokes equations. It was also shown that
mass suction is required to realize the shrinking sheet flow. Fang [9] extended
the problem originally treated by Miklavčič and Wang [24] to the shrinking
sheet with a power-law velocity distribution. Multiple solutions are obtained
and velocity overshoots are observed near the wall and near the boundary
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layer edge for certain solutions branches. The flow induced by an unsteady
shrinking sheet with mass suction has been investigated by Fang et al. [10].
Multiple solutions are also obtained for a certain range of mass suction and
the unsteadiness parameters. The shrinking sheet flow, as discussed by Gold-
stein [12], is essentially a backward boundary-layer flow which shows different
physical phenomena from the stretching sheet flow.

The aim of the present paper is to extend the work of Wang [28, 30] and
Ariel [3] to the case of a three-dimensional stretching/shrinking sheet where the
fluid is at rest far from the sheet. In the present case, the surface is stretched
in one direction but can be stretched or shrunk in a direction perpendicular to
the stretching surface. This type of problem is commonly found in the man-
ufacturing of polymer films. During the casting process, the plastic film is
extruded continuously (stretching in one direction) while the edge effect of the
film such as neck-in (shrink in the perpendicular direction) is naturally formed.
We believe that our results are new and additional to those presented previ-
ously, which can be used with great confidence by all those who are interested
with the stretching/shrinking sheet. We start by considering the equations that
describe our model.

2 Equations

We consider the steady non-symmetric flow over a permeable stretching/shrin-
king surface placed in a viscous fluid at rest well away from the surface. We
assume a surface velocity of the form

uw = Ax, vw = By, ww = −W0,

where, as shown in Figure 1, x, y and z are Cartesian coordinates with z normal
to the surface and x and y are measured in the plane z = 0. u, v and w are
respectively the velocity components in the x, y and z directions and A and B
are constants with A > 0.

a) b)

Figure 1. Physical model and co-ordinate system: a) stretching surface, b) shrinking
surface.

The basic equations for this problem are, see Wang [30], Magyari and Wei-
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subject to the boundary conditions

u = uw, v = vw, w = ww, on z = 0, u, v → 0 as z →∞. (2.2)

We look for a similarity solution by putting

u = Axf ′(η), v = Byg′(η),

w = −(Af(η) +Bg(η))
√
ν/A, η =

√
A/νz. (2.3)

This gives

f ′′′ + ff ′′ − f ′2 + γgf ′′ = 0, (2.4)

g′′′ + γ(gg′′ − g′2) + fg′′ = 0, (2.5)

where γ = B/A and subject to the boundary conditions

f ′(0) = 1, g′(0) = 1, f ′ → 0, g′ → 0 as η →∞, (2.6)

where primes denote differentiation with respect to η. This present case cor-
responds to stretching in the x-direction and to stretching in the y-direction
when γ > 0 or shrinking in the y-direction when γ < 0.

For an impermeable surface, W0 = 0, we have f(0) = g(0) = 0. However,
for a permeable surface, W0 6= 0, the boundary condition is, from (2.2) and
(2.3)

f(0) + γg(0) = S, where S =
W0√
νA

. (2.7)

Here we take, exploiting the symmetry inherent in the basic problem,

f(0) = S, g(0) = 0, (2.8)

noting that (2.8) satisfies condition (2.7).
We note that, for γ = 1, g = f − S giving f ′′(0) = g′′(0). When γ = 0,

equation (2.4) can be solved to obtain

f = c− 1

c
e−cη, where c =

S +
√
S2 + 4

2
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Table 1. Comparison with previous results for γ = 1.0 and S = 0.

Present Wang [30] Ariel [3]

f ′′(0) −1.173721 −1.1737 −1.17372074
g′′(0) −1.173721 −1.1737 −1.17372074
f(∞) 0.751497 0.7515 −
g(∞) 0.751497 0.7515 −

giving

f ′′(0) = −S +
√
S2 + 4

2
. (2.9)

Equation (2.5) then gives

g′ = A exp

(
−e
−cη

c2

)
+B

for new constants A and B. The boundary conditions give

A = −B = − 1

1− e−1/c2
giving g′′(0) = − 1

c(e1/c2 − 1)
. (2.10)

When S = 0, expressions (2.9)–(2.10) give

f ′′(0) = −1 and g′′(0) = −1/(e− 1) ' −0.58198.

We start by considering an impermeable surface, S = 0.

3 Impermeable surface, S = 0

The boundary-value problem given by equations (2.4)–(2.6) was solved using
bvp4c in MATLAB [26] and D02AGF in the NAG library [1]. In Table 1 we
compare our results with those from previous studies, showing excellent agree-
ment and hence giving confidence in the accuracy of our numerical integrations.

In Figure 2 we plot f ′′(0) and g′′(0) against γ for positive values of γ. We
see that the curves for both f ′′(0) and g′′(0) start at γ = 0 with the values
given above, remain negative, cross when γ = 1 and decrease to large values as
γ is increased.

In Figure 3 we again plot f ′′(0) and g′′(0) but now for negative values
of γ. Here we see that there is a critical point at γ = γc ' −0.2514 with
f ′′c (0) ' −0.9344, g′′c (0) ' −0.1177. On the upper solution branch, the values
of f ′′(0) decrease towards −1 and those of g′′(0) increase to large positive values
as γ → 0 from below.

As γ becomes small on the upper branch solutions a double-layer structure
develops, as can be seen in Figure 4 where we plot f , f ′ and g′ against η
for γ = −0.01253. The region where f and f ′ vary remains relatively small

Math. Model. Anal., 24(4):617–634, 2019.
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Figure 2. Impermeable surface, S = 0: plots of f ′′(0) and g′′(0) against γ obtained from
the numerical solution to equations (2.4)–(2.6). Asymptotic expressions (3.6) are shown by

broken lines.

a) b)

Figure 3. Impermeable surface, S = 0: plots of a) f ′′(0) and b) g′′(0) against γ obtained
from the numerical solution to equations (2.4)–(2.6), (2.8).

whereas there is a much greater range over which g′ changes, growing larger
as γ is further reduced. The values of η where g′ achieved its outer value are
much greater than those used to plot this figure, a value of η∞ = 50.0 being
used in the numerical integration.

Further insights into the nature of the solution for an impermeable surface
can be gained by examining how the solution behaves for γ large.

3.1 Solution for γ large

To obtain a solution valid for γ large we put

f = γ−1/2F, g = γ−1/2G, ζ = γ1/2η. (3.1)

Equations (2.4)–(2.5) become

F ′′′ +GF ′′ + γ−1(FF ′′ − F ′2) = 0,

G′′′ +GG′′ −G′2 + γ−1FG′′ = 0,

subject to

F (0) = 0, G(0) = 0, F ′(0) = 1, G′(0) = 1,

F ′ → 0, G′ → 0 as ζ →∞,
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Figure 4. Impermeable surface, S = 0: profile plots of f , f ′ and g′ against η for the
upper branch solution with γ = −0.01253 obtained from the numerical solution to

equations (2.4)–(2.6), (2.8).

where primes now denote differentiation with respect to ζ. The leading-order
problem for an impermeable wall is

F ′′′0 +G0F
′′
0 = 0, G′′′0 +G0G

′′
0 −G′20 = 0, (3.2)

F0(0) = 0, G0(0) = 0, F ′0(0) = 1,

G′0(0) = 1, F ′0 → 0, G′0 → 0 as ζ →∞. (3.3)

Equations (3.2)–(3.3) have the solution

G0 = 1− e−ζ , F ′0 = C0 exp(e−ζ) +D0, (3.4)

where the constants C0 and D0 are determined from the boundary conditions
as

C0e
−1 +D0 = 1, C0 +D0 = 0

giving
C0 = −D0 = −e/(e− 1) and F ′′0 (0) = −1/(e− 1). (3.5)

From (3.1), (3.4), (3.5) we then have

f ′′(0) ∼ −0.58198γ1/2 + . . . , g′′(0) ∼ −γ1/2 + . . . as γ →∞. (3.6)

Asymptotic expressions (3.6) are also shown in Figure 2 by broken lines and
show good agreement with the numerical values, though with g′′(0) showing
better agreement than f ′′(0).

4 Permeable surface, S 6= 0

Here we solve equations (2.4)–(2.5) subject to boundary conditions (2.6), (2.8).
In Figure 5 we plot f ′′(0) against S for γ = 1, noting that for this value of
γ, g′′(0) = f ′′(0). We see that the solution continues to large positive S,
with f ′′(0) negative and |f ′′(0)| increasing, and to large negative S with f ′′(0)
negative and increasing towards zero as |S| is increased.

Math. Model. Anal., 24(4):617–634, 2019.
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Figure 5. Permeable surface, S 6= 0: plot of f ′′(0) against S for γ = 1 obtained from the
numerical solution to equations (2.4)–(2.6), (2.8). Asymptotic expressions (4.7), for S large,

and (4.26), for |S| large S < 0, are shown by broken lines. For this value of γ,
g′′(0) = f ′′(0).

In Figure 6 we plot f ′′(0) and g′′(0) against S for γ = −1. Here, there is a
critical value Sc of S with Sc ' 1.4487 limiting the range of possible solutions.
The solution again continues to large positive S with both f ′′(0) and g′′(0)
negative with, on the lower solution branch, |f ′′(0)| and |g′′(0)| increasing as
S is increased. On the upper solution branch, both f ′′(0) and g′′(0) again
continue to large positive S but now the values of |g′′(0)| decrease as S is
increased.

Figure 6. Permeable surface, S 6= 0: plots of f ′′(0) and g′′(0) against S for γ = −1
obtained from the numerical solution to equations (2.4)–(2.6), (2.8). Asymptotic expression

(4.7), for S large, is shown by the broken line.

The variation of the solution with γ is shown in Figure 7 where we plot f ′′(0)
and g′′(0) against γ for S = 1.0. There is a critical value at γ = γc ' −0.6838,
with two solution branches in γ > γc. One branch passes through the solution
for γ = 0 given by (2.9)–(2.10) with f ′′(0) = −1.6180, g′′(0) = −1.3286 and
continues to large positive γ. On the other solution branch, f ′′(0) appears to
loop back to the value given above for γ = 0. However, a singularity appears in
the solution for g with g′′(0) becoming large and positive as γ → 0 from below.
Similar behaviour was seen for the other values of S tried, both positive and
negative.
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Figure 7. Permeable surface, S 6= 0: plots of f ′′(0) and g′′(0) against γ for S = 1
obtained from the numerical solution to equations (2.4)–(2.6), (2.8).

4.1 Solution for γ large

As seen in Figure 7 one solution branch continues to large γ. To obtain a
solution valid in this limit we start by noting that our previous discussion
requires S to be small, of O(γ−1/2), and in this case the limiting forms for
f ′′(0) and g′′(0) are given by (3.6) to leading order. To obtain a solution when
S is of O(1) we put

f = F (ζ), g = γ−1/2G, ζ = γ1/2η. (4.1)

Equations (2.4)–(2.6) give

F
′′′

+G F
′′

+ γ−1/2(F F
′′ − F ′2) = 0,

G
′′′

+G G
′′ −G′2 + γ−1/2F G

′′
= 0,

subject to

F (0) = S, G(0) = 0, F
′
(0) = γ−1/2,

G
′
(0) = 1, F

′ → 0, G
′ → 0 as ζ →∞,

where primes now denote differentiation with respect to ζ. We look for a
solution by expanding F = F 0 + γ−1/2F 1 + . . . , G = G0 + γ−1/2G1 + . . . . At

leading order we find F 0 ≡ S and, following (3.4), G0 = 1− e−ζ .
At O(γ−1/2) we then have

F
′′′
1 + (1− e−ζ)F ′′1 = 0, F 1(0) = 0, F

′
1(0) = 0, F

′
1 → 0 as ζ →∞.

Again following (3.4)–(3.5) we have

F
′
1 =

e

(e− 1)
(1− exp(−e−ζ).

This gives

f ′′(0) ∼ −0.58198γ1/2 + . . . , g′′(0) ∼ −γ1/2 + . . . as γ →∞.

It is not clear from Figure 7 that these limits are being approached. However,
our numerical integrations taken to very much larger values of γ do indicate
that this is the case. Also these integrations show a thinning of the flow region
as γ is increased, consistent with transformation (4.1).

Math. Model. Anal., 24(4):617–634, 2019.
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4.2 Critical values

From Figure 3 we see that, for S = 0, there is a critical value γc of γ and that,
from Figures 6 and 7, this critical value depends on S. We calculate how the
critical values γc vary with S using the method described in [22,23], for example,
with γc being plotted against S in Figure 8. We see that γc < 0 throughout
and that γc becomes large and negative as S is increased. The values of γc
become smaller, approaching zero, as S is decreased in the negative direction,
suggesting that, for large negative values of S, there will be a solution only for
γ ≥ 0.

Figure 8. Plot of the critical values γc against S, asymptotic expression (4.12) is shown
by the broken line.

4.3 Solution for S large (S > 0, strong suction) – lower solution
branch

We start by assuming that γ is of O(1) and put

f = S + S−1φ, g = S−1h, ξ = Sη. (4.2)

Equations (2.4)–(2.5) become

φ′′′ + φ′′ + S−2(φφ′′ − φ′2 + γhφ′′) = 0, (4.3)

h′′′ + h′′ + S−2(γhh′′ − γh′2 + φh′′) = 0, (4.4)

subject to the boundary conditions

φ(0) = 0, h(0) = 0, φ′(0) = 1, h′(0) = 1, φ′, h′ → 0 as ξ →∞, (4.5)

where primes now denote differentiation with respect to ξ. The leading-order
problem for S large has the solution

φ = 1− e−ξ, h = 1− e−ξ, (4.6)

giving
f ′′(0) ∼ −S + . . . , g′′(0) ∼ −S + . . . , as S →∞. (4.7)

Asymptotic expression (4.7) is shown in Figures 5 and 6 by broken lines showing
good agreement with the numerically determined values even at relatively small
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values of S for the upper branch solutions, improving as S is increased further
and better for f ′′(0) than for g′′(0) in Figure 6.

When γ is large, particularly from equations (4.3)–(4.4) when γ is of O(S2),
the above solution does not hold. To deal with this case we put γ = µS2, with
µ of O(1) and still apply transformation (4.2). At leading order for S large, we
now have

φ′′′ + φ′′ + µhφ′′ = 0, h′′′ + µ(hh′′ − h′2) + h′′ = 0, (4.8)

still subject to boundary conditions (4.5). When µ = 0, we recover expressions
(4.6). When µ > 0, equation (4.8) has a solution of the form

h =
1

aµ1/2
(1− e−aµ

1/2ξ) for some a = a(µ) > 0. (4.9)

Substituting (4.9) into equation (4.8) we obtain, for µ > 0,

µa2 − µ1/2a− µ = 0 giving a = (1 +
√

1 + 4µ)/(2µ1/2).

Hence, for µ > 0, there is only the one solution which gives

g′′(0) ∼ −1 +
√

1 + 4µ

2
S + . . . as S →∞.

When µ < 0 we get

h =
1

a|µ|1/2
(1− e−a|µ|

1/2ξ).

Equation (4.8) now gives

|µ|a2 − |µ|1/2a+ |µ| = 0 with a =
1±

√
1− 4|µ|

2|µ|1/2
. (4.10)

Expression (4.10) requires |µ| ≤ 1/4 or 0 > µ > −1/4 and, for µ > −1/4, there
are two solutions which have

g′′(0) ∼ −1 +
√

1 + 4µ

2
S + . . . , g′′(0) ∼ −1−

√
1 + 4µ

2
S + . . . as S →∞

(4.11)
and a critical point at µ = −1/4 giving

γc ∼ −
S2

4
+ . . . as S →∞. (4.12)

Asymptotic expression (4.12) is also shown in Figure 8 by a broken line. There
appears to be good agreement between this expression and the the values ob-
tained numerically even at quite moderate values of S. There also seems to
be an O(1) difference between the numerical values and asymptotic expression
(4.12) consistent with the scaling (4.2). Expressions (4.11) give

g′′(0) ∼ −(S + γS−1 + . . .), g′′(0) ∼ γS−1 + . . . , (4.13)

for the lower and upper branch solutions respectively.

Math. Model. Anal., 24(4):617–634, 2019.
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4.4 Solution for S large (S > 0, strong suction) – upper solution
branch

We see from Figure 6 that, for γ < 0, there are two solution branches each
proceeding to large positive S with the solution for f ′′(0) approaching the limit
described above. However, the behaviour of g′′(0) for large S is different on the
upper branch and to describe this solution, assuming that γ < 0, we start in
an inner region where we again make transformation (4.2). The solution for φ
proceeds as above with the leading-order term given in (4.6). We now expand
h as

h(ξ) = h0(ξ) + S−2h1(ξ) + S−4h2(ξ) + . . . (4.14)

and take h0 = ξ. At O(S−2) we then have

h′′′1 + h′′1 = −φ0h′′1 + γ(h′20 − h0h′′0) = γ, h1(0) = h′1(0) = 0, (4.15)

giving h1 = γξ2/2. A further calculation gives

h2 =
γ2ξ3

6
− (γ2 + γ)ξ2

2
+ γ(1 + ξ)e−ξ − γ.

We now consider an outer region where we take f = S + O(S−1) + . . . (the
outer form for f in the inner region) and put

g = SH, y = S−1η, (4.16)

with equation (2.5) giving

(1 + γH)H ′′ − γH ′2 = −S−2(H ′′′ +H ′′), H ′ → 0 as y →∞, (4.17)

where primes now denote differentiation with respect to y. Matching with the
inner region gives

H ∼ y +
γy2

2
+
γ2y3

6
+ . . .+ S−2

(
− (γ2 + γ)y2

2
+ . . .

)
+O(S−4). (4.18)

An expansion of the form H(y;S) = H0(y) + S−2H1(y) + . . . is suggested by
(4.17)–(4.18). At leading order we have

(1 + γH0)H ′′0 − γH ′20 = 0 giving H0 = −γ−1(1− eγy), (4.19)

on matching with the inner region and noting that γ < 0. Applying (4.19) in
the equation arising at O(S−2) then gives

H ′′1 − 2γH ′1 − γ2H1 = −(γ2 + γ), H ′1 → 0 as y →∞. (4.20)

Equation (4.20) has the solution, on matching with the inner region,

H1 = (γ + 1)((1− γy)eγy − 1).

From (4.14)–(4.16)

g′′(0) ∼ S−1(γ − (γ2 + 2γ)S−2) + . . . as S →∞, (4.21)
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consistent with the results shown in Figure 6, expressions (4.13) and our nu-
merical integrations. The double-layer structure, whereby f ′ and g′ vary over
very different length scales and described above for the upper branch solutions
for S large, can be clearly seen in Figure 9 where we plot f ′ and g′ against η
for S = 3.77 and γ = −1. Again this numerical integration was taken to much
larger values of η than plotted in the figure to ensure that the outer boundary
condition on g′ was fully satisfied.

Figure 9. Permeable surface, S 6= 0: profile plots of f ′ and g′ against η for the upper
branch solution for S = 3.77 with γ = −1.0 obtained from the numerical solution to

equations (2.4)–(2.6), (2.8).

4.5 Solution for |S| large (S < 0, strong blowing)

To obtain a solution valid for |S| large, S < 0, we start in an inner region where
we write, assuming that γ > 0,

f = |S|U, g = |S|V, Y = η|S|−1. (4.22)

Transformation (4.22) gives, at leading order,

UU ′′ − U ′2 + γV U ′′ = 0, γ(V V ′′ − V ′2) + UV ′′ = 0, (4.23)

subject to

U(0) = −1, V (0) = 0, U ′(0) = 1, V ′(0) = 1, (4.24)

the outer boundary conditions are relaxed at this stage and where primes now
denote differentiation with respect to Y . From (4.23)–(4.24) we have

U ′′ =
U ′2

U + γV
, V ′′ =

γV ′2

U + γV
,

giving
U ′′(0) = −1, V ′′(0) = −γ, (4.25)

so that
f ′′(0) ∼ S−1 + . . . , g′′(0) ∼ γS−1 + . . . as S → −∞. (4.26)

Asymptotic expression (4.26) is shown in Figure 5, also by a broken line, show-
ing very good agreement with the numerical values even at relatively small
values of |S|.

Math. Model. Anal., 24(4):617–634, 2019.
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An outer region is required to satisfy the outer boundary conditions and
this is, perhaps, most easily described for the case when γ = 1. In this case

U = −1 + Y − Y 2

2
, V = Y − Y 2

2

giving
U ′ = V ′ = 0 at Y = 1, η = |S|. (4.27)

Expression (4.27) suggests that, for the outer region, we put η = η + |S| and
then

f = −|S|
2

+ |S|−1/3f, g =
|S|
2

+ |S|−1/3g, η = |S|−1/3y.

For this case we find g ≡ f and then

f
′′′

+ 2f f
′′ − f ′2 = 0,

where primes now denote differentiation with respect to η and subject to, on
matching with the inner solution (4.27),

f ∼ −η
2

2
+ . . . as η → −∞, f ′ → 0 as η →∞.

When γ = 0, equation (4.25) gives U = −e−Y which can also obtained from
(2.9) in the limit as S → −∞. This gives the same asymptotic expression for
f ′′(0) in (4.26). From expression (2.9), c ∼ |S|−1 + . . . for |S| large. This leads
to

g′ ∼ 1 + e−1|S|2 − exp(−|S|2e−η/|S|) + . . . ,

giving

g′′(0) ∼ −|S|e−|S|
2

+ . . . , (4.28)

as S → −∞. Expression (4.28) suggests that the solution for |S| large cannot
be continued into γ < 0 indicating that a solution can proceed to large S only
if γ ≥ 0, as is also borne out by our numerical solutions.

4.6 Temporal stability

To determine the temporal stability of the solutions when multiple solutions
exist, as seen in Figures 3, 6 and 7 we construct an initial-value problem, as
was done previously in Merkin [21] and more recently in Lok et al. [17], with
the steady states of this initial-value problem being given by equations (2.4),
(2.5). The stability is then determined by looking for a solution in the form

f(η, t) = f0(η) + eλtf1(η), g(η, t) = g0(η) + eλtg1(η), (4.29)

where f0, g0 are now the steady state solution. When expressions (4.29) are sub-
stituted into the corresponding initial-value problem we obtain a linear problem
for the eigenvalue λ, namely

f ′′′1 + f0f
′′
1 − 2f ′0f

′
1 + f ′′0 f1 + γ(g0f

′′
1 + f ′′0 g1)− λf ′1 = 0,

g′′′1 + γ(g0g
′′
1 − 2g′0g

′
1 + g′′0 g1) + g′′0 f1 + f0g

′′
1 − λg′1 = 0,

(4.30)
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Table 2. The smallest eigenvalue λ for several values of γ < 0 when S = 1.

γ λ λ

upper branch lower branch

−0.68 0.064471 −0.066169
−0.65 0.181322 −0.196054
−0.60 0.263845 −0.299141
−0.50 0.332414 −0.409860
−0.40 0.341931 −0.479353

subject to homogeneous boundary conditions and the extra condition that
f ′′1 (0) = 1 to force a nontrivial solution. The value of λ obtained from the
numerical solution of (4.30) then determines the stability, with the solution
being stable if λ < 0 and unstable if λ > 0.

Figure 10. Temporal stability: a plot of the eigenvalue λ against S for γ = −1.0,
solution stable where λ < 0 (full line), unstable where λ > 0 (broken line).

We illustrate this in Figure 10 with a plot of λ against S for the case shown
in Figure 6 when γ = −1.0. This Figure shows that the lower branch is stable
and that the upper branch is unstable. The change in stability occurs at the
critical point Sc ' −1.4487 where λ = 0, i.e. at the saddle-node bifurcation at
Sc. In Table 2 we give the values of λ for representative values of γ when S = 1,
the case shown in Figure 7 showing that the upper branch is unstable and the
lower branch is stable. Here the critical value is at γc ' −0.6838 and we see
that the values of λ become smaller close to this value of λ. When we consider
the behaviour for γ large, in effect applying transformation (3.1) in equations
(4.30), we find that we require λ to be of O(γ) and, on writing µ = γλ, we find
the the eigenvalue µ ' −0.45629, independent of the parameter S, showing
that these solutions are stable. From this we can deduce that any branch
of solutions that proceeds to large γ will be stable. The stability changes at
the saddle-node bifurcation at the critical point where λ = 0 with the second
solution branch resulting from this bifurcation then being unstable.

Math. Model. Anal., 24(4):617–634, 2019.
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5 Conclusions

We have considered the non-symmetric flow over a stretching/shrinking surface
in an otherwise quiescent fluid. We assumed that the surface could stretch or
shrink in one direction and stretch in a direction perpendicular to this. We
reduced the problem to similarity form by a suitable transformation of vari-
ables finding that the problem is described by two dimensionless parameters,
γ the relative stretching/shrinking rate and S characterizing the fluid trans-
fer through the boundary. We started by considering an impermeable surface,
noting that there was a simple solution, (2.9)–(2.10) when γ = 0. We found so-
lutions for all cases when there is stretching in both directions, γ > 0, Figure 2,
with an asymptotic expression (3.6) for γ large being obtained. However, when
there is shrinking in one direction, γ < 0, there is a critical value of γ limiting
the range of solution, Figure 3, i.e restricting the rate of shrinking and showing
that dual solutions appear.

We then considered a permeable surface, Figure 5, when there is stretching
in both directions and when there is shrinking in one direction, Figure 6. In
this latter case we again saw the existence of a critical value γc of γ with this
now dependent on the surface fluid transfer rate S, Figure 6 and 7, with γc be-
ing plotted in Figure 8. These critical values led to two solution branches both
proceeding to large values of S, strong withdrawal rates, and asymptotic ex-
pressions (4.13) and (4.21) were obtained for S large for both solution branches.
This latter case exhibited a double-region structure in which the length scales
over which f ′ and g′ varied became increasingly different as the values of S
are increased. The main effect of fluid transfer through the wall, when there is
shrinking in one direction, is to increase the range of possible solutions when
there is fluid withdrawal, increasingly more so as the rate of fluid withdrawal
is increased. However, fluid injection through the wall decreases this range of
possible solutions, limiting solutions only to stretching in both directions if this
fluid injection is sufficiently strong.
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