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Abstract. The definition of hyperbolic equation by a prescribed vector field is
introduced for linear differential equation of the second order. The Cauchy problem
with prescribed boundary conditions is considered for such equations. The theorems
of existence and uniqueness of a strong solution to the given problem are proved by
the method of energy inequalities and mollifiers with variable step.
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1. Introduction

Well posedness of boundary value problems are of interest in the theory of
partial differential equations. Investigation of correctness is connected to the
proof of existence and uniqueness of the solution to the problem. One of the
generally used methods is a functional analysis method which is based on the
investigation of reversibility of the operator associated to the initial problem
[3, 8]. The proof of the uniqueness of a strong solution [2] assumes acquisition
of an assessment for the required solution by the use of the problem operator
value. This is so called energy estimate. The proof of the existence is based
on the investigation of a conjugate problem by applying to it mollifiers with
a variable step [1].

The bibliography about Cauchy problem for a linear hyperbolic equations
is very extensive (see, for a example, [4, 6] and bibliography in [6]). In this
article hyperbolic equations by a prescribed vector field are considered and
the new method of energy inequalities and mollifiers with variable step is
proposed for investigation of correctness of boundary problems in the theory
of partial differential equations.
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2. Definition of the Hyperbolic Equation

We consider the linear partial differential equation

L(z,D)u= Y an(z)D = f(), (2.1)

o <2

where u,aq, f : R” D Q 2 2 — u(x),aq(x), f(x) € R are functions of inde-
pendent n variables ¢ = (z1,...,z,). The functions u, a,, f are defined in the
domain @ C R™ of n dimensional Euclidean space R". Here

o
D = D3 D = 0

=&y aay “T(Onn )

is a multi-index, |o| = a1 + ... + an, where o (j = 1,...,n) are nonnegative
integers.

Vector field A is of the class C!, if the functions 7. (z) (k = 1,...,n)
belong to the class C'(R™). Suppose that vector field N of the class C! is
defined in R"™ and consists of elements—unit vectors

n(z) = (m@),...,m(@)), MP=n+...+n2=1

DEFINITION 1. Equation (2.1) will be referred to as hyperbolic in point x with
respect to the direction n(x) if
(i) polynomial Lo(z,n(z)) = Y aa(®)nf' (z)...n5"(x) # 0; here for defi-
|| =2
niteness we assume Ly(z,n) > J, 0 is some positive integer;
(ii) polynomial Lo (z,7n(x) + &(x)) with respect to 7 € R! has two real dif-
ferent roots for any

&(2) = (Gi(2),- -, &al2)), [6(@)] =1, (n(2),&(x)) =D m()ér(z) = 0.
k=1

Equation (2.1) is hyperbolic in closure Q C R" of domain Q, if it is hy-
perbolic in each point z € @Q with respect to the direction m(x) from the
vector field NV. For convenience we will write the expression L(z,D)u in the
following form

n n

L(z,D)u = Z (aij(x)uwi)rj + Zai(x)uwi + ap(z)u,
i,j=1 i=1
u _% u _ﬂ aij =aj; (i,j =1 n)
Ii_axia Iﬂj_axiaxj’ 1) — Y a.]_ PR 9
n 82
L D) = ij () 7——=—.
O(m? ) ijzlaﬂ(x) 5:615:3]

We will designate the cone K(x) as a set of vectors {(z), for which
Lo(z,¢(x)) = 0. This set can be described by relations
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¢(z) = p(rn(z) + &(x), C(z) =pn(z), pel0,00), 7R
mLo(z,m) = —Lo(x;n, &) + GV (2,1, €),

n

Lo(w;n, &) = Y ayj(a)mi(2)E; (),

ij=1
G5, &) = L (z;m, &) — Lo(x, m)Lo(x, €),

and vectors n(x) and &(z) are from the definition 1. Let us note that 7n(x) €
K (x) for all 7 € [0, 00).

Proposition 1. Cone K(z) is a convex set.

Proof Let n(z) = (tn+ €)(z) and 7j(z) = (7n + €)(z) be an arbitrary point
of the cone K (z). Hence,

mLo(z,m) = —Lo(z;n, &) + G2 (231, €), (2.2)
TLo(z,m) = —Lo(z;m, &) + GV (2;m, E), (2-3)

where (n,€) = 0 and (n,£) = 0; n, € € R™. Note that the set M = {&(x) €
R™|(n,&€) = 0} is a subspace of space R". It follows from the definition
1 that the expression G/ 2(x;m, &) is the element norm, therefore Cauchy—
Bunyakovsky inequality is fulfilled

G2, €,€)] < G2 (x;m,€)GV?(x;m, €) (2.4)
for a scalar product

with respect to elements & ,E € M. The fact that the equation (2.5) prescribes
a scalar product follows from the condition of hyperbolicity of the equation
(2.1). Hence, according to the definition of cone K (x), it is sufficient to prove
the inequality

(Mr(@) + (1 = NF(@)) Lo(xsm) = —Lolw;m, A + (1= N)§)
+ G2 (an M+ (1= NE)  (2.6)
for any A € [0, 1]. It is easy to check that
Lo(@;m, A& + (1= X)€) = Mo(w;n, &) + (1 - N)Lo(x;m, €)
Glain, A6 + (1= V) = NG (2:m,6) + 201 — NG(:1.6,€)
+ (1= X)?G(;m,€).
From here and from the inequalities (2.2), (2.3) using (2.4) we prove inequality

(2.6). W

Also we consider a cone K (z), which is dual with respect to the cone
K(z). Vectors v(z) = (71(z),...,m(z)) € K*(x) are defined by a scalar

product (y(z),¢(x)) = Y j_; 7 (x)¢e(z) = 0 for any vector {(z) € K(x).
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Proposition 2. Cone K*(z) is a convez set.

Proof The proof follows from the proposition 1 and the definition of the
convexity. l

3. Statement of Cauchy Problem

Suppose that boundary 0Q of the domain @ is piecewise smooth. By using
characteristic polynomial L (z, £(z)), vectors n(z) € A, and external normals
v(z) (z € 0Q) we shall divide 9Q into different parts, in which different type
of Cauchy conditions will be prescribed. Therefore, in addition to the vector
field A, we introduce vector field R with the help of the cone K*(z). By R
we denote the vector field in R" of elements 7(z) = (r1(z),...,7n(z)), which
are defined by the following conditions:

(1) for every point = € Q vector () is the vector of the cone K*(x);

(R2) for every point = € () and unit vector £(x) € K (z) scalar product

re = (r(z),€(x) = > _re(@)(x) =6 > 0;
k=1

(R3) field R belongs to class C*.

Let v(z) be a unit vector of the external normal to the domain 0Q per-
pendicular to hypersurface 0Q in point = € Q. We denote by r, the scalar
product

ry = (r(@),v(@) = re(@)v(@).
k=1

Proposition 3. Vector field R, defined with respect to the operator L(x, D),
is such that for any v € 0Q each vector q(x) = (q1 (x),... ,qn(a:)), which 1s
perpendicular to r(x) € R, satisfies the inequality

Lo(x,q(x)) < —0, |q(z)]=1.

Proof This proposition follows from the definition of sets ® and K+ (x) and
conditions (1), (R2) and (R3). A

In the general case let us suppose that the boundary 0Q consists of the
following part:

0Q = {r € 9Q|Lo(x; () > b, r,(x) < 0}.
We add to equation (2.1) the following boundary Cauchy conditions:

lou = u g = pla), Lyu= g—z o=@ weaa G
where 9/0p € P is a derivative along p, vector field P is of the class C'' and
is not tangent to hypersurface 0Q).
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Problem (2.1), (3.1) can be considered as operator equation
Lu=F,

where Lu = (L(z,D)u,lou, liu), F = (f(z),¢(z),9(x)), the domain of defi-
nition of operator L is D(L) = C*(Q), where C?(Q) is a set of twice contin-
uously differentiable functions in Q.

4. Strong Solution

Let us suppose that the problem is written in the form of linear operator
equation
Lu=F, (4.1)

where operator L is defined in Banach space B and acts into Hilbert space H.
By energy inequality the inequality of the form

lulls < el Lullm (4.2)

is satisfied for any function u from the domain D(L), which is dense in B,
constant ¢ > 0 is independent on u; || - ||, || - |z denote norms in spaces B
and H respectively.

Suppose that operator L of equation (4.1) allows closure L. It is well
known [1, 11] that linear operator L : B D D(L) > u — Lu € H allows
closure L if and only if equality F' = 0 follows from uy — 0 in B (us, € D(L))
and Luy — F in H.

DEFINITION 2. Solution to the operator equation
Lu=F, wuweD(L),
is a strong solution of equation (4.1)

Theorem 1. If the energy inequality (4.2) is valid for operator L : B — H
and operator L allows closure L, then the energy inequality

lulls < el Lullm (4.3)

is valid for any element u € D(L) with the constant ¢ > 0 from the inequality
(4.2).

Statement of the theorem is in fact a corollary of inequality (4.2) and a
definition of operator L. Inequality (4.3) is derived from (4.2) by limit passage
for any function u € D(L).

From inequality (4.3) and linearity of the operator L, uniqueness of strong
solution of equation (4.1) follows, if it exists. Inequality (4.2) is a criterion of
continuity of inverse operator L~!, defined on a set of values R(L) of operator
L. Continuous operatorL ! can be extended by continuity to the set R(L)
(closure R(L)). As a result of the extension we obtain continuous operator
L1 on the set R(L).
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Figure 1. Domain G(y).

Theorem 2. If energy inequality (4.2) holds for the operator L : B — H, and
operator L allows closure L, then R(L) = R(L) and L= = L', where L !
is inverse operator with respect to operator L, defined on a set of values R(L)
of the operator L.

Proof Based on its definition R(L) D R(L). We now prove inverse inclusion,
i. e. R(L) C R(L). Let F € R(L). There is a sequence {Fy}3° ,, F), € R(L),
which converges to F' in H when k — oco. The sequence {Fj}%2, is funda-
mental and F, = Lug, ur € D(L). From inequality (4.2) it follows that the
sequence{uy}7° ; is fundamental in B. Since B is a Banach space, then there
exists v € B and uy — u in B. This means that according to strong solution
definition, u € D(L) and Lu = F, i.e. F C R(L). From here and from the

equality D(L-1) = D(L ') it follows that L1 =L ~'. W

Corollary 1. In order to prove existence of a strong solution to the equation
(4.1) with any F € H, it is sufficient to prove the inequality (4.2), existence
of closure of operator L and density of a set of values R(L) in space H.

5. Strong Solution to Cauchy Problem (2.1), (3.1)

In domain @ we considered arbitrary point y = (y1,...,yn). To this point,
according to definition 1, corresponds vector 1(y), where Lo (y,n(y)) > 0 and

two vectors ¢ (y) = T2n(y) + £(y), where
Lo(y;¢T () =0, 7o =—Lo(y;m, &) £ GV(y;m,€)/Lo(y;n(v))

for any vector £(y), orthogonal to vector n(y). Designate by G(y) = G the
subset of the domain @, which is shown in Fig. 1, and has the form of curvi-
linear cone with the top in point y, base £2°, and lateral surface I. Let G be a
closure of the set G. Hence, 2° = G N 0Q. Lateral surface I is characteristic
with respect to operator L(z, D).

It means the following: the normal vector v(z) to hypersurface I" at any
point x € I satisfies the characteristic equation
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Lo(z,v(@) = > a@@w(z)...v¥ () =0.
|at|=2
For any point = € I" from (R3) the following condition is satisfied

n

r, = (r(z),v(z) = Zrk(a})l/k(a}) =>6>0.

k=1

The line in Fig. 1, passing through points y, y(*) and y(©), is generated by the
field NV in the sense that a tangent to this line in any point coincides with
vector n € N.

Now we consider equation (2.1)

Lo(z;D)u = f(x), x€G, (5.1)
in a set G(y) = G C @ with Cauchy condition on (2
Ju
lou = U‘QO = <P(33)7 liu= %‘QO = ¢($)7 US 2° (52)

For problem (5.1)—(5.2) let us consider a space C?(G) as the domain of defi-
nition D(L) of the operator L = (L, 1y, ;). We introduce functional spaces B
and H for problem (5.1)—(5.2).

By £2(z) we denote a section of set G such that:

1. Lo(z,v(2)) > & > 0 for almost all points € £2(z), where v(2) is a unit
normal vector to the surface 2(z) at point z € £2(z).

2. £2(z) is a piecewise smooth hypersurface such that its smooth parts are
surfaces of the class C*.

3. The family of the sections {{2(x)}, & is such that two different sections
from the set do not intersect at any point € G, i. e. the points of the
same section are on the one side with respect to the other section.

To each section 2(x) we assign the parameter ¢ € [0, 1] and denote by 2¢
the section corresponding to the parameter ¢t. Suppose that

1. G = Uogtgl_ot. )
2. For different t # ¢ (¢, € [0,1]), 2! NN = 2.
3. Hypersurface {£2'},c(0,1) = {2(2)},.e and y € 2*, 2° C 0Q.
By B we denote Banach space, obtained by the closure of the set D(L) in
the norm

luls = sup > [Dull, o0 (5.3)

SIS et

where || - ||, (ot is the norm in the space of Lebesgue space square integrable
functions defined on the surface 2. By H we denote Hilbert space

H = Ly(G) x H(2°) x Ly(02°), (5.4)

where H!(£2°) is Sobolev space of Lebesgue square integrable in £2° functions
which possess the square integrable generalized derivatives of the first order.
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PRESUMPTION 1. Coefficients a, () of equation (2.1) are sufficiently smooth,
that is an(z) € C?(G) for |a| = 2 and a,(z) are measurable and bounded for
la] <1.

Theorem 3. If presumption 1 holds and F = (f,,%) € H, then there exists
the unique strong solution u of problem (5.1)—(5.2) and the estimate

lullp < el Fllm

18 true.
Proof To prove this statement it is sufficient to prove the energy inequality
lullz < el Zull = e(1Lullae) + loulli o) + lixullas)) — (5:5)

for any function u € D(L) = C?(G), next prove that the operator L : B — H
admits a closure and to show that the density of a set of values R(L) € H,
where constant ¢ > 0 in (5.5) does not depend on u and spaces B and H
are defined by relations (5.3) and (5.4). The last statement defined by the
consequence 1 we will prove later. B

Note, if Theorem 3 is proved, the existence and uniqueness of a strong
solution of problem (2.1), (3.1) is also proved. In fact, any point = € @ belongs
to some respective cone G C @ with the base £2° on the boundary 0Q of the
domain Q. Then, for any functions f : @ > x — f(x) € R, ¢ : 0Q > 2 —
o(r) € R, ¥ : 9Q 3  — ¢(z) € R, which are narrow on sets G and 2° and
belong accordingly to Lo(G), H*(£2°), and Lo(£2°), there exists the unique
strong solution v € B with the norm (5.3).

6. Energy Inequality for Solutions of Problem (5.1)—(5.2)

Theorem 4. If presumption 1 is satisfied for the operator L of equation (5.1),
then the energy inequality
[ull B < cl|Lulla (6.1)

holds for any functions uw € D(L) = C?(G), where constant ¢ > 0 is inde-
pendent on u, spaces B and H are defined with the help of (5.3) and (5.4),
operator L = (L,1o,11) is defined with the help of operators L,ly, and l; of
equation (5.1) and Cauchy condition (5.2)

Proof Each section 2!(0 < t < 1) divides domain G info two subdomains
G' and G'. Let G' be the subdomain for which the external normal v(z) to
hypersurface G* at points x € 2%, as a part of the boundary 0G?, makes a
sharp angle with the vector r(x), i. e. r,(z) > 0.

Boundary 9G* of a set G consists of a bottom base £2°, top base 2! and
a lateral surface I'* = I' N G¥, where G? is a closure of G*.

ou
Let us integrate the expression 24(z, D)ua— over G', where
r
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Z axl '

0
In order to apply the Ostrogradsky formula, the principal part ZLoua—:f is
represented in the form of divergence in the following way:

6
i, G‘
— (aijrkuziuzj)wk + (aijrkuxiuzk)wj}da: + /@(u)dx, (6.2)
Gt

where @(u) is a bilinear form of the function u and its first order derivatives:

n

n
=2 E QTR Uy, Ug,, + 2 E AT U,
ik=1 k=1

n
_ Z {(aijrk)miu%uwk - (aijrk)zkuwiu% + (aijrk)zjumuu}.
ivg, k=1
By virtue of the Ostrogradsky formula

ot
F(G') = Z /aij (o, urvi — U, U,y + g, upv;)ds.
=10

In order to estimate F(Q!) we use a local Cartesian system

v, T, I, A N

In the mentioned local coordinate system one axis will go along vector v, the
other one — along the perpendicular to it vector T € my(x), where mo(z) is two-
dimensional plane containing vectors v and r. Choose the other coordinates
in the following way. Three hyperplanes passing through point x, where one
plane is perpendicular to the vector v, the second is gradu(z), the third
one is 7, they intersect along dimension plane no less than (n — 3). In this

intersection we choose orthogonal coordinate vectors (1) ... 7("=3) The last
vector p(z) of this complete system is defined as a perpendicular vector to
v(z),(z), 7V, ..., 7("=3) By virtue of such choice

Ure =0, s=1,...,n—3.

By replacing the derivatives in the integrand along the new directions, F(G?)
can be written in the following form
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F(GYH = Z /aij [(uuuj +urTj + upp;) (upry + urre + upry)vi
ij =1
- (uuw +urm + Uuﬂi) (uuuj + urT; + uu,uj)ru
+ (uuui + urT; + uum) (uw‘u + urr, + u'u,TH)Vj:| ds

= / r,,LO(V)u,Q/ + (27“TLO(I/,T) - TVLO(T))ug-
oGt
+ (2ruLo (v, ) — 7 Lo () ufy + 2r Lo (V) upur + 2r.Lo (V) uvup

+2(ryLo(v, T) + Lo (v, p) — 1o Lo(T, H))Uruu} ds

= / @Y (u) ds, (6.3)
oGt

Where T = (Tla"'aTn)J H = (ula'“au’n)ﬂ rC = (T.7C) = ZZ:l rké-ka C €
{v, T, u} in the coordinate system z1,...,zn; * = {r,,7+,7,,0,...,0} in the
coordinate system v, 7, pu, 7D, ... ("3

n

Lo(¢,€) = Z aij(7)Gi&5, Lo(C,¢) = Lo(€) = Lo(x, ).

4,j=1

By taking into account conditions (5.2) we rewrite integral (6.3) as the
following sum

F(G) = /@0(u) ds + /¢O(u) ds+/¢0(u) ds = F(02Y) + F(2°) + F(I').
Qt QO Ft

(6.4)

Values F(£2!) and F(I'*) resemble each other by the absence of bound-

ary conditions on 2! ¢ I'*. In these integrals we consider the integrand as

a quadratic form with respect to the derivatives uy,ur,uy. For estimation

from below (4.1) we use the Sylvester criterion [5] with respect to quadratic
form @°(u), the matrix of which can be written in the form

r,Lo(V) r:Lo(V) ruLo(v)
r-Lo(v) 2r:Lo(w, ) —r,Lo(T) r.Lo(v,T)+r:Lo(v, )
—'I"VLO(T, H)
rulo(v) rulo(w,T)+rLo(p) 2r:Lo(v,T) —r,Lo(p)
—’r‘u,ﬁzo(T7 /L)

Since for z € I'* Ly(v) = 0, then for these x

1
2TTL0(V77-) - TVLO(T) = - LO(Q),

Ty

where vector g(z) = r,v(z) — r,7(x) represents 90° turn of the vector r(x)
in the plane 7o (z). Similarly,
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1
2ruLo(v, ) = rvlo(p) = —— Lo(x);

Ty

1
TMLO (Va T) + 71‘1'£*0(Va H) - TVLO (Ta H) = _7’_ LO (qa X)7

v

where vector x(z) = r,v(z) — r,pu(x) represents 90° turn of the vector r(x)
in the two-dimensional plane containing vectors r(z) and p(x). Thus, for any
zel®

9 (u) =~ [Lol@)u +280(a. X)urup + Lobouy] (@)

v

According to presumption 1,

Lo(x;q(a:)), Lo(x;x(x)) < —c <0. (6.5)

By applying the Cauchy-Bunyakovsky inequality [3] one can prove the in-
equality

Lo(w:q(2)) Lo (s x(2)) — Li(x3q(2), x(2)) > e2 > 0. (6.6)
Since r, > 0, Lo(z;v(x)) = 0 and by virtue of the inequalities (6.5) and (6.6),
we have that for all z € I'* @%(x) > 0, i.e.
F(I) = / B (u)ds > 0. (6.7)
Ft

Let us make estimates for F(£2!). We consider principal minors of the matrix
of form @°(u) in the case x € 2! and rewrite them in an appropriate for the
investigation form

di(x) = Lo(x v(z)), (6.8)
dg(x) = —LO 33 V O(x,q ) (69)
Lo(v 1 r,Lo(wv) rulo(v)
ds(z) = —==10 —Lolg) —Lo(g,x)|(z) (6.10)
Y10 —=Lo(g.x Lolx)
_ Lo(z;v(2))

(Lo (@ 9(@)) Lo w5 x(@)) — L3 (9(x), x(2)) .

Ty

From formulae (6.8)—(6.10) it is clear, that using the property of the vectors
g(x) and x(x) in the form of inequalities (6.5), (6.6) and the inequality

ru (1) Lo (25 v(2)) = ¢5 > 0,
we have that for any z € (2
dp(z) 26 >0, p=1,2,3. (6.11)

Thus, from inequalities (6.11) it follows that:



286 V.IL.Korzyuk, E.S. Cheb

F(0R) = /430(u) ds > 67/[u,2/ +uz + up (x) ds,
Qt Qt
where positive constant c7 is independent of u. But

n
2 2 2 2
up +uF +uy = cg E Uy,
i=1

or

2
LQ(.Qt)'

n
) 20y [,
i=1
Estimating expression F(£2°) from above we obtain the inequality

F(Q) = /gw(u) ds < 10 (0wl oo + Il oo )- (6.12)
00

Using the Cauchy-Bunyakovsky inequality, it is easy to make estimates

‘/@(u) ds| < enllull3 ey (6.13)
Qt

2|8, ur) )| < erz(I1Lull3 ) + Nl ). (6.14)

Equalities (6.2)—(6.4) and estimates (6.5)—(6.7), (6.12) — (6.14) together prove
the inequality

n
i=1

Let us introduce the function « into the left part of (6.15). For this purpose
we integrate over G the expression (u?);r = 2uusr and make appropriate
transformations and estimates. As a result we obtain

Lo < sl Lull + llulln ge- (6.15)

[ s < s (loulFom + el + lulfien)- — (616)
Qt

Adding inequalities (6.15) and (6.16) we obtain a new inequality to which it
is possible to apply Gronuol inequality [7]. As a result we obtain the relation

/(u2+2ui) ds < eg6|Lull %, (6.17)
i=1

Qt

from which the needed energy inequality follows, if we apply the upper bound
in the left part of (6.17). B
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7. Proof of Theorem 3

Now we will prove that operator L is closable.

Lemma 1. Operator L : B — H of problem (5.1)—(5.2) allows closure L.
Proof Let u, € D(L) and uy, % 0. Since

loullFr ooy < éllull,  lhul?, 0oy < Ellullz, &>0,

then it follows that loux, — 0 in H'(2°) and ljur, — 0 in Ly(02°) as k — oo.
Let us consider a scalar product (Luk, v) L>(G) for any function v € C§°(G),
where C§°(G) is a set of infinitely differentiable functions in G with a compact
support. If we transform it, we shall receive
(LU].;,’U)LQ(G) = (Uk, Z (aijij)m)Lg(G) + ( .

a; (U )z, + GoU, v)

ij=1 i=1 L2(6)
Since
B L2(G) L2(G)
up —— 0, up ——0, E a; 5—u + agup —— 0,
k—o0 k— o0 — a.’,Cl k—oo
1=
L2 (G)
hence L(z,D)u, — 0. &
k—oo

Theorem 5. If the presumption holds then for any F € H there exists the
unique strong solution of the problem (5.1)-(5.2) and the estimate

lullp < cllFllz- (7.1)

1S true.

Proof Estimate (7.1) follows from energy inequality (6.1) proved for operator
L of the problem (5.1)—(5.2). Uniqueness of a strong solution also follows from
the energy inequality.

Now we prove the existence of a strong solution. For this purpose, accord-
ing to corollary 1 it is necessary to show that R(L) = H. Consider a prelimi-
nary case, when operator L has the form Ly = (Lo, lo,l1), D(Lo) =D(L) is a
domain of its definition and R(Lg) is its range.

Let element V(x) = (v(x),vo(x),v1(x)) € H is orthogonal to R(Lg). We
will show that V(z) = 0. It means that the orthogonal addition to R(Lg)
consists only of zero element, hence R(Ly) = H [8]. Consider scalar product

(Lou, V)Lz(G) = (Lou,v) L@ T (lou, Uo)Hl(QO) + (llu,vl)LQ(Qo), (7.2)
where u € D(Ly). Let, in particular,

u € Do(Lo) = {u € D(Lo)| lou =1l1u=0} C D(L).
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Then the condition of the orthogonality becomes
(Lo(x,D)u, v) Loy =0 (7.3)

for all u € Dy(Ly). In order to prove that v = 0 in (7.3) we consider instead
of u a mollifier with variable step Jiu given in the form

Txul(x Z Y (2) 5, u(x),
where ), (x) form the partition of the unity,

1 T —y
Jsu(T) = m/w( - )U(y) dy
Q

are the Sobolev averaging operators, d,,x < 2747™ [1].
Let u € C§°(G) C Do(Ly), then Jyu € C3°(G). Writing explicitly the left
part of (7.3) and going to conjugate expressions we obtain

(LOJku, v) = (JkLou, v)

= (Lou, Jjv)

+ (LOJku — JiLlou, U)
+ (Ru, v)

Ly(G) L2 (@)

L2(G)

L2(G)
L2(G) (7.4)

n

* * a *
= (U’LOka)LQ(G) + (U,,Rov)L2(Q) - Z(u7 8_%R U)L2(G))

i=1

where J; is adjoint to operator J; and it can be presented as

Jiu(z Z Ts e (Umu) (2),

m=0

R = LyJ; — JpLo is commutator which can be given in the form

n

Ru = Rou + Z Riuwia

i=1
daij I 0%%m
fiou = Z Z{ac;fij‘smk“””a 12 T
m=01,j=1

“ongy [ RO (R - 8“5;@)%@ i}

- 0 m 0
DI LI

m=0 j=1

- wm% CZ % [w(%) (aij(z) - az‘j(y))] 38_; dy}~
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Taking in account (7.4), we can write equality (7.3) for any function u €
C§°(G) in the following form

n 8
(u, LoJiv+ Ryv— 3 %R;*v) i =0 (7.5)
i=1 "

Note, that (7.5) can be extended to functions u € Ly(G) by limit passage.
We return to equality (7.3) where u is taken as Jyu, u € Dy(Lg). Using

the form of integrated transfer operator we transfer operator of differentiation

from v to v and obtain

+ M (u,v;0G(y)) =0, (7.6)

"9
(u, LoJpv + Rjv — Z ngU)L -
i=1 " 2

where we denote by M (u,v; 9G(y)) boundary terms which result from inte-
grating by parts in the expression (Lou, J;v) Loy T (Ru,v) La(c)- BY com-
paring (7.5) and (7.6), we see that the following equality is fulfilled

M (u,v;0G(y)) = 0. (7.7)

By varying the function u within the limit of the set Dy(L) one can show that
(7.7) is fulfilled for any u € Dy(Ly) if and only if v € Lo(G) is such that

Jiv| =0, Rv

—0, i=0,...,n. 7.8
- i n (7.8)

Let us denote by G cofactor to GtUS! of the domain G. Here the value ¢ is
chosen so that G is a convex set with respect to the vector field $ throughout
the set G. Let us introduce (0G")~ = {x € 8G'|r,(z) < 0}, where v(z) is a

unit vector of the external normal. Similarly, (0G*)* = {« € 9G*|r, () > 0}.
By Iv(z) we denote a line integral

x

Tv(z) =/J,:vds,

x

where integration is fulfilled along the curve p, to which the vector field  is

tangent, = and Z are on this curve and Z € (9G!)~, z € G. From definition
of the integral I and conditions (7.8) it follows that

P
J —0, I‘ —0, Jro(x) = —Iv(z). 7.9
gy =0 T e =0 S0l = 2T (79)

If in (7.5) we choose u as

then as a result we obtain
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n 8 * *
Z /IU (a“a or )dx :Z (IU’ 8%&“) Lz(ét)_(IU’Rov)Lz(éf)'

1,j= 1 =1

(7.10)
Let us integrate by parts in the left part of (7.10) using the Ostrogradsky
formula. For this purpose we transform the subintegral expression into the
following divergent form

02 "9 0? 10
Z 1 ( Ui g ar ) _”zl o1; (a“”a or 1Y )‘5%“7’)_%(“)’

i,j=1
(7.11)
where we denote
Z Qij oz, vih}
4,j=1
aam ” ory 3 0
= —— _— a; —_— —I
Z vy I” 2 gy g It
3,7=1 i,5,k=1
By virtue of conditions (7.9)
82
/ Z <awlva 2,07 v) dz = 0. (7.12)

zgl

Taking into account (7.11) and (7.12), the equation (7.10) can be written as
follows:

— / WO(U)T,,ds:2/W1( ) dz—2(Iv, ROU)L @ —|—2Z( 9 Iv, Rjv )

oGt Gt

Lo(Gt)

(7.13)
In the point € 2! choose the local Cartesian coordinate system {v, 72,
7"}. In this system the derivative representation is true

%IU = (,;iulvyi—i— %IUTE +...+ %IUT{Z.
But 9 9 9 0
glv = 8—’/]117"1, + lerﬂ +... 4+ a?IUTTn.
Hence,
agCiIv = :—ZJ,:U—F (Tf - %w)%]v—k...—&— ( - 7:—:1/1) 82”11} = :—iJ,jv.
Thus,

1 * *
_/%(v)ru ds = _/T_(Jw)%(m;y) ds > e[l Jiol2 . (7.14)
Qt St
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. vt . .
Now we consider ¥y (v) on (G*) . Here for almost all z in the local Cartesian
coordinate system {r,q?, ...,q"} the derivatives representation is true

0 0 0 9
8wilv = Elvn + B—qQIqu +.. 4+ —qu ZQZ —Iv (7.15)

According to Proposition 2 and by virtue of representation (7.15) and the
fact that r, > 6 > 0, for z € (8GY) ", (r,8) =0

- 0 - 0
0= (kg_;qlfa—qklv, e kZ_Qqﬁa—qkh}),

we have
- / Wy(v)ry, ds = — Z / o (2) Lo (2, 0) ds
ClebM act
>CQ§: / (iqf%[u)%s}cgi / (ai‘lv)zds. (7.16)
lc:z(aét)+ i=1 i:l(aét)+ ’

Now we return back to equation (7.15). We estimate its left part from below
using the Cauchy-Bunyakovsky inequality. Then in order to apply the Gronuol
inequality, along with integral v, we introduce the integral

T

Iv(z) =/J,:vds,

x

where integration is fulfilled along the same lines as in Jv. Here & € (aétﬁ. It
follows from the definitions of I and I that they are connected by the relation

Iv(z) + I(z) = Tv(Z).

From (7.15) by virtue of (7.14) and (7.16) and after the substitution of I for
I we obtain the inequality

C1|\ka||L2(st)+c3Z / 2 f) (@)5() ds (7.17)
Yocn~
n ) 8 .
‘g(axz @ - g, To(@). Riv )Lz<ét>

— (fv(i:) — fv(a:),RSv)LQ(ét) — /Wl(v) dx }

Gt
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Function 3(Z) resulted from the substitution of the integration domain and it
is easy to prove that 5(z) > ¢ > 0.
Along with (7.17) we consider the inequality

% / (F0)2(#)vn (2) 0 (7) ds = / Joo(@)[Fo@) — o) de,  (718)

(Gt~ G*
which results from the relation
10

55, (V) (2) = Jiv(@)Iv(2)

by integrating it over the subdomain G. Here also (%) > ¢ > 0 for some
constant ¢é. From (7.18) the inequality

) <es / Jrv(z) {jv(i‘)—IU(‘r) dx. (7.19)
oGt

AP o

If we sum inequalities (7.17) and (7.19), we obtain a non-negative expression
in the left part of the obtained inequality. In order to estimate the right part
we apply the Cauchy-Bunyakovsky inequality. Here we also use the estimates

[10]
||R;‘kv||%12(ét) < C5||v||L2(ét) (l =0,1,..., n)

As a result we obtain

HJ’“U”LQ(W) + ”IU”LQ(@@)*) + ;Haml Tv L2((9G17)

< ¢o(e0) U{(fv)2 + Zn:(aijvf}m(@) do
i=1 g

Gt

* T - 8 T
+ g vll gy + vl Ly + ZH 33:,1”‘
i=1 ¢

L2(ét):| + EOHUHLQ(@), (7.20)

where cg(g¢) increases inversely proportional to €g > 0. The first terms of
(7.20) can be estimated as follows

/{(fv)2 + an(aaxifv)Q}l/z(i) dx

Qt

. n a .
< C7T|:||IU||L2((BG‘)_) + ZHaxlI’U‘
=1

L2(<aét>)}’

where 7 decreases as the domain of Gt on the lines p decreases, i.e. 2! is
chosen so that lines p of the domain G* are short enough. Choose 7y so that
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2¢7c6(e0)70 < 1, AT ?gye20s(€0)T0 < 1 (7.21)

where 7' is maximum length of lines p throughout the domain C:'io. Now for
all 0 < 7 < 79 the following inequality is valid

z

w(t) < 2¢6(0) / w(z) ds + 25010 ) (7.22)

x

by virtue of (7.21) and the fact that

0
aﬁi

Iv

wlt) <10l gy + ol + 3 g ol oy
=1

where

. R n 8 .
w(t) = [ Txvllacon + o]l yc0n + ZH%IU‘ La(at)
i=1 v

Applying the Gronuol inequality to inequality (7.22) we obtain

w(t) < 806206(60)70 HU”LQ(Gt)

or for Gt C Gto

1 N N 1
WHJWHLQ(@()) < | Jkvllyon < WH”HLz(éto)- (7.23)

If we pass to the limit when k& — oo in (7.23), we have ||11||L2(G~to) <0, ie.
v = 0 in Ly(G?). Continuing this process further, in finite number of steps
we prove that v = 0 in upper convex over R set C:'io. Moving further from the
top downwards in finite number of steps we show that v = 0 throughout the
whole domain G.

Let us return back to (7.2). We have the relation

(lou,vo)Hl(m) + (L, Ul)Lz(QD) =0, ueDL). (7.24)

Since lp and [; are linearly independent and sets {lpu}, {liu} are dense in
H'(2°)) and Lo(§2°)), respectively, if u runs through the whole set D(L),
then equality (7.24) implies that vo = 0 in H'(02°)) and v; = 0 in Lo(£2°).
Thus it is proved that density of R(Ly) is in H.

In the general case the fact that density of R(L) is in H can be proved by
continuing along the parameter [9]. W
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