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Abstract. We establish the existence of an entire solution for a class of stationary
Schrédinger systems with subcritical discontinuous nonlinearities and lower bounded
potentials that blow-up at infinity. The proof is based on the critical point theory
in the sense of Clarke and we apply the Mountain Pass Lemma for locally Lips-
chitz functionals. Our result generalizes in a nonsmooth framework the result of
Rabinowitz [16] on the existence of entire solutions of the nonlinear Schrodinger
equation.
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1. Introduction and the Main Result

The Schrédinger equation plays the role of Newton’s laws and conservation
of energy in classical mechanics, that is, it predicts the future behaviour of a
dynamic system. The linear form of Schrédinger’s equation is
872m
Ay + T (E(z) = V(z))¥ =0,

where v is the Schrodinger wave function, m is the mass, i denotes Planck’s
constant, F is the energy, and V stands for the potential energy. The struc-
ture of the nonlinear Schrédinger equation is much more complicated. This
equation describes various phenomena arising in self-channelling of a high-
power ultra-short laser in matter, in the theory of Heisenberg ferromagnets
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and magnons, in dissipative quantum mechanics, in condensed matter theory,
in plasma physics (e.g., the Kurihara superfluid film equation). We refer to
[9, 18] for a modern overview, including applications.

Consider the model nonlinear problem

2
i = o A Viape Al i RY (V22), (L)

where p < 2N/(N —2) if N > 3 and p < 400 if N = 2. In the study of this
equation Oh [15] supposed that the potential V' is bounded and possesses a
non-degenerate critical point at x = 0. More precisely, it is assumed that V'
belongs to the class V, (for some a) introduced by Kato [13]. Taking v > 0
and h > 0 sufficiently small and using a Lyapunov-Schmidt type reduction,
Oh [15] proved the existence of a standing wave solution of problem (1.1),
that is, a solution of the form

U(x,t) = ey (). (1.2)

Note that substituting the ansatz (1.2) into (1.1) leads to

h2
-5 Au+ (V(z) — E)u = |ulP " u.

The change of variable y = A~ 'z (and replacing y by z) yields
—Au+ 2 (Vi(z) — E)u = |[ulP " u in RY |

where Vj,(z) = V(hz).

In his well-known paper, Rabinowitz [16] continued the study of standing
wave solutions of nonlinear Schrodinger equations. After making a standing
wave ansatz, Rabinowitz reduces the problem to the semilinear elliptic equa-
tion

—Au+b(z)u = f(z,u) in RY,

under suitable conditions on b and assuming that f is smooth, superlinear
and subcritical.

Inspired by Rabinowitz’ paper, we consider the following class of coupled
elliptic systems in RY (N > 3):

{ —Auy + a(z)ur = f(z,u1,u2) in RV, (1.3)

—Aug + b(x)uz = g(x, ur, ug) in RY .

We point out that coupled nonlinear Schréodinger systems describe some phy-
sical phenomena such as the propagation in birefringent optical fibers or Kerr-
like photorefractive media in optics. Another motivation to the study of cou-
pled Schrédinger systems arises from the Hartree-Fock theory for the double
condensate, that is a binary mixture of Bose-Einstein condensates in two dif-
ferent hyperfine states, cf. [6]. System (1.3) is also important for industrial
applications in fiber communications systems [10] and all-optical switching



Entire Solutions of Schrédinger Elliptic Systems 231

devices [12]. For important abstract results in Sobolev spaces with applica-
tions to partial differential equations we refer to the excellent monographs by
Gilbarg and Trudinger [8], and by Hyers, Isac and Rassias [11].

Throughout this paper we assume that a, b € LS (R"Y) and there exist
a, b>0suchthat a(x)>a, b(x) >b ae.in RY, and

esslim|,|oca(x) = esslim|,|_ob(z) = +00.

Our aim in this paper is to study the existence of solutions to the above
problem in the case when f, g are not continuous functions. Our goal is to show
how variational methods can be used to find existence results for stationary
nonsmooth Schrédinger systems.

We assume that f(z,-, ), g(z,-, ) € LY (R?). Denote:

loc

flz,t1,t2) = %ir%essinf{f(nsl,sQ); [ti —s;| < 0;4i=1,2},

flz,t1,t2) = %imoesssup{f(x,sl,sQ); [ti —si| <d;i=1,2},

g(x,t1,t2) = }ir%essinf{g(nsl, S2); |ti — 8| <6;i=1,2},

gz, t1,t0) = }iné esssup{g(z, s1,82); |ti —si| < d;i=1,2}.

Under these conditions we reformulate problem (1.3) as follows:

{ —Auy + a(z)uy € [f(z,ur(x), ue(x)), flz,ui(z),uz(2))] ae x€RY

—Aug + b(z)ug € [g(x,ur(2), ua(x)),g(x, us (2), ua(z))] a.e. z € RV,

(1.4)
We point out that the corresponding multivalued equation has been considered
by Gazzola and Ridulescu in [7].

Let H! = H(R™,R?) denote the Sobolev space of all U = (u1,us) €
0 0
(L2(RM))? with weak derivatives =%, 22 (j = 1,...,N) also in L(RY),
8xj &fj
endowed with the usual norm

||U||§11:/(|VU|2+|U|2) dx:/(|w1|2+|w2|2+u%+u§) de.
RN RN

Given the functions a, b : RN — R as above, define the subspace
E = {U: (ul,uQ) S H':
/ (IVui|? + [Vuo|* + a(2)uf + b(z)u3) de < +oo}.

RN

Then the space E endowed with the norm

UI% = / (|Vu1|2 + | Vg |* 4 a(z)u? + b(x)u%) dz

RN
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becomes a Hilbert space. Since a(z) > a > 0, b(z) > b > 0, we have the
continuous embeddings H' — LI(RY R?) for all 2 < ¢ < 2* = 2N/(N — 2).

We assume throughout the paper that f,g: RV x R? — R are nontrivial
measurable functions satisfying the following hypotheses:

|f(z,t)] < C(|t] + |t|P) for a.e. (z,t) € RN x R? L5)
lg(z,t)| < C(|t] + [t]P) for ae. (z,t) € RY x R2, '
where p < 2%;

%in%esssup { |f(|a;it)|, (z,t) € RY x (=94, +5)2} =

. (1.6)
gir%esssup{%])'; (z,t) € RN x (=6, 46) } =0;

f and g are chosen so that the mapping F : RY x R? — R defined by

t1 ta
F(x,t1,t2) ::/ f(xmﬂfg)dT—&-/ g(z,0,7)dr
0 0

satisfies
to ty
F(x,t1,t2) = /g(x,tl,T) dr + /f(x77'70) dr
0 0
and F(x,t1,t2) = 0 if and only if ¢t; = t5 = 0;

(L.7)

there exists u > 2 such that for any © € RY we have F(x,t1,t2) > 0 and

tli((E tl,tg) +tgg((E tl,tg), t1,t9 € [0, +OO)

tli(w,tl,tg) ((E,tl,tg); t] € [0, —‘y—OO)7 to € (—0070]
ILLF(JE tl, tQ) _ _

tif(z,t,t2) +t2g(w, t1, t2); t1,t2 € (—00,0]

tlf(l‘ tl,tg) g(l‘ tl,tg), t; € (—OO,O]7 to € [0,+OO)

In this paper we establish the existence of "entire solutions" to the system
(1.4), that is, solutions defined on the whole space. The precise meaning of
the notion of "solution" is precised below.

DEFINITION 1. A function U = (u3,us) € F is called solution to the problem
(1.4) if there exists a function W = (w1, w2) € L?(RY,R?) such that

(1) flz,ui(z),uz(z)) <wi(z) < flz,u(2),uz(x)) ae. z in RY;
(7, u1(7), ua(7)) < wa(z) < gz, u1(x), ua(x)) ae. z in RY;

IS [
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(z'i)/(Vval + Vua Vg + a(x)uivy + b(x)ugve) do = /(wlvl + wouy) d,

RN RN
for all (v1,v9) € E.

Our main result is the following.

Theorem 1. Assume that conditions (1.5) — (1.8) are fulfilled. Then problem
(1.4) has at least a nontrivial solution in E.

2. Auxiliary Results

We first recall some basic notions from the Clarke gradient theory for locally
Lipschitz functionals (see [4, 5] for more details). Let E be a real Banach space
and assume that I : £ — R is a locally Lipschitz functional. Then the Clarke
generalized gradient is defined by

aI(u) = {g € B*; I°(u,v) > (€,v), forall v e E} :

where I°(u,v) stands for the directional derivative of I at u in the direction
v, that is,
I Av) —1T
I°(u,v) = limsup (w+ ) = I(w) .
w—u, AN\,0 A

Let {2 be an arbitrary domain in RY. Set
Eg = {U = (u1,us) € H'(2;R?) ;

/ (IVur? + [Vuo|* + a(2)uf + b(z)u3) do < +oo}
o

which is endowed with the norm

01, = [ (Vaal + Vsl + ae)ud + b)) da.
9
Then E(, becomes a Hilbert space.
Lemma 1. The functional ¥ : Eq — R, Yo(U) = [ F(z,U)dx is locally

Q
Lipschitz on Eg.

Proof. We first observe that
[

F(a,U) = Fla,u1,uz) = / Fla, 7 uz) dr + / o(x,0,7) dr
0

0
Uz (1

- [seuryir+ [ a0y

0 0
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is a Carathéodory functional which is locally Lipschitz with respect to the
second variable. Indeed, by (1.5)

t1 t1
Fa.tnt) ~ Flaosi )| =| [ fertyar] <| [ e+ jramar
S1 S1

< k(ty, s1,) [t — s1].

Similarly
|F($,t, tg) — F‘((ﬁ,f7 82)| < k(tg, Sg,t)|t2 — 82| .

Therefore,

Pty ts) — F(xysl,sg)\ < \F(x,tl,tz) — F(z,51,12)

+ ‘F($7t1782) — F(z, s1, 82)‘ < k(V)|(t2, s2) — (t1,81)],
where V is a neighbourhood of (¢1,%2), (s1,s2). Set
x1(z) = max{ui(z),vi(x)}, x2(x) = max{uz(z),v2(z)} forall z € 2.

It is obvious that if U = (u1,us2), V = (v1,v2) belong to Eg, then (x1,x2) €
Eq,. So, by Holder’s inequality and the continuous embedding Eq, C LP(2;R?),

7 (U) = ¥o (V)| < C(lxi,x2ll ) IU = Vs,

which concludes the proof. B

The following result is a generalization of Lemma 6 in [14].

Lemma 2. Let 2 be an arbitrary domain in RN and let f: 92 x R%2 >R bea
Borel function such that f(z,.) € LiS (R?). Then f and f are Borel functions.

loc

Proof. Since the requirement is local we may suppose that f is bounded by
M and it is nonnegative. Denote by

ti+1to+2
1
T

fmn(z, t1,t2) = ( / / ‘f($751752)‘md51d82) "

tlf% to— 2

Since f(x,t1,t2) = }irr(l) esssup{ f(x, s1,82); |t; — s;| < 054 =1,2} we deduce

that for every e > 0, there exists n € N* such that for |t; — s;| < 2 (i = 1,2)

we have |esssupf(z, 51, $2) — f(z,t1,t2)| < € or, equivalently,
J(x,t1,t2) — & < esssupf(x, s1,2) < f(,t1,t2) + €. (2.1)

By the second inequality in (2.1) we obtain
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— 1
f(z,s1,82) < f(x,t1,t2) +¢ ae.xze 2 for|t;—s;)|<— (i=1,2)
n

which yields

Frm(,t1,t2) < (T(x, t,ta) + 5) (W) " (2.2)
Let

1 -
A:{(SMSQ)ER?; |t¢—8¢|<ﬁ (i=1,2); f(l’,tl,tz)—fﬁf($751,82)}-

By the first inequality in (2.1) and the definition of the essential supremum
we obtain that |A| > 0 and

1/m

fmn < (//(f($781782))m dsy dSQ)# > (f(z,s1,52) — ) |[A]77. (2.3)
A

Since (2.2) and (2.3) imply
7(33, tl, tg) = hm hm fm,n(x, tl, tQ) y

n—oo Mm—0o0

it suffices to prove that f,, , is Borel. Let

M= {f : 2 xR? = R; |f| < M and f is a Borel function}7

N = {f € M; fmn is a Borel function}.

Cf. [2, p.178], M is the smallest set of functions having the following proper-
ties:

0 {f € (2 x R%R): |f] < M} cM;
(i)) f® e M and f® 5 fimply f € M.

Since N obviously contains the continuous functions and (i) is also true
for A/ then, by the Lebesgue dominated convergence theorem, we obtain that

M = N.For f wenote that f = —(—f) and the proof of Lemma 2 is complete.
|

Let us now assume that {2 C R¥ is a bounded domain. By the continuous
embedding LPT1(£2; R?) — L2?(§2;R?), we may define the locally Lipschitz

functional ¥y, : LPT1(02;R?) — R by ¥p(U) = /F(a:, U)dz.
2

Lemma 3. Under the above assumptions for any U € LPT1(2;R?) we have

o(U)(x) C [f(2,U(x)), f(z,U2))] x [g(z,U(2)),5(2,U(x))] ae z€L,
in the sense that if W = (w1, w2) € W (U) C LP1(£2;R?) then
f(z,U(z)) <wi(z) < f(z,U(x)) a.e. T in 2 (2.4)

g(x, U(x)) <wz(x) <g(z,U(x)) a.e. T in §2. (2.5)
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Proof. By the definition of the Clarke gradient we have

/ (wlvl + U}Q’Ug) dr < Wg (U, V) for all V = (’Ul,Ug) e Lpt! (Q;R2) .
o)

Choose V = (v,0) such that v € LPT1(£2), v > 0 a.e. in 2. Thus, by Lemma

2,
hy(z)+Av(z)
1C,
/wlv dr < lim sup 1)
Q

f(z,7,he(x)) dr) dx

(h1,ha)—U, ANO A
hi(z)+Av(z)

< / ( lim sup % / f(x,T, hg(w)) dT) dx
Q

(h1,h2)—U, AN\0
hl(z)

(2.6)

< [ flz,ug(2), ue(x))v(z) do .

QD

Analogously we obtain
/i(x7u1(x),u2(x))u(ac) dx < /wlv dx for all v>0in (2. (2.7)
2 2

Arguing by contradiction, suppose that (2.4) is false. Then there exist
e>0,aset AC {2 with |A] > 0 and w; as above such that

wy(z) > f(z,U(z)) +¢ in A. (2.8)
Taking v = 14 in (2.6) we obtain

/wlvdx:/wld;v<A/?(;v,U(ac))dac,

2 A

which contradicts (2.8). Proceeding in the same way we obtain the corre-
sponding result for g in (2.5). W

By Lemma 3, Lemma 2.1 in Chang [3] and the embedding E, —
LPHL(2,R?) for ¥ : Eq — R, WUo(U) = /F(x7 U) dxr we have
2

WaoU)(z) C [f(x, U(x)), f(z,U(x))] x lg(z,U(x)),g(x,U(x))] ae zei.
Let V € Eq. Then V € E, where V : RY — R? is defined by

. V(x), zin 2,
V:{

0, otherwise.
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For W € E* we consider W, € E}, such that (Wq, V) = (W, V) for all V € Eq.
Set ¥ : E R, W(U)= / Fla,U) da.
RN

Lemma 4. Let W € 0¥ (U), where U € E. Then W, € 0¥, (U), in the sense
that W, € 0¥ (Ul q)-

Proof. By the definition of the Clarke gradient we deduce that (IV, V) <
WO(U, V) for all V in Eg

N U(H+ \V)—W(H
vO(U, V) = limsup (H + V) (H)
HHAU,IE)IEE )\

[ (F(z,H+\V) — F(x,H)) dx

. RN
= limsup
H—U,HEE A
A—0

[(F(z,H +\V) — F(x, H))dx

. 19,
= limsup
H—U,HEE )\
A—0

[(F(z,H+\V) — F(x, H))dx
= limsup 2 = wd(U,V).

H—U,HEE A
A—0

Hence (Wq, V) < W2 (U, V) which implies Wy, € 0¢2(U). B

By Lemmas 3 and 4 we obtain that for any W € 0¥ (U) (with U € E),
W, satisfies (2.4) and (2.5). We also observe that for £2;, 2, C RY we have

Wa,loine, = Wa,loine,-

Let Wy : RY — R, where Wy(z) = W () if x € 2. Then W) is well defined
and

Wo(x) € [f(2,U(x)), f(z,U(2))] x [g(z,U(2)),g(z,U(x))] ae zeRY

and, for all p € C°(RY | R?), (W, ¢) = / Woy dz. By density of C2° (RN, R?)
RN
in E we deduce that (W, V) = / WoV dx for all V in E. Hence

RN

W (z)=Wo(x)€[f(z,U(x)), f(z,U(2))]x[g(x,U(x)),5(x,U(x))] ae. x € é%];)-

3. Proof of Theorem 1

Define the energy functional / : £ — R
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(|Vu1|2 + | Vug|* + a(x)u? + b(a:)u%) dx

~
3
I
T—

—/F@Umngwﬁ—wwy (3.1)
]RN

The existence of solutions to problem (1.4) will be justified by a nonsmooth
variant of the Mountain-Pass Theorem (see Chang [3] and Radulescu [17])
applied to the functional I, even if the PS condition is not fulfilled. More
precisely, we check the following geometric hypotheses:

I(0) =0 and there exists V € E such that I(V) < 0; (3.2)
There exist 8,p >0 suchthat I >3 on {U€E; |[U|lg=p}. (3.3

3.1. Verification of (3.2)

It is obvious that I(0) = 0. For the second assertion we need the following
lemma.

Lemma 5. There exist two positive constants C, and Cs such that
f(z,s,0) > Cis* 1 —Cy forae zeRY, se [0, 4+00).
Proof. We first observe that (1.8) implies
sf(z,s,0) se€l0,+00),
0 < pF(r,s,0)<q _
Sf((,E, S,O) s € (—O0,0} ’

which places us in the conditions of Lemma 5 in [14]. B

Choose v € C2°(RY) \ {0} so that v > 0 in RY. We have

/ |Vol? + a(x)v? < oo,

RN

hence t(v,0) € E for all t € R. Thus by Lemma 5 we obtain

I(t(v,0)) zg/|Vv|2+a(x)v2d;v—/7]‘(9577'70)0[7
RN

RN O

IN

tv
2
% / |Vo|? + a(z)v? de — / /(C&T“*l —Cy)dr
RN RN O

2
5/|Vv|2+a(x)v2dx+02t/vdx—01t“/v“dx<0

RN RN RN

for ¢t > 0 large enough.
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3.2. Verification of (3.3)

We observe that (1.6), (1.7) and (1.8) imply that, for any € > 0, there exists
a constant A, > 0 such that

|f(2,5)] < els| + Acls|”,
: for a.e. (z,5) € RY x R?, (3.4)
|g($7 S)| é €|S| + A€|S|p7
By (3.4) and Sobolev’s embedding theorem we have, for any U € E,

[u1] up

[T (U)| = |P(u1,u2)| < |f(x, 7, u2)| drdx + lg(x,0,7)| drdx
1l i

4 A
< / (%|(U1,u2)|2+p_:1|(u1,uQ|p+1) d;v—i—/ <§|u2|2+p_:1|u2|p+1) da

RN RN

2A,
p+1

+1 +1
<e|U|3: + U5 < eCs||UI% + CallUE™,

where ¢ is arbitrary and Cy = Cy4(¢). Thus
1 1
1) = S0}~ #(U) > 501~ eCollU I — CulU ™ > 6> 0,
for ||U| g = p, with p, ¢ and 3 sufficiently small positive constants. Denote

P = {7 € C(0,1], E); 7(0) =0, 5(1) £0 and I(7(1)) <0}

and
= inf I(y(t)).
¢= Inf max (v(1))
Set

Ar(U) = (oin €l

E* .

Thus, by the nonsmooth version of the Mountain Pass Lemma [3], there exists
a sequence {Ups} C E such that

I(Uy,) —c and Mi(Up) — 0. (3.5)
So, there exists a sequence {W,,} C 0¥ (U,,); Wy, = (w),, w?,) such that
(—Au}, +a(z)ul, —wl,, —Au? + a(z)u?, —w?) — 0 in E*. (3.6)

Note that, by (1.8),

o(U) < l( / uy(x)f(z,U) dm+/ uy (x) f(z, U)dac—i—/ uy(x)g(z,U) dx

u1 >0 u1 <0 uz >0
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Therefore, by (2.9),
1 1
U(U) < — / U(x)W(z)dx = — /(u1w1 + uswe) dx,
'uRN MRN

for every U € E and W € 0¥ (U). Hence, if (-, ) denotes the duality pairing
between E* and E, we have

-2
10 =252 (VU 4 1V 4 oo+ b(o) ) do
]RN
1
+ ;<(—Au}n + a(@)u,, —wy,, —Aul, + b(x)u, — w,), Up)
1
+ =W, Up) — ¥ (Un)
I
-2
> 2 [0 P o (902 ala) P+ b)) o
H N
1
(= A+ ala)ul, = wh A, + e, — ). Un)
> B2 13— o(1) | U
sl 2M mll g mllE -

This relation in conjunction with (3.5) implies that the Palais-Smale sequence
{Up.} is bounded in E. Thus, it converges weakly (up to a subsequence) in E
and strongly in L2 (R”) to some U. Taking into account that W,,, € 0¥ (U,,)

loc

and U,, — U in E, we deduce from (3.6) that there exists W € E* such that
W, — W in E* (up to a subsequence). Since the mapping U —— F(z,U) is
compact from E to L', it follows that W € 0¥ (U). Therefore

W (z) € [f(2,U(x)), f(z,U(x))] x [g(z,U(x)),g(z,U(x))] ae z RN
and
(—Aul +a(x)ul —wl  —Au? 4+ b(x)u?, —w?) =0 =
/ (VU1V1}1 + VuaVug + a(z)uivy + b(a:)uzvg) dx

RN

= / (wlvl + wgvg) dx for all (v1,v9) € E.
RN
These last two relations show that U is a solution pf the problem (1.4).

It remains to prove that U # 0. If {W,,} is as in (3.6), then by (1.8), (2.9),
(3.5) and for large m
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<I(Up) — %((—Au}n +a(z)ul, —wl , —Au?, +b(x)u, — w?),Upn)

N O

%<Wm,Um>—/F(x,Um)dxg %( / ur(2)f (2, U) das (3.7)

RN u1>0

+ / uy (z) f(z,U) dx + / uy(z)g(x,U) dw + / uQ(x)y(amU)dx).
uz<0

w1 <0 u>0

Now, taking into account the definition of f, f,7, g we deduce that f, f, g, g
verify (3.2), too. By (3.7) we obtain

C
5 < [ (U + Aclun ™) do = £Unllfs + AU

RN

So, {U,,} does not converge strongly to 0 in LPT}(R";R?). From now on, a
standard argument implies that U # 0, which concludes our proof.
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