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Abstract. A priori parameter explicit bounds on the derivatives of the solution of
a two parameter singularly perturbed elliptic problem in two space dimensions are
presented. These bounds are used to establish parameter uniform error bounds for
a numerical method consisting of upwinding on a tensor product of two piecewise
uniform meshes.
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1. Introduction

When analysing the convergence behaviour of numerical approximations to
the solution of a singularly perturbed differential equation involving two sin-
gular perturbation parameters (denoted here by ¢ and ), it is worth not-
ing that the error is a function of three parameters: the mesh parameter N
(the number of mesh elements used in each coordinate direction) and the
two perturbation parameters. Parameter-uniform numerical methods [2] are
methods such that the pointwise error E(N;e, i) is bounded independently of
both perturbation parameters. Parameter-uniform methods for two-parameter
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problems based on fitted operator methods on uniform meshes are given in
[10, 11]. More recently, fitted piecewise—uniform meshes have been used to
generate parameter-uniform methods for two-parameter ordinary differential
equations [7, 8] and for singularly perturbed parabolic equations [6]. In this
paper, we examine a two-parameter elliptic problem in two space dimensions.

Consider the following class of singularly perturbed elliptic problems posed
on the unit square 2 = (0,1)2,

Le ju = e(Ugg + Uyy) + plaruy + aguy) —bu= f in 2, ( )
ulps = s1(x),  ulr = s2(x),  ulr, =@ y),  ulr = g(y), (1.1b)
$1(0) = ¢1(0), 52(0) = q1(1), s1(1) = g2(0), s2(1) = ¢2(1),  (1.1c)
a1 (z,y) > a1 >0, az(z,y) > az >0, b(x,y) > 25 >0, ( )

where I'p, I'r, ', and I'r are the edges of the boundary 0f2 defined by

FB:{(I,O)|O§x<1}, FTZ{(I,1)|OSJZS1},

Ip={0,9))0<y <1}, I'r={(Ly0<y<1}
Throughout this paper, we assume sufficient regularity and compatibility on
the data so that the solution and its components are sufficiently smooth for
the following analysis to be valid. With respect to regularity assume that

ai, ag, b, f S Cm’A(D), A€ (0, 1), S1, S2, q1, Q2 € Cm(J),

where D, .J are open sets such that 2 C D, [0,1] C J and n, m are sufficiently
large for our analysis. In this paper, the norm ||v||g = maxzcg [v(Z)| is the
maximum pointwise norm. Throughout this paper C is a generic constant
which is independent of the singular perturbation parameters ¢, and the
mesh parameters N, M.

Note that the differential equation (1.1a) contains two singular perturba-
tion parameters 0 < e < ey =0O(1) and 0 < pu < 1. We let

b b
a =min{ag, s}, 7<min{27‘1,2—a2}. (1.1e)

The analysis for this two-parameter problem naturally splits into two cases,
p? < X and p? > 2. In the case of y? < 2=, the analysis is similar to
the reaction-diffusion problem [1] when p = 0 and boundary layers of width
O(y/2) appear in the neighbourhood of all four edges. For the case of u? > 2=
the analysis is more intricate and boundary layers of width O(£) appear in
the neighbourhood of the edges = 0, y = 0 and boundary layers of width
O(u) appear in the neighbourhood of z =1,y = 1.

In this paper, we confine the discussion to the case of

p2 < (1.1f)
[0
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2. Bounds on the Solution v and its Derivatives

In this section we establish a priori bounds on the derivatives of the solution
of (1.1). These bounds are essential for the error analysis in subsequent sec-
tions. We begin by stating a continuous minimum principle for the differential
operator in (1.1). The proof of this comparison principle is standard.

Lemma 1. If w € C%(2)NC°(2) such that L. ,w|o < 0 and w|pn > 0, then
w|_(} > 0.

An immediate consequence of this Lemma is the stability bound:

1
[ull < |Is|lrsury +lallrurs + %||f||~

The next lemma, establishes parameter-explicit bounds on the derivatives
of the solution. Within the realm of singularly perturbed problems, the proof is
essentially classical except that here it is applied in the case of a two parameter
problem.

Lemma 2. If f € C*M2), s,q € C3*0,1) are independent of ¢ and p,
and assuming sufficient compatibility of the boundary data at the corners,
the derivatives of the solution of (1.1) satisfy the following bounds for all
nonnegative integers k and m, where 1 < k+m <3

sc(igﬂma+mm,

where C' is independent of the parameters € and p.

oFtmy
H Ok oym

Proof. Note that we can write w = u — g, where w satisfies an equation
similar to (1.1) with homogeneous boundary conditions. We have

Leyjw=f—Leyg=1f on 2, w=0 on 9.

Consider the transformation

(1 +Ve)x (1 +Ve)y

g LIV, WTVEY

9 9

The transformed domain (2 is given by 0= (0, %‘/5)2 Applying this trans-
formation, the above differential equation becomes

I H
— QW+t ——— AWy — —F————5
VE+u T BT (Ve 4 )2

where &(&,1) = w(z,y). The coefficients d1,da, b are defined similarly and

Wee + Wy +

~ £ ~
f&n) = Wf(%y)-
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For each ({1, (2) € 2, we denote the rectangle (¢ —4,¢+0)*N 2 by Rs((1,Ca),
where § = O(1). For all (£,n) € 2 and Rs we have (see [4, page 110] or [5,
Theorem 3.1]) that

51y a7y < CUIfllon s + 19N 2,55
and for [ =0,1 R
Dl o x 0y < CULFI N oy + 1@ 2,5
where | |,,5\ 5, and | - [, , s, are the standard semi-norms and norms in
C** (see, for example, [4, 5]). Since |w|.o < |w|k .2, We obtain
|&|1,R5 S |w|1,A,R5 S C(||f||O,A7R25 + ||®||R25)’

and for [ =0,1

0o, 75 < @Wlipon s < CUF Nl s T 190 2o)-

Transforming back to the original variables this implies for all (z,y) € {2 and
R§ = R5 (33, y)

(o5 e < € (rms (52) Mo + ol )
pAE/ T T N+ VE)R N\t Ve w
and for [ =0,1

€ +2 e
(= ) im0,

ptyE (1 +Ve)?

! v A
X (Z (/‘%\/g) |f|v,R25 =+ (/‘%\/g) |f|l,)\,325> + CHWHR%'

v=0

Replacing f by f — L. .9 yields the required result. l

Remark 1. The proof in Lemma 2 is applicable in the case where the positivity
constraint (1.1d) is relaxed to

ai(z,y) >0, ax(w,y) >0, blz,y) >28>0.

3. Regular Component

In order to obtain more informative parameter explicit error bounds on the
derivatives of the solution of (1.1), the solution is decomposed into a sum of
regular and layer components. The extension of idea from [9] is used to de-
fine the regular solution, which avoids imposing overly artificial compatibility
conditions. We show that there exists a function v such that L. ,v = f and
when its boundary conditions are chosen appropriately, the function v and
its derivatives up to second order are bounded independently of the small
parameters.
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Define the zero order differential operator Lo to be
Loz = —bz.

Consider the extended domain 2* = (—d,1 +d) x (—d,1+d) D 2, d > 0.
The extended differential operators L; , and Lg coincide with the operators
L., and L respectively on {2. Below, we implicitly define smooth extensions
a3, a3, b* and f* of the functions aj, a2, b and f to £2* so that they coincide
with the functions a1, az, b and f in (2. These extensions are constructed so
that aj >0, a5 >0, b* > 23 > 0 at all points in 2* and

where D is an open set such that 2 C D C 2*.
Consider the differential equation L7 o* = f* on £2* and decompose v*
as follows
v (@,y) = v5 (2, y) + Vevi(z,y) +evi(a,y),

where

LSUS = f*v \/ELSUT = (LS - L:)#)’Ué,
eLl v5 = Ve(Ly — LI vy, vslaa- =0.

Note that v§ and v} satisfy zero order differential equations and hence there
are no issues of compatibility. The term v3 is the solution of an elliptic problem
on the extended domain (2*. The extensions b*, f* are such that the function
g* = (Lg — L% ,)vi is zero at the four corners of the extended domain and
g* € CHA(2*). In this way the term vy € C%(£2%) is sufficiently regular for
our purposes [3].

Given p? < 1=, we see that the functions v§ and v] and their derivatives are
bounded independently of both small parameters. Since v; satisfies a similar
equation to (1.1) we can use Lemma 1 and Lemma 2 along with 12 < 2 to
obtainfor 0 < k+m<3

k+m, x
H OF T3

1 k+m ye
AN ] <<7(——) i u2< 8
Oxkoy™ || — b=

Ve «

Define the regular component v to be the solution of the elliptic problem

Leyv=Ff, (z,y) €2, and v=10v"(z,y) € 0.

Assuming sufficient smoothness of the coefficients, we can establish the fol-
lowing bounds on the first three derivatives of the regular component v

§0@+A%“Wﬂ)ogk+mg& if p2< 2
(6%

okt my
Hawkaym
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4. Layer Components

Associated with the left edge Iz, we define a boundary layer function w;y.
Consider the extended domain 2** = (0,1) x (=d,1+d), 0.5 > d > 0. We
define wj to be the solution of

L:,*,uwz = 07 (£C7y) € Q**a (41&)
wilr, = @w—v)", wi(l,y)=0, ye[-d,1+d], (4.1b)
wi(z,—d) =wi(z,1+d)=0, z€]0,1]. (4.1c)

Lemma 3. When p? < L=, the boundary layer function wj satisfies the fol-
lowing bounds

via, || 0wy i .
: H YLl coa+ve T, i=1,2,3.

I(z,y) <Ce V& ,
jw (2, )] < Ce o

Proof. 'The boundary function (u—v)(0,y) is extended so that (u—v)*(0,y) =
0 for y < —g and y > 1+ %. By the comparison principle, it follows that

lwi(2,y)] < Ce ™ VET (z,y) € 27

Note that the crude derivative bounds given in Lemma 2 also apply in the case
when a;(z,y) > 0, as(z,y) > 0. Using the same argument on the extended
domain we can show that these crude bounds on the derivatives also apply
to w} . In the direction orthogonal to the layer we sharpen these bounds. We
first obtain a bound on w7} to reflect the fact that it is zero on the edges I'}*
and I'5*. Note that the coefficient as is extended to the domain 2** so that
la3 || o=~ < Ci(d+y)(1+d—y). Note also that

L, (d+y)(1+d—y)) = =2+ p(l —2y)a; — b (d+y)(1 +d —y).
Assuming that p is sufficiently small (so that 4C1p < (), it follows that
lwi(z, )| <Cd+y)(1+d—y), (z.y)e€ 2

From the above bound on |wj (z,y)| and the fact that wj (z, —d) = w} (z,1+
d) = 0, we obtain

ow;, ow;,
< 1,y) =
Zio)| <o Ghaa-o
owy, owy,
— < < C.
}ay (, d)}C, }ay (x,l—&-d)}C

*

Differentiate the equation L7,

w}, = 0 with respect to y to obtain

o Owh  dajow)  daydwy | Ob*

SRy —H dy Ox H dy Oy Oy wp = /-
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Using the crude derivative bounds from Lemma 2 and p? < %‘5, we have
||f || < C and therefore

This argument can be extended to produce the higher derivative bounds.
Using (4.1a), (4.1¢) and the fact that a}(z, —d) = a}(z,1+d) = 0 we see that

o?w o?w
— = 1 =
ayg (33, ) 5y2 (33, +d) Oa
O?w} O*w}
< =0.
‘ ayg (07y)‘ = Ca 8y2 (Ly) 0

Using Taylor expansions and the bounds on the regular component v we have

the bound
0wt d+y)(1+d—y)

dy? VE '

Differentiate (4.1) twice with respect to y to obtain

SC(

(0,y)

v O%w dai 0w} da3 0*w3 ob* 0%a Ows
57M—2L:_ p - 22 2L+(__“—22) L
dy Jy O0x dy dy 0Oy Jy oy? ’ Oy
0%a; owy  9%b*
— w
oy? Oz Oy>

L= (zy) € 2.
By construction the extensions aj, a’ and b* are such that

ob*

dy

<Cd+y)(1+d—y), k=0,1,2and i =1,2.

)

okar
Oyk

We deduce that || f1|| < %(d +y)(1+d — y). Using the conditions

Cipu(1+2d) —b* <0, |a3| <Ci(d+y)(1+d—vy),

we obtain o2 c
wr,
< —(d 1+d—vy).
Zi| < S a-n
Using this bound we obtain
3wy C PPwy C
—d)| < — 14+d)| < —
‘3y3(x’ )*\/5’ ‘3y3(x’+)\/5
C Bwi

3, %
\5wL (Ly) =0,

8—y3(07y)‘ < N
Differentiate (4.1) three times with respect to y to obtain

3%
**awL

S1 TPy = fa
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C

By suitable extensions || f2|| < — and then
€
3, ,,%
Owi | < g.
oy ||~ e

To finish, note that in the case where 4Ci ;. > 8 and p? < L= then ¢ > C' and
we are in the non-singularly perturbed case in which all the derivatives are
bounded independently of ¢. B

Define the boundary layer function wy by

La,p,wL = 07 (CE,y) S Qv wr =Uu—v, wr

I'r

:Oa wr,
I'r

== wL.
I'tUl'p

For the boundary layer function wr associated with the top edge I'1 , the
extended domain is taken to be (z,y) € [—d, 1+ d] x [0,1] and

L67uwT = 07 (CE,y) € Qv wrt =Uu—-v, wr

I'r

:Oa wr
I's

== wT.
I'tUl'g

Lemma 4. When p? < L=, the boundary layer function w} satisfies the fol-
lowing bounds

Ner T, ,,% i
e, HM <C(l+veE ), i=123

] <Ce V¢ .
i) < Ce o

Proof. The proof follows the same lines as the proof of the previous lemma.
However, note that

NI NI
Lte 7=y (’ya—k %a&/@—b*)e 7 (=)
L2 (1-y)

< (’ya + yas — b*)e_ VE

Note that on the original domain ya + yas —b < 27vas — b < 0. The extensions
are constructed to maintain this sign pattern on the extended domain. Also,
a1 can be suitably extended so that

L ((z+d)(1+d—x)) = (=2 + p(l —2z)a; —b*(z +d)(1+d—x)) <0.
|

Define the boundary layer functions associated with the other two edges
wg and wp analogously to wr and wy. Associated with the corner 'y =
I't, N I'p define a corner layer function wyp such that

L67quB = 07 ($7y) € ‘Qv

wrp = —wp, (z,y) €L, wrp=-wy, (z,y)€ I,

wrg =0, (z,y)€lr, wrp=0, (z,y)€ 1.
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Note that at the corner (0,0), wg(z,0) is equal to wr(0,y) = (u — v)(0,y)
which is equal to (u — v)(z,0) = wp(z,0) which in turn is equal to wz(0,y).
Note also that u — v, wr, wp € C>*(£2) and

L. ,wp =L, wp = L. ,(u—v)=0.

Hence we have sufficient compatibility for wyp € C3*(§2). By using the com-
parison principle and the obvious barrier function, the following bound on
wrLB holds

wLB(x,y)} < Ce VEre VY,

Associated with the corner I'rr = I'r NIt define a corner layer function wrp
such that

Leywrr =0, (z,y) € 22,

wrr = —wr, (z,y) € I'r, wgr =—wr, (v,y) € IR,

wrpr =0, (z,y) €Iy, wrr=0, (z,y) € p.
Noting that

Y2 (1-x) Y2 (1-y)

L. e 2vet e 2
_ (B paiy/ya pazy/ya b)e—%<1_x)e—g}f<1—y>
2 2\/e 2\/e
A () TR
< (% + %(al +az) — b)e e (179~ 3 e (17w

< (a1 +a) —b)e FECD KA <
one can establish the bound

_ NI ERVALE
‘wRT(’I,y)‘ < Ce 5= (1 z)e 3= (1 y).

Analogous bounds hold for the other two corners. In summary we state the
main result of this paper:

Theorem 1. The solution u of (1.1) can be decomposed into the following
sum of components

u=v+wy+wRg+wr+wp+wrp +wrr +WRB + WRT

where L. ,v = f, and the layer and corner layer functions are each solutions of
the homogeneous equation L. ,w = 0. Boundary conditions for these functions
can be specified so that the bounds on the components and their derivatives
given below hold:
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H k+my, H o1+ g_k_m) 0<kim<3
2
Axkoym Il — c ’ = m=9
_Ae ar
fwi (e, )| < Ce™ V27, wp(z,y)| < Ce™ VY,
_ e
lwr(z,y)| < Ce” 7 a- =), lwr(z,y)| < Ce™ V¢ -y
_JAs, /A& VS, JAE
lwrs(@,y)| < Ce™ V=% VoY, upp(e,y)| < Cem VE T AT
VTS o VTS e
lwrp(z,y)| < Ce” 2%(171)67%% lwrr(z,y)| < Ce3ve (1m2) =32 (1- V)
ok _ %
H wr, SC(l—f—\/Elk), H wWR <C 1+\/51k)71§k§3’
ﬁka 1-k akwT 1-k
<c(1+v2'7), c(i+veE' ™) 1<k<s
For all the layer components, we also have that
8k+mw .
C 3 1<k <3.
Haxkay H <Cem, Sktms

5. Numerical Method

Consider the following upwind finite difference scheme
LNMU (2,y;) = e62U + €6,U + par DFU + pas DU — bU = f,

where DV is the forward difference operator and 2 is the standard second
order centered difference operator. We apply the above finite difference oper-
ator on the tensor product mesh VM = QN x QM where 2V (2M) is a
piecewise uniform mesh [2] that places a uniform mesh containing O(N) mesh
points in each of the three subregions [0, 0], [0,1 — o], [1 — o, 1]. The transition
points o, 0, are taken to be

1
Or = min< —, 2 ilnN , 0y = min l, 2 i111M .
4 Yo 4 Yo

Remark 2. Note that if a; = as = 1, p = 0 then v = 8 and the above
numerical method coincides with the method analysed in [1] for the reaction—
diffusion problem and shown to be parameter-uniform of second order (up to
logarithmic factors).

From the pointwise bounds on the layer components and for this choice of
transition point, it follows that

1
HwL(xi,yj)H <CN72, z; >0,, wheno,< 1

The discrete solution is decomposed into the sum
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U=V AW +Wr+Wr+Wp+Wrp+Wrr+ Wgp + Wgr,
where

LNMY —f, V| =

NM ’FN,IVI’

LMWL =0, W

= w
'N.M L‘FN,M7

and the other layer functions are defined similarly. The maximum pointwise
error ||u — U|| is estimated by bounding each of the error components ||[v —
Vs lwe = Wi, |lwg — Wg]| ... separately. The error ||[v — V| is bounded
using a classical truncation error and comparison principle argument. Using
a standard truncation error argument

|LN7M(V —v)(xi, yJ)| < C’l-N_1 (ellveze | + pllvez|)
+CoM " (ellvgyyll + pllvgyll) < C(N_l + M_l)\/g-

Thus at each mesh point (z;,y;) € 2™ the regular component of the error
satisfies the following parameter-uniform estimate

(V=) (@i, y5)] <OC(NTH+ M~ H)Ve

Lemma 5. At each mesh point (z;,y;) € QNM " the left singular component
of the error satisfies the bound

|(Wr —wr)(zi,y;)| < C(N"'InN + M),
Proof. Using the truncation error bounds

ILN MW — wi) (i, y5)] < Cr(hisr + he) (Ellwrpesl| + llwr. )
+Co(kj1 + ky) (Ellwryyyll + pllwry, )

and since p* < 2=, we obtain

C
ILYM(WE — w) (@i, y5)] < 715(hz'+1 +hi) + CoM ™" (5.1)

The following bounds on the discrete boundary layer function Wi,

i G -1
)] < y - — .
W (2, y;)| < CS:H1 <1+ N hs v,

are established using the discrete comparison principle and the fact that

A/ Y&
552 S ?Wﬂ_l, ILLD+LPZ = _%Lpi—i—l; bg/z Z b%+1-

In the region [0, 1) x (0,1)
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WL (2, y;)] < C¥ng <CNTY, 0p < 1/4,
which leads to
|(Wr —wi)(wi,y;)| < ONTY (24,95) € [o2,1) x (0,1).

Note that, for z; < o,, the truncation error is

2
SRR e )

ox3 ox?
o3 0?
oM (e[| + o[-
In the layer region (0,0) x (0,1) and when o < 1, by = hj1 = 8VE N='InN
) 9 AL 1+1 \/7—0

one can use (5.1) to obtain
ILYMWp —wp)| SC(NT'InN + MY, 2 < 0.

Use an appropriately chosen barrier function and the discrete minimum prin-
ciple to obtain the required result in this region. When either ¢, = 1/4 or
oy = 1/4, a classical truncation error with discrete comparison principle is
used to establish the error bound. B

Analogous bounds hold for the error components |(Wg — wg)|, |(Wr — wg)|
and |(WT — ’LUT)|

Lemma 6. At each mesh point (x;,y;) € QNM the left, bottom and right
singular components of the error satisfies the following estimates

|(Wg —wp)(zi,y;)| < C(N"t+ M~ tn M),
|(Wr — wg) (i, y;)] <C(N"'InN + M),
|(Wr —wr)(zi,y;)] < C(N"'+ M~ In M).

Lemma 7. At each mesh point (x;,y;) € Q2NM, the bottom-left corner sin-
gular component of the error satisfies the following estimate

|(Wrp —wrp)(2i,y;)] <C(N"'In N+ M1 In M).
Proof. Note the truncation error bounds
ILYM(Wep —wep) (@i, y;)| < Ci(hipa + hi) (el 0LBags|| + pllwrpasll)
+ Cakjr1 +kj) (ellwrpyyyll + pllwrsy,|)

C C
< ZL(hir + i) + =2 (kjr1 + kj).

TVE VE

Consider the region 27\ (0,0) x (0,0). Note that
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N M
T 4oy A\~ 4 4o, /Y -1
< FO0z T 14 ¥V -
|V[/LB($%79%)|—CS|:|1 <1+ N 2\/g> E( Y] 2\/5)

In an analogous fashion to the bound on Wy, when o, < 1/4, 0, < 1/4 we
have
Wip(zi,y;)| <CN "M~ 1 > 05 and y; > oy

and
lwrp(wi,y;)| <CN2M™2, 21 >0, and y; > oy

In the region 2V:M\(0,0,) x (0,0,) one can establish
|(Wrp —wrp)(ziy;)| <CONP 4+ MY, o0, <1/4, 0, <1/4.

In the corner region (0, 0,) x (0, 0,), the mesh sizes are such that

he = it = SYENTIMN, k= ks = Y M,
Jya Jya

Using the truncation error bound we obtain

LN M(Wrp —wrp)(wi,y;)| < C(N"'InN + M~ 1n M),
The proof is completed as in the case of Lemma 6. l

Similar bounds hold for the error components |(Wgg —wgrg)|, | Wrr —wgrr)|
and |(Wrr — wrr)| and we conclude with the following result.

Lemma 8. Let u be the solution of the differential equation (1.1) and U be
the discrete solution defined above. Then at each mesh point (x;,y;) € Q™M

(U —u)(zs,y;)] <CN 'InN +CM ' In M

where C' is a constant independent of €, u and N.
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