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Abstract. An analysis is performed to investigate the structure of the boundary
layer stagnation-point flow and heat transfer of a fluid through a porous medium over
a stretching sheet. A scaling group of transformations is applied to get the invariants.
Using the invariants, a third and a second order ordinary differential equations
corresponding to the momentum and energy equations are obtained respectively.
The equations are then solved numerically. It is found that the horizontal velocity
increases with the increasing value of the ratio of the free stream velocity (ax) and the
stretching velocity (cx). The temperature decreases in this case. At a particular point
of the stretching sheet, the fluid velocity decreases or increases with the increase of
the permeability of the porous medium when the free stream velocity is less or grater
than the stretching velocity.

Key words: scaling group of transformations, stagnation-point flow, porous
medium, stretching sheet

Nomenclature

F non-dimensional stream function, F™ variable.

F', F”, F' first, second and third order derivatives with respect to 7.
G absolute invariant defined in G = x"y*.

k permeability of the porous medium, k; porosity parameter.

Pr Prandtl number, p, g variables.

T temperature of the fluid, T, temperature of the wall of the surface.
T~ free-stream temperature.

u, v components of velocity in the x and y directions, z variable.
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Greek symbols:

a1, o, a3, 04, Q5, 0, o, & transformation parameters.
B3, 3" transformation parameters, 7 similarity variable.

I" Lie-group transformations.

k the coeflicient of thermal diffusivity, p dynamic viscosity.
v kinematic viscosity, 1 stream function.

1* variable, p density of the fluid.

6 non-dimensional temperature, 6*,0 variables.

0, 0" first and second order derivatives with respect to 1.

1. Introduction

The boundary layer equations are especially interesting from a physical point
of view because they have the capacity to admit a large number of invariant
solutions, i.e. basically closed-form solutions. In the present context, invariant
solutions are meant to be a reduction to a simpler equation such as an ordi-
nary differential equation (ODE). Prandtl’s boundary layer equations admit
more and different symmetry groups. Symmetry groups or simply symmetries
are invariant transformations which do not alter the structural form of the
equation under investigation (Bluman and Kumei [3]).

The main advantage of the symmetry method is that it can be applied
successfully to non-linear differential equations governing the motion of vis-
cous fluid. Lie group analysis was named after Sophius Lie who developed it
to find point transformations which map a given differential equation to itself.
This method unifies almost all known exact integration techniques for both
ordinary and partial differential equations and no ad hoc assumptions or a
prior knowledge of the equation under investigation is needed (Kalpakides
and Balassas [7]). The differential equation remains invariant under some
continuous group of transformations usually known as symmetries of a dif-
ferential equation. Actually a symmetry group maps any solution to another
solution (Koureas et. al.[8]). In case of the scaling group of transformations,
the group-invariant solutions are none but the well-known similarity solutions
(Pakdemirli and Yurusoy [13]. Similarity solutions are very useful in the sense
that they reduce the independent variables of the problem (Ames [2]). In this
paper, we apply a special form of Lie group transformations to the problem
of stagnation-point flow and heat transfer through a porous medium over a
stretching sheet.

The study of hydrodynamic flow and heat transfer through a porous
medium towards a stretching sheet becomes much more interesting due to
its vast applications on the boundary layer flow control. In certain porous me-
dia applications such as those involving heat removal from nuclear fuel debris,
underground disposal of radioactive waste material, storage of food stuffs and
exothermic and / or endothermic chemical reactions and dissociating fluids
in the packed-bed reactors, the working fluid heat generation (source) or ab-
sorption (sink) effects are important. Representative studies dealing with these
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effects have been reported by authors such as Gupta and Sridhar [6], Abel and
Veena [1]. The heat, mass and momentum transfer in the laminar boundary
layer flow on a stretching sheet are important from theoretical as well as prac-
tical point of view because of their wider applications to polymer technology
and metallurgy. Crane [5] gave an exact similarity solution in closed analytical
form for steady boundary layer flow of an incompressible viscous fluid past a
stretching elastic plate. MacCormac and Crane [11] studied the steady two-
dimensional incompressible boundary layer flow of a Newtonian fluid, caused
by the stretching of an elastic flat sheet which moves in its own plane under a
uniform stress and the velocity varies linearly with the distance from a fixed
point. Chiam [4] investigated two-dimensional steady stagnation-point flow of
an incompressible viscous fluid towards a stretching surface. Roy Mahapatra
and Gupta [9, 10] studied the MHD stagnation-point flow and heat transfer in
case of stagnation-point flow. Recently, Nazar et. al. [12] studied the unsteady
boundary layer flow in the region of stagnation-point on a stretching sheet.

The purpose of this paper is to investigate the steady two-dimensional
stagnation-point flow of an incompressible viscous fluid through a porous
medium towards a stretching surface. The temperature distribution is ob-
tained when the stretching surface is held at a constant temperature. The
momentum and the thermal boundary layer equations are solved using shoot-
ing method. The results, thus obtained, are then presented graphically and
analysed.

X
o —
-~ -~ =~ — > —> —> — U=CX

stagnation point

Figure 1. A sketch of the physical problem.

2. Equations of Motion

We consider the two-dimensional steady flow of an incompressible viscous
liquid through a porous medium near a stagnation point at a surface coinciding
with the plane y = 0, the flow being confined to y > 0. We introduce two equal
and opposite forces along the z-axis so that the wall is stretched keeping the
origin fixed (Fig.1). The boundary layer equations for steady two-dimensional
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stagnation-point flow through a porous medium (highly permeable) over the
stretching surface (with the application of Darcy’s law) are given as
Oou  Ov

%"‘a—yzo,

ou ou ou Pu v

Ur—+v—=U—+v-—+ (U —u).
ox + dy ox Oy> k( )
In equation (2.1), U(x) stands for the stagnation-point velocity in the inviscid
free stream, u and v are the components of velocity respectively in the x and
y directions, k is the permeability of the porous medium, p is the coefficient

of fluid viscosity, p is the fluid density, v = u/p is the kinematic viscosity.
By using the boundary layer approximations and neglecting viscous dissi-
pation, the equation for temperature 7T is given by

oT oT o°T

V— =K

“or + Ay oy?

where « is the coefficient of thermal diffusivity of the fluid.

(2.1)

(2.2)

2.1. Boundary conditions

The appropriate boundary conditions for the above problem are given by
v=cr, v=0 T=T, at y=0, (2.3)
u—U(x)=azx, T —-Tsx as y— oo. (2.4)

Here ¢(> 0) and a(> 0) are constants, T, is the uniform wall temperature, T,
is the free stream temperature, T, and T, are also constants with T, > T'..

2.2. Method of solution

We now introduce the following relations for u,v and 6 as
e oY 0 T-Ty

=y VT a YT
where 1) is the stream function. Using the relation (2.5) in the boundary layer
equation (2.1) and in the energy equation (2.2) we get the following equations

oy Py Py oU 9y 9

1%
el Y § R ik 2.
Oy 0z0y Oz Oy? U5x+yay3+k(U 5y) (26)

(2.5)

and

ool 0y oh . %0
Oy ox  0Ox Oy Oy’
The boundary conditions (2.3) and (2.4) then become

2.7)

oy o B B
8y_cx, 83:_07 =1 at y=0,
a—w—>U(ac):a:r7 0—0 as y— oo.

dy
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2.3. Scaling group of transformations

We now introduce the simplified form of Lie-group transformations namely,
the scaling group of transformations (see Tapanidis et al. [14]),

I':iaz" =ze™™, y* =ye™, " =pe®,
u* =uet™, v =0e, U =Ue“®, 0" =0, (2.8)
Equation (2.8) may be considered as a point-transformation which transforms

co-ordinates (x,y, v, u, v, U, 0) to the co-ordinates (z*,y*, *, u* v*, U*, 6%).
Substituting (2.8) in (2.6) and (2.7) we get,

* 2,/ % * 02, /% *
65(0‘14-2042—2043)(% Y _ %8 v ) = ef(a1—2a6)U*8L
Oy* Ox*dy*  Ox* Oy*2 Ox*
Oy* v v o™
e(Bag—az) ¥ Y o—eagyrx _ ~ e(la—az) TV
+ve 9573 +e U € 3y (2.9)
* * * * 2 )*
66(0414’(1270(370(7) (aw % — % 69 ) — Heﬁ(20¢270¢7) —a 9 .
Oy* dx*  Ox* Oy* Oy*?

The system will remain invariant under the group of transformations I', so
we would have the following relations among the transformation parameters,
namely

o1 4+ 200 — 203 = a1 — 206 = 39 — 3 = —g = Qig — O3 (2.10)
a1+ oo —az — a7 =209 — Qy.
From the first relation in (2.10) we get
as —ag + ag = 0.

The third relation gives the value as = 0. From as — a3z + ag = 0 we get,
a3 = Qg (since g = O). Again from oy + 200 — 2a3 = 3as — a3z we get,
a1 = ag. In view of these, the boundary conditions become

o* o*

— =czf, —=0,0=1 at y*=0
8y* cr, Ox* ’ a Y ’
oY —U*=az*, 0*—0 as y"— o0

oy*

with the additional conditions a; = a3 = a4 = ag, as = a5 = ay = 0. Thus
the set I" reduces to a one parameter group of transformations as

* €y * * a5} * a5}
T =zxe 9 y —y7¢ _we 9 u = ue 9

vt =v, U*=Ue", 0" =60. (2.11)
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2.4. Absolute invariants

A variable or function which retains same structural form in a particular
mathematical transformation is known as an invariant. If a variable or function
retains its structural form in all mathematical transformations then it is called
an absolute invariant. In this paper, absolute invariants are nothing but the
similarity variables and the similarity solutions.

First we derive an absolute invariant which is a function of the dependent
variable, namely n = yz®. For this purpose, we write

" = Bx, B=e"" y* = B%y, P = B%fqp’ U* — UBa .
To establish y*x*® = yx®, we have
y*x*s _ yBZ%Bsxs _ nySBSJr%.

Putting s + 22 _ 0 we get, y*z*° = yx®. Since as = 0 so s = 0 and we get
n=y*. Thusavzslre obtain

n=y" (2.12)
as an absolute invariant.

We now find a second absolute invariant G, which involves the dependent
variable . Let us assume that G = z"vy. We will find r such that "¢ = z*"¢*,
then

x*r * BrxrBz—?w _ BT+Z_§’$T¢.
. a3 a3 .
Now by putting, r + — = 0 we get, r = —— = —1 (since oy = a3). Thus,
a

aq
we get the second absolute invariant G as G = x*~14*. Putting G = F(n) we

can write

v = 2" F(n). (2.13)
We also have 0* = 0(n).
In view of relations (2.12) and (2.13), the equations (2.9) become

F/2_FF//: 2+ F”/—l—z —F/,
{ “T (a=F) (2.14)

k
FO' + k0" = 0.
The boundary conditions are transformed to
F'(n)=¢, F(n)=0 and 6(n)=1 at n=0.
F'(n) —a, 0(n)—0 as n— oo.

Again we introduce the following transformations for  , F' and 6 in equations
(2.14):

" =

n=v""y, F=v"cF* 6=0v""c"0
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Taking F'* = f and § = 6 the equations (2.14) finally take the following form:
fUE = S k(S = ) =0,
0" + Prf¢’ =0,

(2.15)

v
where k1 = o is the permeability parameter of the porous medium and
c

Pr= % is the Prandtl number. The boundary conditions take the form

f'=1, f=0, 6=1 at n*=0

f’—>g, 0 —0 as n* — oo.
c

3. Numerical Method for Solution

The above system of equations (2.15) along with boundary conditions are
solved by converting them to an initial value problem. We set

f/:Z7 Z/:p7
a? a
p/:ZQ—fp—c—z—kl(z—Z)7 (3-1)

0'=q, 4 =-Prfq

with the initial conditions

f(0)=0, f(0)=1, 6(0)=1.

In order to integrate (3.1) as an initial value problem we require to give
values for p(0) = f”(0) and ¢(0) = 6'(0) but no such values are given on
the boundary. We use the shooting method. Suitable initial values for f”(0)
and 0'(0) are chosen and then integration is carried out. We compare the
calculated values for f’ and @ at the end of time integration interval n = 5

with the given boundary conditions f/(5) = % and 6(5) = 0 and adjust the

estimated values, f/(0) and 6’(0), to give a better approximation for the
solution.

We take a series of values for f”/(0) and 6’(0) and apply the fourth order
classical Runge-Kutta method with step-size h = 0.01. The above procedure
is repeated until we get the results up to the desired degree of accuracy, 107°.

4. Results and Discussions

Computation through employed numerical scheme has been carried out for
various values of the parameters such as parameter a/c, permeability param-
eter k1 and Prandtl number Pr. For illustrations of the results, numerical
values are plotted in the figures.
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3.5

Figure 2. Variation of horizontal velocity f'(n) with 7 for several values of a/c
with Pr = 0.05,k1 = 0.

First, we present the result for the variation of the parameter a/c when
the sheet is not porous, i.e. the parameter k1 = 0. In Fig.2, horizontal velocity
profiles are shown for different values of a/c. Two set of values for a/c, i.e.
a/c < 1 and a/c > 1 are considered. It is seen that the horizontal velocity
increases with the increase of non-zero values of a/c. It is evident from this
figure that when a/c > 1, the flow has a boundary layer structure and the
thickness of the boundary layer decreases with the increase in a/c. It can
be explained as follows. For fixed value of ¢, corresponding to the stretching
of the surface, increase in a in relation to ¢ (such that a/c > 1) implies
increase in straining motion near the stagnation region. Due to this reason
the acceleration of the external stream is increased and this leads to thinning
of the boundary layer. On the other hand when a/c < 1, the flow has an
inverted boundary layer structure. In this case, the stretching velocity (cx) of
the surface exceeds the velocity (ax) of the external stream. It is to be noted
that no boundary layer is formed when a/c = 1.

1 T
N afe=0.1 ——
09 TN ,
™ ale=0.3
08 - N
N a/c=0.5
07k SIS -
AN ae=15 — -
06 WY Oh i
N e
05k NN =2 B
AN N
04 NN ™ ale=3 — —4
N
03 ~ Y S i
6(n) ST TS
~ oY
02 ™ i
~OT IS
01 - >~ RN B
0 | | | L=

n

Figure 3. Variation of temperature 0(n) with n for several values of a/c with
Pr =0.05k1 =0.

Fig.3 represents the temperature profiles for different values of
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% =01, 03, 05<1, % =15, 2, 3>1.

For all values of a/c considered, 6 is found to decrease with the increase of
7. There is no significant change in the rate of decrease of 6 for the different
values of a/c when a/c < 1. Temperature at a point on the sheet decreases
significantly with the increase in a/c.

Fluid flow and heat transfer towards a porous stretching sheet have an
important bearing on several technological processes. Some metallurgical pro-
cesses involve the cooling of continuous strips or filaments by drawing them
through a quiescent fluid. The rate of cooling can be controlled and final
product of desired characteristics can be achieved if strips are drawn through
porous media. With this motivation we studied the steady two-dimensional
stagnation-point flow of an incompressible fluid in presence of porous medium
towards a stretching surface.

T
— — /e=0.1% =0 ',
T T T T —— e=0.11K i
N We=014 =0 — | 25E a1 k=05 ~ g
7 7
Kl ale=0.1,k =0.5 = o o
2 Y ale=0.1,k =1 iy k2 - —
LAt / ale=01,4 =1 === ] 2r il A ye=2.k =0 B
12 b/ ale=0.1.k =2 i S ak=0.1k =2 a7 ae=2,) =05 - -
/ LS // ae=2k =1 — = o
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Figure 4. (a)Variation of horizontal velocity f'(n) with n for several values of k;
and a/c with Pr = 0.05;(b) Variation of transverse velocity f(n) with 7 for several
values of k1 and a/c with Pr = 0.05.

09 £ Ny Pr=005 - ]
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Figure 5. Variation of temperature 6(n) with 7 for several values of Pr with a/c =
0.1,k = 0.1

Figs.4(a) and 4(b) are the graphical representation of horizontal velocity
profile f'(n) and transverse velocity profile f(n) for the different values of the
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permeability parameter k1 of the porous medium (k; = 0.0,0.5, 1, 2) when the
Prandtl number Pr is 0.05 for two different set of values of a/c lying in 0.1 < 1
and 2 > 1. It is found that for a/c < 1, the horizontal velocity f'(n) decreases
with the increase of k; but it increases with the increase of k; when a/c > 1.
From Fig.4(b) it is very clear that the transverse velocity decreases with the
increase of k; when a/c(= 0.1 < 1) (Pr = 0.05) but k; has no significant
effect on the transverse velocity when a/c(=2 > 1).

Fig.5 shows the effects of the Prandtl number (Pr) on the temperature 6(n)
for fixed values of a/c = 0.1,k; = 0.1. As anticipated, the thermal boundary
layer thickness decreases with increasing the Prandtl number (i.e. with the
decreasing thermal diffusivity). It is clear from this figure that the temperature
at a point decreases with increase in the Prandtl number Pr but the increase
of Pr has no such effect on the horizontal velocity.

Table 1. Values of f”(0) for several values of a/c and k1 with Pr = 0.05.

ki a/c— 0.1 0.5 2.0 3.0

0.0  -0.9601 -0.6499 1.9991 4.5011
0.1 -0.8910 -0.5011 2.0101 4.8011
0.5 -0.8001 -0.3711  2.1102 4.9102
1.0 -0.7191 -0.3402 2.3905 4.9691
1.5  -0.5692 -0.3112  2.7201 4.9901
2.0  -0.5502 -0.2901  3.1511 5.5010

Finally, we compute the dimensionless shear stress at the wall for various
values of a/c and k;. The values of f”/(0) are given in the Tablel. Our com-
puted results agree excellently with the results of Nazar et. al.[12] in steady
case with k1 = 0. From this table, it is very clear that the numerical value
of wall shear stress decreases with the increase in k1, for a fixed value of a/c
when a/c < 1 (values of f”(0) are negative in this case) and increases with the
increasing ki for a/c > 1 (values of f”(0) are positive). On the other hand,
for a fixed value of k1, the wall shear stress decreases with the increase in a/c
provided a/c < 1 but increases with increase in a/c when the values of a/c
are greater than 1.

5. Conclusion

Similarity solution of a steady boundary layer flow in the stagnation-point re-
gion on a stretching sheet embedded in a porous medium has been obtained by
using scaling group of transformations. The results pertaining to the present
study indicate that the flow has a boundary layer structure when a/c > 1
and when a/c < 1, the flow has an inverted boundary layer structure. The
effect of porosity parameter on a viscous incompressible liquid is to suppress
the velocity field when a/c < 1. This in turn causes the enhancement of the
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velocity field when a/c > 1. The temperature at a point is found to decrease
with the increase in Pr. The porosity parameter plays a significant role on
the wall shear stress.
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