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Abstract. The paper is devoted to the study of the integral transform
(S(a, ﬂ)nf) (z) = /5((04, B),; —xt) f(t)dt (x> 0)
0

containing the special function £((«, §),,;2) generalizing the Mittag-Leffler type
function in the space £,,» (1 < r < oo,v € R) of Lebesgue measurable functions on
R = (0, +00) such that | f][, . < oo, where

o 1/r
T ( [0 %) <00 (1< 7 <00); [fll, 0 = esssupisolt F(D).
0

Mapping properties such as the boundedness, the range, the representation and
the inversion of the considered transform are proved. The results are based on the
representation of the considered transform as the H-transform.

Key words: Mittag-Leffler type function, spaces of p-summable functions, H-
function, H-transform

1. Introduction

Our paper is devoted to the study of the integral transform of the form

(e, B),f) () = /5(0@ Bns —wt) f(t)dt (x> 0), (1.1)
0
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involving the special function

1 I'(s)['(1-s —s
e Bie) = 5 [ oas c20) ()
L Hlp(ﬁi — a;s)
with real «;,3; € R (i = 1,...,n) in the kernel. Here £ is the one of the fol-
lowing specially chosen infinite contours, which separate all poles of Gamma-
function I'(s) to the left and all poles of Gamma-function I'(1 — s) to the

right:

(a) L= L_ is aleft loop located in a horizontal strip starting at the point

—oo+i¢; and terminating at the point —co+ipa, —o00 < @1 < Y2 < 0.
(b) L = L is a right loop located in the horizontal strip starting at the
point +o0o + ip; and terminating at the point +oo + iy, —o00 < <
o < 0.
The function (1.2) with complex «;,5; € C(i = 1,...,n) was introduced in
[7], where the following conditions for its existence were proved:
L=L_, Rlar+...+a,)>0; (1.3)
L= £+007 %(oq 4+ ...+ Oén) < 0. (14)

The following series representations of (1.2) were also established in [7]:

= 1
g((aaﬂ)f’uz) = chzk = E((O&,ﬁ)n; Z), Ck = > (15)
k=0 I'(aik + Bi)
i=1
for £L=L_ and f: R(c;) > 0, while
i=1
— d 1
E(@.B)ni2) =D s k=5 . (19
k=0 [T '~k — i + 3;)
i=1

for L =Ly and > R(a;) < 0.
i=1
The function E((a, 8)n;2) in the form (1.5) as the generalized Mittag-
Leffler function was introduced by Hadid and Luchko [6]. Therefore we call
(1.2) the extended generalized Mittag-Leffler function. This function is the
generalization of the classical Mittag-LefHler function E, s(z) [2, 3, 5]:

& k

z
Ea,B(Z):k:ZOm (>0; BER; z€ C),

and more general function E,, 3,.0,,3,(2) [1]:

> k

z
E, sz, B2 - ) s > 0, 61, S R; e C).
1761» 76 (Z) I;O F(OZlk+ﬂ1)F(O[2k+62) (Oél a2 ﬁl 62 z )
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Let’s note, that some special Bessel type functions [4, 8] are expressed in
terms of Eq, 8,:0s,8,(%2), i.€. the Bessel function of the first kind

2

J(z) = (%)VELVH;M <—Zz) )

the Struve function

z\vt+1 22
H,(z) = (5) E1 13721372 <_Z> ;

the Lommel function

ZH+1 —v+ 1 +rv+1 22
i () () ()

the Bessel-Maitland function

J(2) = Eupy11,1(—2),

the generalized Bessel-Maitland function

" z v+2X 22
Jy,A(Z):(g) EM7V+>\+1;1,>\+1 7 )

Recently interest to the investigation of the functions

Ea;ﬁ('z)7 Ea1751;a2752(2)7 E((a, ﬁ)n,z)

and the integral transforms with such functions in the kernels has consider-
ably increased due to their close connections with the theory of fractional
integration and to the solutions of so called integral and differential equations
of fractional order; see the survey paper [9] in this connection.

In our paper we study the mapping properties such as the boundedness,
the range, the representation and the invertability of the transform (1.1) on
the space £, (1 < r < oo,v € R) of Lebesgue measurable functions on
R, = (0,+00) such that || f]|,.» < oo, where

o d 1/r
e = (10501 F <00) 5 1l = csssupale’ 0. 17)

Our investigations are based on the representation of this transform in the
form of more general integral transform

e (@i, a)1,p
(Hf)(x) = / Hn |t F(t) dt, (1.8)
0 (b5, Bi)1,q

with the so-called H-function in the kernel. Such a H,";"(z)-function is defined
for integers m,n,p,q (0 <m < g, 0 <n < p), for complex a;, b; and positive
a;, B (1 <i<p; 1<j<q) by the following equation:
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(azaaz)l 1
H'"M(z) = H" | 2 =3 /H (s)z=°ds (1.9)
(b5, Bi)1,q z

with

m,n j=1 =1
HI(s) = — - . (1.10)
I I'ar+ais) [I I'(1—0b;—pB;s)
l=n-+1 j=m+1

Here L is a specially chosen infinite contour (£ = L_,, £ = L1, etc.),
and an empty product, if it occurs, being taken to be one. One may find the
theory of this function in the books by Mathai and Saxena [10], Srivastava,
Gupta and Goyal [13], Prudnikov, Brychkov and Marichev [11, Section 8.3]
and Kilbas and Saigo [8, Chapters 1 and 2].

The paper is organized as follows. Section 2 deals with the representation
of (v, B), f as special cases of the H-transform (1.8). Sections 3-4 are devoted
to the £, ,-theory of the transform (1.1) in the case when 1 < p < n,q; >
0(G=1,...,p)and a; <0 (i = p+1,...,n). The inversion relations are given
in Section 5.

2. &(a, B),-Transform as the H-Transform

By (1.9)-(1.10), the extended generalized Mittag-Leffler function &£((a, 8)y; 2)
is represented in the form of the H-function, and such a representation is
different in dependence on values of real parameters a; (i =1,...,n):

i) fa;>0(¢=1,...,n)and £L = L_, then

oy bt (0,1)
E((a, B)p32) = Hi {Z (0,1), (1 = Br, 1), ..., (1 — ﬁn,Oén)] . (29)
ii) If i >0 (i = ,...,p,p <mn),a <0(@{=p+1,...,n) and either
Zal>0 L=L_,,or Zal<O£ L4 o0, then

=1 =1

£ 0)i2) = HY s |2

(071)7(5p+17_ap+1)7'"7(ﬁn7_an):|

(071)7(1_ﬁlaal)a"'a(l_ﬁpaap) ’
(2.2)

iii) IfaZ <0@G=1,. ..,p,p<n) and a; > 0 (i =p+1,...,n) and either

Zaz>0 L=L_,or Ea1<0 L =L, then
=1 =1

(071)7(517_041)7"'7(6177_0‘17) Z:|
(031)7(1_ﬂp-l-laap-i-l)a---a(l_ﬁnaan) '
(2.3)

E((a B)i2) = HYL ooy [
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iv) fa; <0(i=1,...,n) and L = L, then

282157(517_0[1)7'"’(ﬁn’_an):| . (24)

By (2.1)-(2.4), the transform &(a, ), f in (1.1) has the following representa-
tions:

E((a B),2) = HYL [

A)Ifa; >0(i=1,...,n)

(0,1)

(0.1),(1— Bryc),.. (1~ frsan) |- D)
B) If a; >0 (l = 1,..-71?,17 < n), a; < 0 (7, = p_i'_]_”,n) and either

S >0,L=L_w,0r > a; <0,L =L, then
i=1 i=1

(€(a, B)nf)(x) =

E((a f),2) = HIL,, [

(0,1)7(51) , —Qp ),...,(ﬂn’_an)
(0,1), (1 jlﬂl, ozl)Jr,l. (1= By, ) f(t)ydt. (2.6)

C)Ifa;<0(i=1,....p,p<n)and o; >0 (i =p+1,...,n) and either
a;>0,L=L_r,0r > a; <0,L=L}, then

i=1 i=1
i ) (0,1),(,3 y —Q )7"'7(6177_0410)
/H;Jrll,nfpjtl [xt (07 1)’ (11_ ﬂp-il-la ap+1)a . (1 _ ﬁna Oén)] f(t)dt'

0
D) If; <0,(i=1,...,n) and £L = L, then

€l D), 1)) = [Hihy far] (1) oo Cremon)] g
0

(2.8)

The properties of the H-function (1.9) and of the H-transform (1.8) depend
on the following numbers a*, A, 1, 6, af, a%, o, 5, ao, Bo:

n p m

a*:Zai— Z Oli'f'Zﬁj_ Z ﬁj, AZZ@'—Z%‘; (2-9)
i=1 j=1 7=1 =1

i=n+1 j=m+1
q p p q
p=3 b= e+t a=[[e;* I8 (2.10)
Jj=1 i=1 i=1 j=1
m p

n q
ai=> 8-> o oas=> a— Y B (2.11)
=1 i=1

i=n+1 1=m-+1
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_ . m(bj)} .
o= { 125%m [ 5| Em>0 (2.12)
—00, ifm=0,
. 1—Re(ai):| :
8= { 1Zi%n [ ] Hn>0, (2.13)
o0, if n = 07
Re(b;)— 1:| if g >
Qg = {mflli)j(QJ [ Pi + naem (2.14)
—00, ifg=m
i Re(a,) 1} if p >
By = {nf?gl?gp[ a T Bp=n, (2.15)
0, if p=n.

The mapping properties, such as the boundedness, the range and the
representation of the H-transform on the L, ,-spaces with any v € R and
1 < r < o are different in the following nine cases:

(I)a*=A=Re(p)=0; (2)a*=A=0, Re(p) <0; (3) a* =0, A>0;

(4) a* =0, A<O0; (5) ai >0, a3 > 0; (6) a7 >0, a3 = 0;

(7) a7 =0, a3 > 0; (8) a* >0, a] >0, a3 <0; (2.16)
(9)

while the invertibility of the H-transform is valid for a* = 0.

The corresponding results, giving £, »- and £, ,-theory of the H-transform,
are established in the above book by Kilbas and Saigo [7, Theorems 3.6-3.7]
and [7, Theorems 4.1-4.10], respectively, while the invertibility of such a trans-
form is presented in [7, Theorems 4.11-4.14]. We only note that the range
H(L, ,) of the H-transform (1.8) is characterized in terms of the following
transforms:

Erdelyi-Kober type fractional integration operators I§, ., , f and 12, f:

ga—ola+n)

(L8450 f) (2) = T 0/ (7 o) et et f(t)de (x> 0), (2.17)

o0

/(t" —a?)* o0 () dt (x> 0),  (2.18)

x

ox"

I'(a)

(1250 f) (x) =

defined for « € C (R(a) > 0), ¢ > 0 and n € C; and the modified Laplace
transform Ly o f:

(Liaf) ( / B~ HE fydt (x> 0), (2.19)
0

with kK € R (k # 0) and a € C; and the modified Hankel transform Hy ,, f:
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(i )@) = [ @020, (K@) ) f@)de @>0),  (220)

with k € R (k # 0) and n € C (R(n) > —3/2); and the elementary transform

(Mcf) () = 2 f(z) (¢€C). (2.21)

Note that when o = 1, (2.17) and (2.18) coincide with the so-called
Erdelyi-Kober operators [12, Section 18.1]:

xT
e "

o / (w— )" Y f(#) dt (x> 0), (2.22)

0

(I;;:af) (33) = (I(()l+;1,nf) (33) =

- a z" r a—ly—a—
(Kpaf) () = (1%0,,) (0) = s (6= 110 de (o> 0),
I'(a)
(2.23)
for k =1 and a = 0 (2.20) yields the classical Laplace transform
(Lf)(z) = (Liof) (z) = /e‘“f(t) dt (z>0). (2.24)
0
We shall use for 1 < r < oo the notation » and ~(r) as follows:
1 1 11
= =1 = p— 2.2
S+ =L ) —max |1, (2.29)

3. L, ,-Theory of &(a, 3),-Transform when a; > 0
(i=1,....p,p<n)and ; <0 (¢ =p+1,...,n)
Here we present £, ,-theory of the £(«, 3),-transform (1.1) in the case 1 <

p<n,a; >0(i=1,....,p)and a; <0 (i=p+1,...,n). By (2.2) and (1.9),
the constants (2.9)-(2.15) take the following forms:

n j2 n n
At =24 > o= iy A= a; p=n/2-3 B (3.1)
=1 =1 i=1

i=p+1
n p
a*{zl—i—Zai; aSzl—Zai;azo; 8=1; (3.2)
i=p+1 i=1
. R(B) R(5:)
R T . &9

By this calculation, all nine cases (1)—(9) in (2.16) are possible. In this
section we consider cases (1)—(4) in (2.16) when a* = 0.

From [8, Theorems 4.1 and 4.2] we deduce the first two results when
opi1+ ...+ =—land oy +... +a, =1.
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Theorem 1. Let p < n, a; >0 (i =1,...,p), ; <0 (i =p+1,...,n),
Bi € C(i=1,...,n) be such that apt1 + ... +an =—1, a1 +...+ap, =1
and R(G1+ ...+ 0n)=n/2, and let 0 <v < 1,1 <r < oo.

(a) The transform E(a, B), defined on L, 2 can be extended to L,, as an
element of [Lyr, L1-0r].

(b) If 1 < r <2, then the transform E(a, B),, is one-to-one on L, ,, and there
holds the equality

F(S)F(l s)
HF(ﬂz_az)

(ME(e, B)nf) (s) = (M) =s) (R(s) =1-v). (34)

(¢) If there holds the condition

S#M,..., s;éﬁn—’—l

aq Qp

(k,1=0,1,2,---) for R(s) =1—v, (3.5)

then the transform E(a, B), is one-to-one from L, onto Li_, ,:
5(04, ﬁ)n(cu,r) - 5171/77" (36)

(@A) Iffel,, andge L then there holds the relation

’
v, T

f(@) (E(a, B)ng) x)g(z) dz. (3.7
[y i [iees
(e)If fe€L,,, € C and h >0, then E(a, B)nf is given by
(€0, B)nf) (z) = hxlf(AH)/h%x(AJrl)/h/Hi 2 s
0
|: (_>\7 h)v(oal)v(ﬁp+17_ap+l)a'"7(ﬁn7_an)
X |xt
(07 ]-)a (]- - ﬁla 041), ceey (]- - /8}77 ap)7 (_)\ - ]-7 h’)

for Re(A) > (1 —v)h — 1, while

] F()dt (3.8)
(6@ 80 @) = —hat- 0 L [y
(07 1); (/Bp+17 _ap+1)7 SRR (671; _an)a (—>\, h)

dx n—p+2,p+2
X {xt
(—>\ — 1, h), (O, 1), (1 — ﬁl; 041), ceey (1 — ﬂpv O[p)

for Re(A) < (1 —v)h — 1.

] f(®)dt (3.9)
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Theorem 2. Let p < n, a; >0 (i =1,...,p), 0, <0 (i =p+1,...,n),
Bi € C(i=1,...,n) be such that apt1 + ... +an =—1, a1 +...+ap, =1
and R(BL+ ...+ 0n) >n/2, and let 0<v <1, 1 <7 < 0.

(a) The transform E(a, B), defined on L, 2 can be extended to L,, as an
element of [L,,, L1—y ] for all s > r such that 1/s > 1/r +n/2 —R(1 +
oot Bh).

(b) If 1 < r <2, then the transform E(«, B),, is one-to-one on L, ., and there
holds the equality (3.4).

(c) Let k > 0. If the condition (3.5) is satisfied, then £(«, B), is one-to-one
on L, , and there holds

E(0, B)n(Lyy) = T2 5200y 0y = I T2 (L1 ).
If the condition (3.5) is not satisfied, then E(o, B)n(Lyr) is a subset of

+..4+8,—n/2 +...4+8n—n/2
I TR (L) and IR TP (L),

(AIffelyrandge L, s withl<r<oo,l1<s<ooandl<1l/r+1/s<
R(B1+ ...+ Bn)+1—n/2, then the relation (3.7) holds.

(e)If f € L., X € Cand h > 0, then E(a, B)nf is given by in (3.8) for
R(A) > (1—v)h—1, while in (3.9) for R(\) < (1 —v)h — 1. Furthermore,
E(a, B)n is given by (1.9) and (2.6).

The next result follows from [8, Theorems 4.3 and 4.4].

Theorem 3. Letp <n, a; >0 (i=1,...,p)and o; <0 (i =p+1,...,n)

be such that2 —oq — ... —ap+apr1+...+ap=0and a1 + ... + o, # 0,

and let 0 < v < 1,1 <r < oo, and let B; € C(i=1,...,n) be such that

R(B1 -+ + ) — (a1 + -+ an) (1= 1) > () + (n — 1)/5.

(a) The transform E(a,B), defined on L,2 can be extended to L,
as an element of (L., L1y s] for all s with r < s < oo such that
S >RBL4...+8n)— (a1 4... )1 —v)+ (1 —n)/2)"" with 14
1

(b) If 1 < r <2, then the transform E(«, B),, is one-to-one on L, ., and there
holds the equality (3.4).

(c) Let A =aq+.. 4an, p=n/2—F1—...—Bn, andn = B1+.. . +8,—n/2—1,
R(n) > —1. If the condition (3.5) is satisfied, then the transform &(a, 3),
is one-to-one on L, ., and

E(, B)n(Loy) = (Mujat12Ham) (L1240 /a) - (3.10)

When the condition in (3.5) is not satisfied, then E(c, B)n(Ly,r) is a subset
of the right-hand side of (3.10).

(@Iffel,,andge Ly, 1 <s<oo,1/s+1/r>1and Re(1+ ...+

Bn)— (1 +...+an)(1—=v) > max[y(r),v(s)]+ (n—1)/2, then the relation
(3.7) holds.
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(e)Iffely,, \€eC,h>0andRe(B1+...+0n)— (1 +...+a,)(1—-v) >
v(r) + (n—1)/2, then E(a, B)n [ is given by equation (3.8) for R(N\) >
(1—v)h—1, while by (3.9) for R(\) < (1 —v)h— 1. If R(B1+ ...+ Bn) —
(a1 +...+an)(l —v)>n/2, then E(a, B)n f is given by (1.9) and (2.6).

4. L, ,-Theory of £(a, 3),-Transform when a; > 0
(i=1,....p,p<n)and ; <0 (¢=p+1,...,n).
Continuation.

Here we present £, , theory of £(a, §),~transform in cases (5)—(9) in (2.16),
when a* > 0. Next statement, following from [8, Theorem 4.5], presents the
L, r-theory of the transform &(a, §)p.

Theorem 4. Letp <n, a; >0 (i=1,...;p) and o; <0 (i =p+1,...,n)
be such that 2 —ay — ... —ap +apy1 + ...+, >0, and let 0 < v < 1,
1<r<s<oo.

(a) The transform E(a, ), defined on L, o can be extended to L, , as an
element of (L, r,L1—1s]. When 1 <r <2, then E(a, ), is a one-to-one
transform from L, . onto Li_, .

b)IffeLyrandg € L, o with 1/s+1/s =1, then the relation (3.7) holds.
Further five statements, following from [8, Theorems 4.6-4.9], characterize

the boundedness and the range of the £(«, 3),-transform in the above cases
(5)-(9), respectively.

Theorem 5. Letp<n,ozz>0(i—1 ,)anda1<0(z—p+1 ,n)

be such that a7 =1+ Z al>0anda2—1—2a1>0 and let 0 <v <1,
i=p+1 1=

l<r<oo,andletw=n/24+0a1+...4+0p—F1—...— Bn.

(a) If the condition in (3.5) is satisfied, or if 1 < r < 2 then the transform
E(a, By, is one-to-one on L, .

(b) If R(w) > 0 and the condition in (3.5) is valid, then
g(aaﬁ)n(cu,r) = (La’l‘,OLaE,—w/ag) (5171,77‘) . (41)

When the condition in (3.5) is not valid, E(a, B)n (L) is the subset of
the right-hand side of (4.1).

(c) If R(w) < 0 and the condition in (3.5) is satisfied, then
&, An(Ls) = (172 oLatoLazo) (L1vr).  (42)

When the condition in (3.5) is not valid, E(a, B)n (L) is the subset of
the right-hand side of (4.2).



Extended Generalized Mittag—Leffler Function 183

Theorem 6. Letp<n,o¢1>0(z_1 .p)anda; <0 (i=p+1,...,n) be

such that a] =1+ Z al>0and2al—l andlet0 <v <1,1<7r < o0,
i=p+1 =1

and let w = (n + )/2—51—...—,6’n.

(a) If the condition in (3.5) is satisfied, or if 1 < r < 2 then the transform
E(a, By, is one-to-one on L, .

(b) If R(w) > 0 and the condition in (3.5) is valid, then

8(a7ﬁ)n(‘£u,r) = (Lai‘,fw/af) (‘CI/,T’) . (43)
When the condition in (3.5) is not valid, E(a, B)n (L) is the subset of
the right-hand side of (4.3).
(c) If R(w) < 0 and the condition in (3.5) is satisfied, then

&, An(Lur) = (172, ar o Lag0) (Lur) - (4.4)

When the condition in (3.5) is not valid, E(a, B)n (L) is the subset of
the right-hand side of (4.3).

Theorem 7. Letp <n, a; >0 (i=1,...,p) and o; <0 (i =p+1,...,n)

n p
be such that > o = —landal =1—> «a; >0, and let 0 < v < 1,
i=p+1 i=1
l<r<oo,andletw=(Mn—-1)/2—01—...—Bp+a1+...+ .

(a) If the condition in (3.5) is satisfied, or if 1 < r < 2 then the transform
E(a, By, is one-to-one on L, .
(b) If R(w) > 0 and the condition in (3.5) is valid, then

8(a7ﬁ)n(‘£u,r) = (Lfag,ler/a;) (‘CI/,T’) . (45)
When the condition in (3.5) is not valid, E(a, 5)n (L) is the subset of
the right-hand side of (4.5).
(c) If R(w) < 0 and the condition in (3.5) is satisfied, then

E(e, B)n (L) = (10 s e %La;,l) (Lor) . (4.6)

When the condition in (3.5) is not valid, E(a, B)n (L) is the subset of
the right-hand side of (4.6).

Theorem 8. Letp<mn,a; >0(i=1,...,p) and a; <0 (i =p+1,...,n) be

such that a* =2 —a1—...—ap+apr1+...+a, >0,ai =1+ > «a; >0
i=p+1
P
and a3 =1—> 0; <0, andlet 0 <v<1,1<r<oo.
i=1

(a) If the condition in (3.5) is satisfied, or if 1 < r < 2 then the transform
E(a, By, is one-to-one on L, .
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(b) If the condition in (3.5) is valid, and let w,n,( € C be such that

* n+1
w:a77+61+---+6n_ 2 )

a*R(n) > y(r) +2a3(v = 1) +n/2 = R(B1 + ... + Bn);
R(n) >v—1; R(C) <1-v;

where (1) is given in (2.25), then

S(O@ﬂ)n(ﬁv,r) = (M%+%L*H—2a;,2a§(+w—lﬂd—a*,1/2+n— @ )
2

20
(AC%_H_%E),T). (4.7)
When the condition in (3.5) is not valid, E(a, B)n (L) is the subset of
the right-hand side of (4.7).
Theorem 9. Letp <n, o; >0 (i=1,...,p) anda; <0 (i =p+1,...,n) be
suchthata* =2 -1 —...—ap+app1+...+a, >0,ai =1+ > o <0
i=p+1
P
anday=1—> a; >0, andlet 0 <v<1,1<r<oo.
i=1
(a) If the condition in (3.5) is satisfied, or if 1 < r < 2 then the transform
E(a, By, is one-to-one on L, .
(b) Let w,n, ¢ € C be chosen as

n+1
w=an+ P+ + 8- -

a*R() > 1(r) — 205w + 02— R . Ba) + 3

i=1
R(n) > —v; R(() <v;
where (1) is given in (2.25). If the condition in (3.5) is satisfied, then

Ela, B)n(Lyyr) = (M,%,Qw Haar 207 ¢+w—1Lax 1729+ Zi‘)

a’l‘ 2
(Cl,y,m : 7‘) . (4.8)
2 2(1){

When the condition in (3.5) is not valid, E(c, B)n(Ly,r) is the subset of
the right-hand side of (4.8).

5. Inversion Formulas

In this section we present inversion formulas for £(c«, 3),,- transform (1.1) in

n P

the case when a* =2+ > a; — > «; = 0. Using the inversion for the H-
i=p+1 i=1

transform [8, (4.9.1) and (4.9.2)] and taking (2.6) and (3.2)-(3.3) into account,
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we deduce the inversion formulas of £(«, 3),- transform in the respective
forms:

d
f(ﬁ) _ hmlf()\Jrl)/h dxx()\Jrl)/hX
(_>\7 h)7 (]- - ﬁl + o, _ai)(p-‘rl,n)a (07 ]-)

(ﬂl — Qy, ai)(l,p)v (Ov 1)7 (_/\ -1, h)
x (E(e, B),,f) ()dt (5.1)

o0
p,n—p+l
X/Hn_p+27p+2 xt

or

fla) = —hat =00/ Lo n,
0o T (1 = Bi + i, —i) (p41,n), (0, 1), (A, h)
/H “prapte |2t
’ (=A=1,h), (Bi = i, 2i) 1., (0,1)
x (E(a, B),f) (W)t (5.2)
The conditions for the validity of the relations (5.1) and (5.2) will be different

in the cases when Z a; =0and Z a; # 0. The result in the first case follows

from |8, Theorems 4 11 and 4. 12]

Theorem 10. Let 1 <p<mn, o; >0 (i =1,.. )a1<0(z—p—|—l ,n),
Bi € Ci=1,...,n) and v € R be such that Zaz— Z az—2andlet
=1 i=p+1
0<V<1,1—min%<v<l— max %,and)\ec,h>0.
1<i<p i p+1<i<n i

(o) If Z a;(l1—v)— i R(Bi) =n/2 and if f € L, 2, then the relation (5.1)
i=1

holds for R(A\) > vh —1, while (5.2) holds for R(\) < vh — 1, respectively.

(b) If Z a; =0, R(B)=n/2 andif f € Ly, (1 <r <), then the relations

(5 1) and (5.2) are valid for R(\) > vh — 1 and for R(N\) < vh — 1,
respectively.

The conditions for the validity (5.1) and (5.2) in the case when Y a; #0
=1
follows from [8, Theorems 4.13 and 4.14].

Theorem 11. Let 1 <p <n, a; >0 (i =1,. )a1<0(2—p—|—1 \n),
Bi € C(i=1,...,n) and v € R be such that Zaz— Z o; = 2 and
i=1 i=p+1
let 0 < v <1, 1— min ﬁ <v<1l-— max %(ﬂ_i), and additionally
1<z<p @i p+1<i<n X

-l <(1-v) i E R(B;) < 52 —~(r), where y(r) is given in (2.25)

and A € C,h > O ff € Zw, (l<r< oo) then the inversion formulas (5.1)
and (5.2) hold for R(\) > vh — 1 and for R(\) < vh — 1, respectively.
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Remark 1. Taking p = n in Theorems 3,4,5,6,8 and 11, we deduce the cor-
responding result for £(a, §),-transform (1.1) in the case (A) in (2.6) when
a;>0(0G=1,...,n)and L = L_.

Remark 2. The result similar to those, given in Section 3-5, stay true for the
E(a, B)p-transform in the case (C) when 1 < p <n,a; <0 (i =1,...,p),

a; >0 (@ =p+1,...,n) and either > o; >0, L = L_ or >, a; <0,

i=1 i=1
L = L. Taking p = n, the corresponding result can be deduced for the
E(a, B)p-transform (1.1) in the case (D) in (2.6) when o; < 0 (i = 1,...,n)
and £ = L. See Remark 1 in this connection.

Acknowledgements

The present investigation was partly supported by the Belarusian Fundamen-
tal Research Fund (Project FO5MC-050).

References

[1] M.M. Dzhrbashyan. On integral transforms generated by generalized Mittag-
Leffler function. Izv. Akad. Nauk Armyan. SSR, Ser. Fiz.-Mat., 13(3), 21 — 63,
1960. (In Russian)

[2] M.M. Dzhrbashyan. Integral Transforms and Representations of Functions in
the Complez Domain. Nauka, Moscow, 1968. (Russian)

[3] M.M. Dzhrbashyan. Harmonic Analysis and Boundary Value Problems in the
Complex Domain. Operator Theory: Advances and Applications, volume 65.
Birkhauser Verlag, Basel, 1993.

[4] A. Erdelyi, W. Magnus, F. Oberhettinger and F.G. Tricomi. Higher Transcen-
dental functions, volume 2. McGraw-Hill, New York-Toronto-London, 1953.
Reprinted Krieger, Melbourne, Florida, 1981

[5] A. Erdelyi, W. Magnus, F. Oberhettinger and F.G. Tricomi. Higher Transcen-
dental Functions, volume 3. McGraw-Hill, New York-Toronto-London, 1955.
Reprinted Krieger, Melbourne, Florida, 1981

[6] S.B. Hadid and Y.F. Luchko. An operational metthod for solving fractional
differential equation of an arbitrary real order. Panamer. Math. J., 6(1), 57—
73, 1996.

[7] A.A. Kilbas and A.A. Koroleva. Generalised Mittag—Leffler function and its
extension. Tr. Inst. Mat. Minsk, 13(1), 43-52, 2005. (In Russian)

[8] A.A. Kilbas and M. Saigo. H -Transform. Theory and Applications. Chapman
and Hall/CRC, Boca Raton-London-New York-Washington, D.C., 2004.

[9] A.A.Kilbas and J.J. Trujilo. Differential equations of fractional order: methods,
results and problems. Appl. Anal., 78(1-2), 153-192, 2001.

[10] A.M. Mathai and R.K. Saxena. The H-Function with Applications in Statistics
and other Disciplines. Halsted Press, New York-London-Sydney, 1978.

[11] A.P. Prudnikov, Yu.A. Brychkov and O.I. Marichev. Integrals and Series, vol-
ume 8. More Special Functions. Gordon and Breach, New York, etc., 1990.

[12] S.G. Samko, A.A Kilbas and O.I. Marichev. Fractional Integrals and Deriva-
tives. Theory and Applications. Gordon and Breach, Yverdon, 1993.

[13] H.M. Srivastava, K.C Gupta and S.L. Goyal. The H-Function of One and Two
Variables with Applications, volume 6. South Asian Publishers, New-Delhi-
Madras, 1982.



