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Abstract. We consider the wave propagation process in a 2-dimensional material
structure composed of random oriented orthotropic crystals and analyse numerical
results for the diffraction problem and the problem of waves interaction with a free
boundary.
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1. Introduction

Modelling of short wave propagation process is of key importance for solution
of very different problems [2]. We mention only identification and recognition
of defects in solids [1, 3]. In paper [2] a model of a linearly elastic composite
medium consisting of a matrix containing a set of orthotropic crystals with
randomly oriented anisotropy axes was proposed and some numerical results
for the wave interaction with a free boundary were given.

In the present paper we use the model given in [2] and examine the waves
diffraction and waves interaction with a free boundary. Since equations of
the model are of the hyperbolic type there may occur waves caused by the
discretization in the computer modelling. As a test problem we examine the
one-dimensional model. We give the explicit formula for the solution of this
problem and solve it numerically.

The paper is organized as follows. In Section 2 the one-dimensional case is
considered. In Section 3 the formulation of the problems in two-dimensional
case is given. Numerical results are presented in Section 4. Section 5 concludes
the paper.
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2. The One-Dimensional Problem

The interaction of waves with a free boundary in one-dimensional case can be
described by the model

0%u 0%u
w: 2@, $6(0,1)7t>0,
ou _:U'(t)7 t< T,
Ox lz=0 0’ t> T, (21)
ou
% r=1 o 07
a_ =2 =
t=0 " 9t lt=0

Here we have the following coefficients

T
T <5 nE CLTL ) = (0) = u(T) = (T =0, [ u(ryar =0,

S| =

where the prime indicates differentiation. Define f(t) = b fg w(7)dr. The so-
lution of problem (2.1) is expressed by the formulas (see Fig. 1):

u(t,z) =0 inD0:{0<t<%},

2 - -2
u(t,z) =0 ianz{T—l— <t< x}, u(t,x)zf(t—i—gc—) in Dy,
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Figure 1. Sketch of the 1D domain for problem (2.1).

The diffraction problem is described by the model

2 2
% :bQ%, z € (0,1)U(L,d), t >0,
@ _ —/L(t), t< T,
oz |,_, 0, t>T,
% —o, (2.2)
r=d
ou
_ [}eou _
[u|$:1} N {b Ox w:l] 0
o =2 =
t=0 " Ot lt=0

Here the constant b = by if € [0,1), b = by if z € (1,d], p is the same as
in model (2.1) and [“‘x:J denotes a jump of u at the point of discontinuity
x = 1. The solution of problem (2.2) can be expressed by formulas (see Fig. 2):

1 —1
u(t,x) =0 inDO:{tgiforxglandt§—+m forle},
bl bl 2
9 _
u(t,x):f(t—f) inDlz{fgtg min(—x,T+£), a;§1},
bl b]_ bl bl

U(tw):f(t—%) + Z;ij(“r xlf) in D,

2 —
Dy ={(Z=L<t<T+ 1), 2 <1,
b1 by

1—=z 1
FECLIN Y
f(+ 0 b in D3

u(t,x) = i



164 P. Katauskis, V. Skakauskas

X2

Dy 7 M f; Q Q,

o

Figure 2. Sketch of the 1D domain Figure 3. Sketch for the 2D domain
for diffraction problem (2.2). of problem (3.1).

1 -1 1 -1 1 2d — 1 —
D3:{—+x Stﬁmin(T—i———i—x — + x),le},

bl b2 bl b2 ’bl bg
u(t,2) =0, inDy={T+ = <t< o<1},
1 1
bl —bg T —2 .
t, == (t )7 D7
ute) =g, I =) mDs
r 2—x 24z 2—x
D :{ (T —,—), i ( T , <1},
5 max + b b min by + b xr <
and so on. In what follows we use the function u(t) = —gsin®wt, ¢ = const,
T =27/w.

3. The 2-Dimensional Problem

Let us first examine the waves diffraction problem i.e. when waves propagate
in the rectangular composite plate 2 = 1 + (2 (see Fig. 3) with piece-wise
constant elasticity characteristics. Waves are generated by the given normal
and tangent strains on a small part (—be, be) of one side. The other sides are
assumed to be free and the displacement vector u and strains P;; and Piq
have to be continuous at the discontinuity line 1 = a. The model consists of
the equations

52U1 52U1 82u1 52u2
— =Aun—5—= + A= +(4 A

P o 1111 022 + A1212 923 + (A2211 + 1212)8;1015;102’ )
82’&2 32u1 82U2 82’&2 ’
— =(4 A A2io—— + Asooo——5-

P o (A2211 + 1212)69518;102 + A1212 0272 + A2222 022

t >0, (z1,z2) € 2 subject to the conditions
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—B(t,x2)cosa, 1 = —a, o = [—be,be], t <1,
Ouq 8u2 0, z1=—a, 3 €[-be,be], t >1,
A A
g +Amng e 0, 1= —a, 72 € [~b,b]\ [~be,be], t >0,

0, z1=d, 22 € [—b7 b]7 t >0,

duy  Ous —B(t,x2)sine, x1 = —a, x9 € [—be,be], t <1,
A1212( + ) =
Ory Oy 0, 1 = —a, xo € [~be,be], t > 1,
6u1 8u2
925 | 92, 0, z€dR\{n a, xo € [—be, bel}, (3.2)
8U1 3u2
Agpo1— + A =4+ -
22118 + Aogoo o1 =0, x b, x1 € (—a,d),

U1|t:0:’IL2|t:0:0, (xl,x2)€(27

Ouy _ Ous _
ot t—O_— —07 ($1,x2)€(27
Ouq Jug 0 b
[Ul] = [ } = [Auua + A22118u2] [A1212<8u; + 8—2?)} =0,

r1 =a, x2 € (=b,b).
Here p is the material density,

Aq111 = 0.983C1 111 + 2.91 - 10" *Cazo0 + 9.636 - 1073(2C 122 + 4C1212),
Aggar = 2.91-107*C1111 + 0.983C2902 + 9.636 - 1073(2C 129 + 4C1212),
Ago11 = 9.636 - 1073(C1111 + Cazen — 4C1912) + 0.983C 12, (3.3)
Ar212 = 9.636 - 1073(Ch111 + Caz02 — 2C1122) + 0.964C1 212,

Cii11 = _ B Chooiq = _ B
1111 =2,/ B> 2211 =020 E By
E
Ca222 = 2 Ci212 = Gho,

1 =129 E /By’

where (G135 signifies the shear modulus, F; and E» mean elasticity moduli, and
Vo1 is the Poisson coefficient. Coefficients p, G12, F1, Eo, and v»; are different
in 27 and (25. In what follows we use the function

B(t,x2) = nsin® wt((be)* — x%)g, 1 = const > 0.

Formulas (3.3) are obtained from the equations [2]
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e

Aqqnm = / f(e)ainajmasqakq do Cijksa q= ]-a 27
-0
e

2A10nm = / F(O)ainojm(asiare + asparr) dO Cijis,
)

11 = oy = cosf, 1o = —agq = sinb,

a3 =ao3 =agzy =az2 =0, az=1 0=

0 —1
f0) = e=0°/20° (2/6_I2/2‘72 dx) .
0

By using formulas

) D
t=Ti, x=L& up=Liy, T==",
w
E=Ey 10" =8 G =G-101=2
s2mm s?2mm

we get the dimensionless form of Egs. (3.1)

62u1 62u1 52u1 a2u2

at2 = f(Alllla—m% +A12128—$% + (A2211 +A1212)m)5 (3 4)
82uQ 8U1 82’&2 82uQ )
W = f((A2211 + A1212) m + AlQlQa—ﬁ% + A22228—x%)5

T2
with f = F . 1014. Here the constants A1111,A2222,A1212, and A2211 are
P

expressed by formulas (3.3) with Ey, Fs, and Gy replaced by E1, Es, and G132,
respectively. For simplicity the tilde is omitted in Eqgs. (3.4). The formulation
of the waves interaction with a free boundary follows from (3.1)—(3.4) by
setting d = a.

4. Numerical Results

We first solve the one-dimensional model. For solving of the problem (2.2) the
explicit difference scheme was applied (see [4], pp. 332-355 and p. 161) and
the following constants were used:

a=15 ¢=20, w=300, T=2r/w, b =20, by=5 and by = 30.

Numerical results are exhibited in Figs. 4 and 5. In Fig. 4 (by = 20, by = 5)
waves 1 and 4 exhibit the original waves, waves 2, 3 and 5 are reflected waves
and function w(t, z) is nonnegative. In Fig. 5 (b = 20, by = 30) waves 1 and
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Figure 4. The graph of u for problem Figure 5. The graph of u for problem
(2.2) with by = 20,b2 = 5. (2.2) with b1 = 20,b2 = 30.

2 are original waves while 3, 4 and 5 are reflected waves. For waves 3 and 4
function u(z,t) is nonpositive.
To get the numerical solution to problem (3.4), (3.2) we use the finite-
difference scheme [4]. Set
ty=kr, 0<k<M, 7=T/M,
x1;, = —a—+1ihy, 0<i< N, hlz(d+a)/N1, Nf:2a/h1,
Toj = —b+jha, 0<j < N, hy=2b/No.
Assume that ’ﬁ?j = ul(tk, x1i, J,'Qj) and éfj = UQ(tk, X1, xgj) and let

A =EAn, Ax =EA12, Az =E&(Aznr + Ar212), As = A,

The explicit difference scheme is used to approximate the differential problem

_k+1 —k —k —k —k —k
uijJr = b1 (U4 j — Uj5) — bia (g ; — U7y ;) + b1a(U; 4 2“ + Uy )
k —k =k k 1
+ bl4( Uig1,5+1 — 1'+1,j—1) - bl5(“z‘—1,j+1 - ui—l,j—l) + 2“ Ui5
—k _ _k k
uij+ = bl4( Wig1,j4+1— §+1,j—1) - b15(uf_1 g1 T Wi - 1)+ b21( Ujt1,5 uzg)
- b22(a1+1,j — Ujt1,5) + 523(1:1;6,;'—1 20 ; + A ) + 205 fJ g

The constants A; (i = 1,...,4) in £2; and (2, are different. Let A; and A;
be the A; values in (21 and {2, respectively. To take into account the continuity
conditions at the line z1 = a, z2 € (—b,b) we choose the coefficients b;; as
follows:

2 2 2

big = A bia =bis =A; ——

T
by =bia = Ay =
11 12 2 h% 3 4h1h2

T

1h_%7

_7? I

b21 :b22=A2 ﬁ’ b23=A4 ﬁ’ lf 1= 1 2 Nl?
1 1

AT + A b — ,i T 72 b :AngAg+ 72
2 2" 1h§’ 2p2 M 2 4dhihy

by =
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_ 72 AT + AT 72 _ 72 Tz

b15: BM’ bglz%h—%7 b22:A4 h—g, b23:A4 h—%, le:Nf,
2 A7+A+ 7_2 7_2 7_2

b= AT, bp= L LT o —AF T p = AT
11 1 h%’ 12 2 h%’ 13 2 hga 14 3 4h1h27

A T2 T2 AT + AT 72 2
b15:4iflh ) 521_14;]1_%7 5222%]1—%, 523:141]1_% if i = Ny +1,

2 2 2

bip=bro=Af 2, bis = A =, by =bys = Af ——
11 12 1 h%’ 13 2 h%’ 14 15 3 4h1h2’

7.2 7.2
@:@:@ﬁJm;ﬁﬁiM:M+mwM—L
1 2

Discretizing the boundary conditions we get

&k = =
ut. —uk. uy . —uak .
15 07 0,7+1 0,7—1 k
Ann———— + App11 —————— = p; cos
hy 2hs Hj co5 Qs
(4.1)
ak _ ﬁk ak _ ﬂk
0,j+1 0,j—1 1,5 0,3 ko
Ai212 + = us sina
2y I j
where
. B(ty,x25), ifty <1, and —be < zy < be,
Hj = .
0 otherwise;
Un,,j — UNy—1,5 UN, j4+1 — UNy -1
Apnn————= + Ason =0, (4.2)
h1 2ho
UN, j+1 — UNy j—1  UNy,j — UN —1,j—1 e
B Litl g T T ML ) i = 1,2, Np — 1,
s I
Uiy1,0 — Ui—1,0 Us,1 — Ui0
Ago1 ———F— + Apppr———= =0, (4.3)
2h1 ho
Us,1 — U0 i Uig1,0 — Ui—1,0 —0
ho 2h1 ’
Uit1,N, — Ui—1,N, Uj,Ny — Ui Ny—1
Agon1 + Aggpp———— =0, (4.4)
2 Iy

Ui Ny — Ui, Ny—1 " Uit1,Ny — Ui—1,N,
ho 2h1

=0, if i=1,2,...,N; — 1.

To determine

—k+1  =k+1 skl =k+l k41 =k+l k41 =k+1
Upo > Uo,0 5 Uo,Nyo Yo,No» UNy,00 UNy,00 UNy Ny UNy N,
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Figure 7. The graph of |u|. & = 0.3, &2 = 0.032, t = 2. (a) a = 0; (b) o = 7/6.

Figure 8. Isolines of |u|. &1 = 0.3, {2 = 0.032, t = 2. (a) a = 0; (b) o = 7/6.

we use values from kth and (k + 1)th time layers that are already determined:

& K & k41 ) — —k —kt1
Ug o + Ug,1 + UL o+ Uy y _py1 UoN, T U N, 1T UL N, T UL N,

u070 = 4 ) uO,NQ_ 4

The discretized initial conditions are the following
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-0 _ =0 _ 1 _ -0 =1 _ =0
Uy; =0, w5 =0, u; =uy, U;=uy, (4.5)

i=0,1,...,N1, 7=0,1,...,Na.

This allows us to solve four systems of linear equations (4.1), (4.2), (4.3)
and (4.4) separately and so essentially reduce CPU time. The matrix of each
such system consists of four differently located blocks. Two blocks are diagonal
matrixes and the other two ones are of two diagonal type.

The local approximation error for inner points of £, U2 is O(72+h3+h3).
The discrete boundary conditions are given with the accuracy O(h; + h3) at
the lines 71 = —a and 21 = d and O(h? + hy) at x5 = +b, respectively. At the
line 1 = a we have the local approximation of the second order with respect
to t and zo. The difference sheme is stable if the grid parameters k1, ho, and
7 satisfy the inequality

min(hl, hg)

Jomscra (47.47)

We performed several experiments with different values of 7, hy, and hy. The
results presented in this section are computed with

T =

a=05d=1,b=2, hy =0.01, hy = 0.02, 7 = 0.005.

The numerical experiments for different values of 7, hy, and hs show that the
numerical solution converges to the solution of problem (3.1) and (3.2).

In the 2-dimensional case we used the following constants:

T=10"7s, L=200mm, p=79-10"g/mm’ n=1000, e =0.1,
Fr =23, Ey=19, Gi2=08, & =03, & =0.032

and & = 0.2, & = 0.4. Numerical results of the waves diffraction problem
are presented in Figs. 6-9. In Fig. 6(a) the graph of |u| is presented for & =
0.2, & = 0.4, a = 0, and ¢ = 2. Fig. 6(b) represents the graph of |u| for
& =02, & =04, o =7/6, and t = 2. In both 6(a) and 6(b) figures waves 1
and 2 illustrate longitudinal waves (divu # 0) while waves 3 are transversal
(divu = 0). In Figs. 7(a) and 7(b) the graph of |u| is represented for ¢t = 2,
& =03, & =0.032, @ =0, and o = 7/6, respectively. Here waves 1 and
2 are longitudinal and waves 3 are transversal. Figures 6 and 7 show, that
support of wave in domain (22 decreases with £2/& decreasing. In Figs. 8(a)
and 8(b) the isolines of |u| are represented for data given in Figs. 7(a) and
7(b).

Figures 9(a)—(f) represent the dynamics of the waves interaction with the
free boundary (z1 = d = a) for a = 0,£ =0.032, and t = 4, 4.25, 4.5, 4.75, 5
and 5.25, respectively. In Figs. 9(d)—(f) we can see also the interaction of
waves moving forward and back.
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Figure 9. The graph of |u|. £ = 0.032, (a) t = 4; (b) ¢t = 4.25; (c) t = 4.5;
(d) t =4.75; (e) t = 5; (f) ¢t = 5.25.

5. Concluding Remarks

1. The diffraction and waves interaction with a free boundary problems are
examined numerically and analytically in a material structure composed
of random oriented orthotropic crystals. In the two-dimensional case only
the numerical solution is examined.

2. The dynamics of the longitudinal and transversal waves for both problems
are studied.

3. The waves increase (decrease) in the domains 25 and (1,d) with & < &
and bs < by (& > & and by > by), respectively, is obtained. Because of the
interference the waves increase at the free boundary in one-dimensional
problem is observed.
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In two-dimensional problem the waves interaction with the free boundary
is more complicated. Since waves are not plane, then different parts of
these waves reach the free boundary at the different moments. Some parts
of a wave move forward while the other ones move back. The interaction
of reflected waves and the other ones moving forward complicates the
analysis (see Figs. 9(d)—(f)).

5. In the symmetric case the wave dynamics on the line of symmetry is
similar to that of the one-dimensional problem.
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