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Abstract. A linearization method is used for identifying a nonlinear polynomial
compartmental system of (a + ) order. We bring back the nonlinear model to a
linear one for which a method, developed for Michaelis-Menten systems in a previous
paper, can be used.
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1. Introduction

In general the compartimental systems are used in fields very varied such
as medicine, biology, the chemistry. or the dynamics of the populations. Re-
cently, Gian Italo Bischi [1] gave an application to the economic systems. The
nonlinear systems occur particularly in dynamics of the populations. These
systems are governed by the following law: "the flow 5from compartment i to
compartment j is proportional to the expression 3w " (8 = 0if j designates
the system’s outside) (see [2, 3, 4]). The proportionality parameters k;; denote
the exchange parameters, o and (3 are positive constants characterizing the
compartmental system, and x; (¢) designates the quantity in compartment ¢
at time ¢. These k;; characterize the exchanges between compartments. This
law is said of (o + [3) order.

Our aim is to study an inverse problem consisting in identifying the ex-
change parameters k;;. As for Michaelis-Menten systems (see [7]) a lineariza-
tion method is used. The linear model obtained in the neighbourhood of the
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initial condition (a,0) gives a bad interpretation of the physical phenomenon.
A 7 temporization” is necessary for obtaining an exact interpretation of
the phenomenon. Furthermore the nonhomogeneity problem due to the initial
condition encountered in Michaelis-Menten systems implies that the deduced
linear system is not always real. The measures given by the practitioners will
be used in association with a temporization technique allowing to adapt the
results obtained for identification in linear compartmental systems.

2. Definitions and Notations

‘We consider the nonlinear bicompartmental system of polynomial type, namely
(Sn1), shown in Figure 1.

Figure 1. (Syrz): Nonlinear bicompartmental system.

The mass balance principle in each compartment leads to a nonlinear dif-
ferential equations (see [2]). The identification is done by exciting the system
with an instantaneous injection of substance quantity a in the compartment 1.
Thus we can say that the compartmental system is governed by the following
differential system with initial conditions :

@y (t) = ko1a§ () @] (t) — kioad (t) af () — krea (1),

2y (t) = kioaf (t) 24 (t) — kana§ (8) 2 (t), (2.1)
21 (0)=a, x2(0)=0.
Let us set:

X : [0, +oo[ — R?
t— XT(t) = (z1(t),22 ()
the state function associated to compartmental system (Syy), and
F: R? — R?,

(z1,22) — F(21,22) = (f1 (21,22), f2(21,72))
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the vectorial function defined by :
fi (z1,20) = kora§a] — kipafal — kiea,
B

fo (w1, 22) = kipafay — kaagay.

With these notations we can write the differential system (2.1) under the

vectorial form :
a (2:2)
X (0) = .
o (0)

3. Linearization of the Differential System

The partial derivatives of the function F' are defined as follows:

9f

1 _ _
Do (x1,22) = ﬂkglxg‘a,ﬁ — akyazf 1x§ — akjexy 1klea:f‘,
1
O0f1 _ 1
Oxa (z1,29) = kg xy ol — Bhigaal
dfa 1

_ a—1_p0 a, B~
I (1, 22) = akyox] ™ x5 — Bhorwya]
1

ofs
6952

(z1,22) = Bhiaafay " — akpas oy,

The function F' is differentiable in all point (x1,x2) such that z; # 0 and
29 # 0 for all @ > 0 and all beta > 0, and the Jacobian matrix is given by:

of 0f
Rz
nr T\ 0f 0f
dry Oy
For linearizing the system (2.2) we apply the Taylor formula in the neigh-
bourhood of the initial condition (a,0). Furthermore:

(DF),

i) F' is not differentiable in (a,0) if « < 1 or g < 1.

ii) fa>1 and S > 1 F is differentiable in (a,0). The Taylor formula
applied in neighbourhood of (a, 0) leads to:

’

X' (t) = F" (a,0) + (DF), o (¥1 — a,0)"

+ = (D*F) (a+ 6 (x —a),@xg)((ml—a,O)T)Q, 0<6<1

1
2
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The linear bicompartmental system approximating the nonlinear system

(Snr) is given as follows:

’

Then the explicit formulation is

X (t) = F"(a,0) + (DF), ) (1

—a,0)"

2y (t) = poa (t) — prazwy (t) — prews (1),
@y (1) = praw1 (t) — paraz (t),

xz1(0) =a, x2(0)=0.

This means that this linear bicompartmental system has the following

figure:

P2

Figure 2. (Sp): A linear bicompartmental system.

with of
p— 2 —
P12 = 83}‘1 (a70) Oa
0
b )
P21 = 8—fl (a,0) = ¢ —a%k2,
T2 U,ﬁkgl,

Ple = OZk/’leaa_l

if a>1 andg>1,
at =1,
if a=1 andf>1

p12 = 0 involves that there is no exchange between compartment 1 and 2.
Moreover if = 1 and § > 1, then the proposed model is not real because
p21 < 0. So the initial condition x5 (0) = 0 is not well adapted for applying

the method of temporization.

We suggest to introduce a ”temporization ”. It means that we "wait a
moment t*7 after injecting the quantity o« for permitting exchange in the
system (Snr), and we measure the compartment 1 at this time ¢*. Then for
t > t* the system (Snr) is governed by the following Cauchy problem:

2y () = korx§ (8) 2 () — kpoal (¢) 2 (8) — kyex (£), t > t7,
Ty () = kaoaf (£) 25 (t) — kara§ (£) 27 (1),
x1 (t%) =a*, xo(t*) =0.
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Generally, compartment 2 is not accessible to the measurement and thus b is
unknown. This differential system can be written under the vectorial form:

{X/ (t)=FT (X" (1)),

XT (t*) = (a*,b). (3.1)

F being a regular function, we can apply the Taylor formula to F' in the
neighbourhood of (a*,b). There exists a time ¢, sufficiently small such that
the system (3.1) can be approached by the linear differential system with
initial condition on the interval [t*,¢¢]:

X ()= FT (@b + (DF)p (m—anm=0) " t> 4
XT (#) = (a*,b), '
where :

FT (a,b) = (ka1b¥al — k12aV’ — kreal , 150507 — karb®al) .

The error due to the linearization will be studied in another paper.

4. Reduction of the System (3.2) to the Canonical Form

For applying results of [5, 6, 7] relating to the linear systems, it is necessary
to reduce the differential system (4.2) to the general form:

Y () =AY (1).

This form is said to be canonical form (A being a matrix of order 2). We are
going to operate in two steps:

First step:

Lemma 1. Suppose that the system (Snr) is open. If t*is chosen such that
ka1 b1 — Bhi2alb’ ! #£ 0,

then there exists a unique set (v,6) in R? such that:
(DF) 1) = F(a.,b).
(ax,b) 5 Ay

More precisely:

ax _(a=0) a? ka1 b
a aka1be=1al — BkipacbP—1
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Proof. Equation
OF) . (3) = Flan)

is a linear algebraic system according to (v,d), whose determinant, namely
Dl, is:

Dy = akiea? ™! (aka b ta? — Bkiaad’ ).
If the system is open (k1. # 0), then D; # 0 and consequently the previous
algebraic system has a unique solution:

Qs .

y=—=7"
(0%

We denote v = +* because it is calculable, and

o — ﬁ) af kglba

o
- — —.
a aka b tay — Bki2a2b8~1

Second step:

Previous Lemma permits to write the differential system (4.2) under the

form:
X' (t) = (DF) - ) (”;12(2)‘_‘2 j J ) . (4.1)

The change of the state variables
_ () _ [ (t) —a" s
Y(t)_(yz(t))_< o (t) —b+9 (4.2)
reduces system (4.2) to its canonical form:

/

Y (t) = (DF)(U,*J)) Y(t)7

YT () = (74, 6) .
Remark 1. The system (Syr) is approximated by the compartmental linear
model, namely (S¢1) shown in Figure 3, where

P12 = aklgaf_lbﬁ — ﬂk‘glbaaf_l, P21 = Oék'glba_laf — ﬁklgagbﬁ_l.

5. Choice of the Initial Condition and Induced Problem

The parameters k12, ko1 and the constants «, 5 characterize the system. But
the initial condition ¢* and b depend on the choice of the time ¢*. This involves
that the signs of p1> and po; are related to t*and are not known. To be sure
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P12

Figure 3. (Scr): Approximation linear model.

that the linear model (S¢ 1) corresponds to a measurable physical reality, p12
and p2; must be positive :

P12 > 0 Oék'lzaf — ﬂkzlbo‘_f’af > O,
< 8
p21 >0 akg b Bay — Bkisal > 0.

Two questions arise:

>0,
i) Do there exist values of a, and b such that {pm ?

p21 >0

1) Moreover, a, and b being tied, does it exist a couple (a*,b) satisfying

the condition, or in other words, does it exist a value ¢t* verifying this
condition?

A first answer is given by the following

Proposition 1. For all value of a. fized, 0 < a. < a , there exists b > 0 such
that:

p12 >0, po1 >0 if and only if a > S.

Proof. Set x = k1202 and y = kglbo"ﬁaf (x >0and y >0)
P12>0® ax — By >0,
p21 >0 ay — Bz > 0.

ar — >0
If o < 3 the solutions set { by

is empty.
ay — Bz >0 Py

is not empty.

— By >0
If & > f the solutions set oz = by
ay — Bz >0
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Next we should check if the values found above are suitable. We are going
to show that the choice of ¢* is compatible with one real system as soon as
the eigenvalues A} and \} obtained by the minimization of an error functional
(defined below) are negative.

The compartment 1 of the system (Snrz) is measured at instants ¢;, 1 <
j < m. Let us consider the functional:

Jiir,iy) (B15 83 M1, A2) = Z (z1 (t;) — (BreMb + 5%6’\2tj))2,

Jj=t1

where 1 <i; <m—1 and 2 < i, < m. Parameters 7, and 7, are chosen such
that:

min J(ilvip) (6}7 ﬁ%? )\17 )‘2)

is realized for A\; < 0 and A2 < 0. As matter of fact let us prove the following
proposition:

Proposition 2. Let A}, \ , 51, and (33* be the values such that:
min '](ihip) (6%aﬂ%a Alv)\Q) = J(ihip) ( %*a ;*a Tv)\;) :

If Xy <0, X5 <0, B #0 and 83* # 0, then p12 > 0, pa1 > 0.

Proof. Note the compartmental matrix of the linear model (S¢y)
—Pie — P12 P21
A= ‘ = detA= )\I)\S = P1eP21-
P12 —P21

But pie = akie, thus p1. > 0 and consequently p2; > 0.
It is proved in [3] that

()\T + ple) (A; +ple)
P1e

P12 = —
then, supposing that A5 < A], we get
P2 >0 & (=A]) <pre < (—A5).
According to [3] we have:

(61" #0, and 5" #0) = (=A}) <pre < (=X3).

This proves the result. W

Corollary 1. We can set t* = t;1.



Identification of a Nonlinear Polynomial Compartmental System 157

6. Identification of the Systems (Scr) and (Snr)

6.1. Identification of the system (Scr)

The following hypothesis for identification of the linear nonhomogeneous com-
partmental systems shown in Figure 4 are satisfied (see [7]): the system is

linear, open,
nonhomogeneous,
undeterminated,

satisfying initial conditions

{yl (O) = %7
y2 (0) = 4.

u new vari s=1t— n is unknown.
We use a new variable t —t* and ¢ is unkno

P12

P21

Figure 4. Linear nonhomogeneous bicompartmental system.

The excretion coefficient p;. is identified (see [3]) by

ST A 8 A7 - AL
2 ?

Ple = kle =

then the matrix of partial measures is completed as follows:
s=-(1+22)
Al

Pie *
= (14+5) o

and consequently the exchange parameters p12 and po; are identified by solving
a linear algebraic system giving identification (see Hebri, B. & Cherruault, Y.
2002a [6, 7]). Let:
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{Vé‘ = pra = k120210 — Bharb%al T,

vy = pa1 = ok 697 Lo — Bkipa2bP~t

be this solution, and set v{ = pi.. This notation will be used in the next
section.

6.2. Identification of the nonlinear system (Snr)

For obtaining an approximation of the non linear system (Sy7.), it suffices to

determine b.
1% Q2%
*2 1 1
B™ = 1% Q2%
2 P2

be the completude of the partial measures matriz of the algebraic masses as-
sociated to the model (Scr). We suppose that this system is identified. Then
the initial condition b is obtained by the relationship:

Proposition 3. Let

b= [(a+5) (-NBE — NE) + ] (6.1)

3

Proof. (Scr) being identified, the coefficients k12 and koy verify

* = P12 = ak12aa71bﬁ — Bko1b%al 671
v = po1 = ok b Yo — Blypa2bP~t.

We deduce that
bvi — a.vs = (a+ B) (karb®al — ki2a20°)
=(a+p)zy (0 )
= (a+ B) (=\1BF — \383).

In conclusion, we have

1
b= V—§ [(a + ) (—Xf - /\355*) + a,*VS] .

Theorem 1. Let (Snyz) be a nonlinear polynomial system, and (Scr) the
linear associated model. If « > [ an approzimation of the parameters of (Sn1.)
are given by

avsay + Prib

(a2 —32) a’b
avib+ fria.
(a2 — %) albe’

where v3 and v} are the coefficients of (Scr).

k1o =

21 —
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Proof. If a > 3 we can approach the nonlinear system (Sxy) by the real
linear model (S¢r) shown in Figure 3. This system is identified by

p12:1/§,
(Saig)
{P21=V§, e

b being determinated by the relationship (6.1). S is a linear algebraic system
according to (K12, k21) whose determinant namely Dgy)q is

Dgalg = (a® — %) (axb)* TPt £ 0.
Then S,1; admits a unique solution (ki2, k21) given by
avia, + Prib
(a? — 3?) aZbe’
avib+ Brias
(a2 — %) albe

k1o =

k21 =

7. Conclusion

The linear model associated to the nonlinear polynomial compartmental sys-
tem of (o + 3) order involves three important difficulties :

i) The initial condition at time ¢ = 0 does not permit to give a complete
information about the model (Snr). A ”temporization t*” is introduced
to suppress this difficulty.

ii) If this temporization is not modulated, the linear model is not necessarily
real. We have shown that the measures done on the compartment 1 permit
to choose one measure at instant t;, = t* such that we can develop a
linearization method as for the Michaelis-Menten system (see [3]).

iii) The nonhomogeneous condition x5 (t*) = b being unknown is identified
from measures done on compartment 1.

The error on the system’s coefficients due to the linearization will be de-
veloped in another paper.
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