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Abstract. In this paper we discuss numerical algorithms for solving the system
of nonlinear PDEs, arising in modelling of two-phase flows in porous media, as well
as the proper object oriented implementation of these algorithms. Global pressure
model for isothermal two-phase immiscible flow in porous media is considered in
this paper. Finite-volume method is used for the space discretization of the system
of PDEs. Different time stepping discretizations and linearization approaches are
discussed. The main concepts of the PDE software tool MfsolverC++ are given.
Numerical results for one realistic problem are presented.
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1. Introduction

Problems involving the multiphase flow, heat transfer, and multicomponent
mass transport in porous media arise in a broad spectrum of engineering disci-
plines. Important technological applications include the drying of porous solids
and soils, subsurface contamination and remediation, thermally enhanced oil
recovery, geothermal energy production, porous heat pipes, nuclear reactor
safety analysis, high-level secure radioactive waste repositories, paper ma-
chines.

Mathematical models for multiphase flow in porous media usually are for-
mulated at macroscopic level and they are obtained by volume averaging or



134 R. Čiegis, O. Iliev, V. Starikovičius, K. Steiner

homogenization methods from microscopic equations. The transport phenom-
ena are mathematically described by the basic principles of conservation for
each phase separately and by appropriate interfacial conditions between var-
ious phases.

The resulting models are difficult to solve due to large number of strongly
coupled nonlinear differential equations in the systems.

In this paper we solve numerically global pressure model for isothermal
two-phase immiscible flow problems. The model is described in Section 2. In
Section 3 we present the chosen finite volume discretizatization, and discuss
numerical difficulties connected to different approaches for time discretization
and for linearization of the governing system of PDEs. Section 4 describes
the concept of our software tool for the solution of multiphase flow problems,
called MfsolverC++, as well as the current state of the implementations. Re-
sults of computational experiments are presented in Section 5.

2. Global Pressure Model for Isothermal Two-Phase

Immiscible Flow in Porous Media

Traditionally multiphase flow in porous media is described by the macroscopic
models, in which various phases are considered as distinct fluids with individ-
ual thermodynamic and transport properties [6]. Macroscopic equations are
obtained by averaging microscopic equations over the representative elemen-
tary volume. The microscopic equations are the equations of mass, momentum
and energy conservation for all considered phases. The change of scale enables
to convert the real discontinuous medium to a fictitious continuous one. Each
macroscopic term is obtained by averaging microscopic ones. The averaging
(integration) is done by using various closing assumptions (homogeneity, pe-
riodic cell structure etc.) [35].

So, for isothermal two-phase immiscible flow in porous media we have 2
equations for mass conservation in each phase (k = 1, 2):

ε
∂ (ρksk)

∂t
+ ∇ · (ρkuk) = 0, (2.1)

where ε is the porosity of the porous medium, ρk is the phase density, sk is the
phase saturation denoting the volumetric fraction of the void space occupied
by phase k. Obviously we have

s1 + s2 = 1 .

uk is the macroscopic velocity vector (volume rate of flow through a unit
cross-sectional area of multiple fluids and porous medium). It is also called
bulk velocity. It is assumed that there are no external mass sources or sinks,
no mass transfer between phases, and the porous medium is not deformable.

It is also assumed that multiphase extension of Darcy’s law is valid for
conservation of phase momentum:
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uk = −K
krk

µk
(∇pk − ρkg) , (2.2)

where K is the absolute permeability tensor of the porous medium, krk is the
relative permeability of phase k, µk is the phase dynamic viscosity, pk is the
phase pressure, and g is the gravitational vector. The pressures of two phases
are related through the capillary pressure, pc = p2−p1. Relative permeability
functions and capillary pressure are assumed to be functions of the phase
saturations only

krk = krk(sk), pc = pc(s1). (2.3)

One of the assumptions in generalized Darcy’s law is that flow is slow, i.e.
inertial effects can be neglected.

The governing equations (2.1)–(2.2) can be mathematically manipulated
into several alternate forms with different choices of primary variables: satura-
tion–pressure, pressure–pressure, saturation–saturation formulations. We have
chosen global pressure model, sometimes also called fractional flow formula-
tion [7] or mixture model. Comparing to other formulations, equations in this
model are less coupled and entering quantities are smoother, because most of
them describe mixture properties: velocity, density, etc.

First we define the properties of multiphase mixture through the proper-
ties of its components (phases). The mixture density and velocity are defined,
respectively, as

ρ = ρ1s1 + ρ2s2, (2.4)

ρu = ρ1u1 + ρ2u2. (2.5)

The mixture kinematic viscosity is given by

ν =

(

kr1

ν1

+
kr2

ν2

)

−1

, (2.6)

where νk = µk/ρk is the kinematic viscosity of phase k. Then, the mobility of
each phase in the multiphase mixture is defined as

λk =
krk

νk
ν, (2.7)

In the literature, λk is often called the fractional flow function. We have the
following relation for these functions:

λ1 + λ2 = 1 .

The main idea of the model is an introduction of the global (mixture)
pressure. The mixture pressure is defined so that the following differential
equation holds:

∇p = λ1∇p1 + λ2∇p2 = ∇p1 + λ2∇pc .

It is not always possible to find such p. A necessary condition for this is
the interchangeability of partial derivatives:
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∂

∂xi

(

λ2

∂pc

∂xj

)

=
∂

∂xj

(

λ2

∂pc

∂xi

)

, i 6= j.

For our assumptions this condition is satisfied, and mixture pressure can
be defined explicitly as

p = p1 +

∫ s1

Sc

λ2(ξ)
dpc

dξ
dξ = p2 −

∫ s1

Sc

λ1(ξ)
dpc

dξ
dξ (2.8)

=
p1 + p2

2
+

1

2

∫ s1

Sc

(

λ2(ξ) − λ1(ξ)
)dpc

dξ
dξ,

where Sc is obtained from the equation pc(Sc) = 0.
Adding the phase mass conservation equations (2.1) we obtain the conti-

nuity equation for the mixture:

ε
∂ρ

∂t
+ ∇ · (ρu) = 0. (2.9)

Multiplying equations (2.2) by corresponding densities and summing them
up, we obtain Darcy’s law for the mixture:

ρu = −K

ν
(∇p − (λ1ρ1 + λ2ρ2)g) . (2.10)

Substituting (2.10) into (2.9) we get

ε
∂ρ

∂t
−∇ ·

(

K

ν

(

∇p − (λ1ρ1 + λ2ρ2) g
)

)

= 0 . (2.11)

Obtained equation is sometimes called pressure equation and is used to
find global (mixture) pressure p. The mixture kinematic viscosity ν is positive.
The absolute permeability tensor K of porous medium is positive-definite, so
is K/ν. Consequently, it follows from (2.11) that the pressure equation is
elliptic (for known ρ).

The diffusive mass flux of phase k within the multiphase mixture is defined
as

jk = ρkuk − λkρu, (2.12)

or alternatively,
ρkuk = jk + λkρu. (2.13)

As a consequence we get that

j1 + j2 = 0.

Substituting the momentum equations for the first phase (2.2) and for the
mixture (2.10) into equation (2.12), the diffusive mass flux j1 can be expressed
as follows:

j1 =
Kλ1λ2

ν

(

∇pc + (ρ1 − ρ2)g
)

. (2.14)



Numerical Algorithms for Multiphase Flows in Porous Media 137

Substituting equations (2.13) with k = 1 and (2.14) into mass conservation
equation of the first phase (2.1), we obtain

ε
∂ (ρ1s1)

∂t
+ ∇ · (ρuλ1) = −∇ ·

(Kλ1λ2

ν

(

∇pc + (ρ1 − ρ2)g
)

)

. (2.15)

Equation (2.15) is called a saturation equation. It is used to find the sa-
turation s1. Note that dpc/ds1 < 0 by the property of capillary pressure.
Hence if K is positive-definite, then (2.15) is a degenerate parabolic equation.
The degeneracy is caused by the fact that fractional mobilities λ1 and λ2 can
become zero. When the capillary forces are small, saturation equation (2.15)
is advection dominated. It is purely hyperbolic in the absence of the diffusive
forces.

The saturation equation (2.15) in conjunction with the pressure equa-
tion (2.11) and the Darcy law (2.10) makes up a full system of equations for
unknowns p, u, and s1:



































ε
∂ρ

∂t
−∇ ·

(

K

ν

(

∇p − (λ1ρ1 + λ2ρ2)g
)

)

= 0 ,

ρu = −K

ν

(

∇p − (λ1ρ1 + λ2ρ2)g
)

,

ε
∂ (ρ1s1)

∂t
+ ∇ · (ρuλ1) = −∇ ·

(Kλ1λ2

ν

(

∇pc + (ρ1 − ρ2)g
)

)

.

(2.16)

The system is completed by the constitutive relations (2.3). Equations are
defined in Ω, which is assumed to be a polyhedral domain. Both, Dirichlet
and full flux (or Neumann) type boundary conditions can be specified on the
boundary ∂Ω of the region.

This system can be used to model isothermal two-phase immiscible fluid
flow in porous media, when the phase compositions are of no importance and
molecular diffusion and hydraulic dispersion effects can be neglected.

3. Numerical Algorithms

The major numerical difficulties for problems arising in the simulation of
processes in porous media are identified by Ewing [14] and Helmig [17] (see
also the dissertation of Bastian [4]). They deal with

• solution of convection dominated parabolic problems,
• time–stepping algorithms.

Many problems describing multi-phase flows in porous media are convec-
tion dominated parabolic problems. When capillary forces are equal to zero
the saturation equation in (2.16) becomes hyperbolic. Sharp fronts of solu-
tions appear often in various applications. They should be resolved accurately
by discrete schemes.

It is also very important to preserve the monotonicity of the solutions.
Here we should balance between two possibilities. Upwind approximations
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are monotone, but the approximation is only first order accurate. Centered
differences are second order accurate but can yield oscillatory approximations
if the solution is not smooth enough.

First order upwind discretizations are investigated in [4, 10, 17, 25]. A good
review of upwind methods for conservation laws, including also a posteriori
error estimates for upwind finite volume schemes is done by Kröner [21, 22].

Recently Tadmor et al. have proposed non-oscillatory central schemes for
one-dimensional and multi-dimensional hyperbolic conservation laws [20, 19,
27], see also [23]. The main advantages of the proposed central schemes are the
high resolution, due to the smaller amount of the numerical dissipation, and
the simplicity. There are no Riemann solvers and characteristic decomposition
involved. At the same time, the developed schemes have an upwind nature,
since they respect the directions of wave propagation by measuring the one-
sided local speeds. For some cases of schemes even the Jacobians associated
with the problem are not required for the computations. The time integration
is done by using the explicit predictor–corrector algorithm. Using similar ideas
Balaguer and Conde proposed the fourth-order nonoscillatory upwind and
central schemes for discretization of hyperbolic conservation laws [3].

In many papers splitting and decomposition methods are used to construct
computationally efficient numerical algorithms:

a) Dimensional splitting is an effective method for solving multidimen-
sional problems by constructing the integration algorithm from one-dimensio-
nal subproblems – one dimension at a time (see, e.g., [13, 25] or a classical
book of Richtmayer and Morton [31]). In the context of nonlinear conservation
laws this method is investigated by Crandal and Majda [12]. They proved that
dimensional splitting encounters several limitations when applied for solving
conservation laws.

b) Splitting in physical processes consists in solving separately a system
of conservation laws (e.g. by applying an explicit scheme) and stiff diffusion
and reaction problems (by using special implicit algorithms). Different time
steps can be used for integration of each subproblem (see, e.g., [2]).

c) Local characteristic decomposition is used for the accurate resolution
of complicated structure of of solutions. The development of such methods
started from the Godunov method, and now a large number of special classes
of methods, e.g. ENO, WENO algorithms, are proposed (see, e.g. [25, 26,
30]). While this decomposition increases the computational cost, it controls
spurious oscillations when the order of accuracy is high.

Our goal is to build a universal tool for solving a wide variety of problems of
multiphase flows in porous media. Thus we have decided to start with not the
most complicated but flexible and robust approximations. We try to avoid
the time–consuming computation of approximate Riemann solvers and the
related characteristic decompositions. Since dimensional splitting and splitting
in physical processes also introduce numerical and non-physical errors, we
avoid splitting also.



Numerical Algorithms for Multiphase Flows in Porous Media 139

3.1. Finite volume discretization

We discretize equations (2.16) on structured nonuniform grids. A 2D space Ω
is used as an example in this section. We have a set of vertices:

Vh = {vij = (x1i, x2j), 0 ≤ i ≤ Ni, 0 ≤ j ≤ Nj , }

where:
x1,i = x1,i−1 + h1,i, x2,j = x2,j−1 + h2,j.

The grid Vh defines a structured mesh Eh, which covers the region Ω:

Eh = {eij , 1 ≤ i ≤ Ni, 1 ≤ j ≤ Nj}.

Elements eij of the mesh are called cells or control volumes (thus, in fact
we define a dual mesh in the terminology of [4]). In 2D we get quadrilateral
elements. These elements can be cell-centered or vertex-centered. Our scheme
is based on cell-centered mesh, and these vertices make a primary grid

Ωh = {Xij , 1 ≤ i ≤ Ni, 1 ≤ j ≤ Nj}.

For boundary elements, one or more faces of which belong to the boundary
∂Ω, the vertices are taken on the boundary. Let denote:

h1,i+1/2 = Xi+1,j − Xij , h2,j+1/2 = Xi,j+1 − Xij .

Based on the given grid we can define a finite dimensional function space
of piecewise linear functions:

Wh = {U(x) : U(x) =

N1
∑

i=1

N2
∑

j=1

Uijϕij(x)}, (3.1)

where ϕij(x) are the usual nodal basis functions.
We describe the finite-volume scheme for the saturation equation, since the

pressure equation is approximated in a similar way. Integrating the saturation
equation (2.16) over the control element e ∈ Eh and applying the divergence
theorem, we obtain

∫

e

ε
∂ (ρ1s1)

∂t
dx +

∫

∂e

(

ρuλ1 +
Kλ1λ2

ν

(

∇pc + (ρ1 − ρ2) g
)

)

· n ds = 0.

The numerical diffusion flux over control element face is computed by using
harmonic or arithmetic average of the diffusion coefficient. For example, in
2D case taking only one part of the element interface we get the following
numerical diffusion flux:

∫

∂ei+1/2,j

Kλ1λ2

ν
∇pc · n ds ≈ h2j

(Kλ1λ2

ν

)

i+1/2,j

pc(Si+1,j) − pc(Sij)

h1,i+1/2

.
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The evaluation of the advective part of the flux is done by using the fully
upwinding method

∫

∂ei+1/2,j

ρuλ1(S) ·n ds ≈ h2j (ρu1)i+1/2,j ·
{

λ1(Sij), if ρu1,i+1/2,jλ
′

1(Sij) ≥ 0,

λ(Si+1,j), else.

Fully upwinding discretization of the advective flux leads to positive diagonal
and negative off-diagonal entries in the matrix obtained after linearization of
nonlinear discrete equations by the Newton method and the discrete solution
obeys a discrete maximum principle.

The drawback of such approximation is that artificial (numerical) diffusion
is introduced. It can be split into two components: one along the streamline
and a second component perpendicular to the streamline [17]. The second
component exists only for multi – dimensional problems. A multidimensional-
upwind method of first order is considered in [17], which try to reduce the grid
orientation effects by taking into account the direction of the velocity field.
Our strategy is to reduce the approximation error by decreasing the mesh
step, since the obtained large systems of equations can be solved efficiently
with parallel computers. For very fine mesh central differencing can be used
also.

In our tool for 1D problems we have also implemented an explicit higher
order TVD approximation of the advection flux, when the central difference
approximation is combined with the upwind approximation by using the min-
mod limiter. Let consider the case, when ρu1,i+1/2,jλ

′

1(Sij) ≥ 0, then the
advection flux is approximated as follows

∫

∂ei+1/2,j

ρuλ1(S) · n ds ≈ h2j (ρu1)i+1/2,jλ1(Si+1/2,j),

Si+1/2,j = Sij +
hi+1/2,j

2
minmod

(Si+1,j − Sij

hi+1/2,j
,
Sij − Si−1,j

hi−1/2,j

)

,

where the limiter is defined by

minmod(a, b) =















a, if ab > 0, and |a| ≤ |b|,
b, if ab > 0, and |b| ≤ |a|,
0, if ab < 0.

After discretization the mass is conserved locally in each element and there-
fore the discrete problem satisfies the mass conservation property in the whole
region Ω.

3.2. Time–stepping algorithms

After approximation of space derivatives in system (2.16) a large system of
nonstationary nonlinear DEs is obtained
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Lh(S)P (t) = Fp ,

dS(t)

dt
= Ch(S, P ) + Dh(S) + Fs .

(3.2)

Here the first equation approximates the global pressure equation, Ch(S, P )
denotes the convection part and Dh(S, P ) the diffusion part of the semi–discre-
te saturation equation. We consider incompressible case. Let denote saturation
and pressure values at time tn by Sn and Pn, respectively.

The aim of time–stepping algorithms is to balance the stability and robust-
ness of the integration algorithm with computational efficiency. The one way
is to use a some kind of segregated solution procedure. With this approach
the new pressure field Pn+1 is computed first from

Lh(Sn)Pn+1 = Fn
p , (3.3)

which is a linear elliptic equation in P for a given saturation at previous
time level tn. Next, saturation at time level tn+1 is computed with a velocity
field obtained from the new pressure field. The most simple way is to use the
forward Euler scheme:

Sn+1 − Sn

τ
= Ch(Sn, Pn+1) + Dh(Sn) + Fn

s . (3.4)

This time–stepping procedure is named IMPES (for implicit pressure and
explicit saturation). It was originally developed by Sheldon et al. [33] and
Stone and Garder [34] for solving partial differential coupled system for two–
phase flow in porous medium (see also [4, 17]). Due to the explicitness of
the scheme for saturation equation IMPES is stable only when time steps
are sufficiently small. An improved IMPES method which utilizes an adaptive
control strategy for selection of time step is proposed in [9]. The stability of
IMPES scheme for solving a three–phase flow problem is investigated in [11].

For many applications the strongest restriction on time step is due the
diffusion part of saturation equation. The following implicit–explicit modifi-
cation of (3.4) is used in some papers (see, e.g. [2]):

Sn+1 − Sn

τ
= Ch(Sn, Pn+1) + Dh(Sn+1) + Fn+1

s , (3.5)

which consists of applying an explicit discretization for the advection term and
an implicit discretization for the diffusion and source terms. We note that the
approximation of different terms on different time levels leads to truncation
errors similar to additive scheme case. In fact scheme (3.5) is equivalent to
the following splitting scheme















Sn+1/2 − Sn

τ
= Ch(Sn, Pn+1) ,

Sn+1 − Sn+1/2

τ
= Dh(Sn+1) + Fn+1

s ,
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but the additive scheme is more flexible, since different time steps can be used
for integration of each subproblem.

The next step to increase the stability of the discrete scheme is to use
backward Euler (or more generally an implicit) integration method for the
saturation equation:

Sn+1 − Sn

τ
= Ch(Sn+1, Pn+1) + Dh(Sn+1) + Fn+1

s . (3.6)

At each time level we get a nonlinear elliptic equation with advection–
dominated space operator. It can be solved by some iterative procedure, e.g.
the Newton method. The whole time–stepping procedure (3.3), (3.6) is named
IMPIMS.

Another way is to use the coupled schemes. In our case, the fully im-
plicit/fully coupled (FIFC) scheme gives the system











Lh(Sn+1)Pn+1 = Fn+1
p ,

Sn+1 − Sn

τ
= Ch(Sn+1, Pn+1) + Dh(Sn+1, Pn+1) + Fn+1

s ,
(3.7)

when both equations are solved simultaneously. The FIFC approach is usually
selected for a maximum of robustness and stability. However, it can be very
expensive computationally.

Our goal is to have a tool working with both: segregated and coupled
solvers, to be able to choose the best for the specific problem. Currently, the
IMPIMS type iterative algorithm is implemented in our tool with additional
"k"-iterations between separate equation solvers at each time level:











Lh(Sn+1,k)Pn+1,k+1 = Fn+1,k
p ,

Sn+1,k+1 − Sn

τ
= Ch(Sn+1,k+1, Pn+1,k+1) + Dh(Sn+1,k+1) + Fn+1,k+1

s .

(3.8)
An quasi-Newton method is used to solve the nonlinear saturation equation.
Let us write the diffusion term as

Dh(S) = ∇h ·
(

K(S)∇hPc(S)
)

.

Let Sm = Sn+1,k+1,m denote the m-th iteration of quasi-Newton method.
Then the next iterative approximation is defined as

Sm+1 = Sm + Sm
∆ ,

where Sm
∆ satisfies the following equation:

Sm
∆

τ
= ∂Ch(Sm, Pn+1,k+1)Sm

∆ + ∇h ·
(

K(Sm)P ′

c(S
m)∇hSm

∆

)

+ Rm ,

Rm = −Sm − Sn

τ
+ Ch(Sm, Pn+1,k+1) + ∇h ·

(

K(Sm)∇hPc(S
m)

)

+ Fs(S
m) .
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4. MfsolverC++: A Tool for Computations

Recently, it becomes very popular in the scientific computing to exploit the
object-oriented programming (OOP) techniques. This allows developers to
reduce the time spent on the programming and debugging and makes all
implementation aspects cleaner and simpler.

We also use OOP in the design and implementation of our software tool
MfsolverC++ for computations of multiphase flows in porous media. We want
to have a flexible set of efficient C++ modules to reduce the overhead for
creation of different solvers for different schemes and problems.

Implementation of the solver for the solution of isothermal two-phase im-
miscible flow problems using global pressure model is shown in Figure 1. For
this and other segregated solvers we use strategy proposed in [24] and used
in Diffpack software library. According to it, solvers for the systems of PDEs
are built by merging together the independent solvers for the alone-standing
equations that enter the system.

Buckley-Leverett McWhorter

CommonRel

Manager

PressureM

Pressure

. . .

SaturationM

Saturation

LinEqSolver

TimePrm

GridFD

Figure 1. Design of the PDE system solver with relations between solver classes,
manager and pool of common relations. Solid arrows indicate inheritance ("is-a" re-
lationship, with arrows pointing from subclass to base class). Dashed arrows indicate
pointer ("has-a" relationship).

Class Pressure and his children are independent solvers of pressure equa-
tion (2.11). Class Saturation and his children are independent solvers of satu-
ration equation (2.15). Equations become coupled into the system through the
coefficients. In our PDE solvers, these coefficients, including the source, initial
and boundary conditions functions, are represented by virtual functions. Sub-
classes of PDE solvers override these functions and implement the physically
relevant versions, when the coefficients are coupled to other unknown fields in
the PDE system. All these functions are often built of a common set of rela-
tions (constitutive relationships, model definitions, etc.). Therefore, they are
collected in class hierarchies and accessed from PDE solvers through a base
class CommonRel interface (pointer). Note that constitutive relationships can
be easily changed without affecting the code in PDE solvers.

A class Manager acts as the solver class for the whole PDEs system and
manages the whole solution of the given problem. This class contains two way
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pointers to the subclasses for solving the pressure and saturation equations,
PressureM and SaturationM, respectively, which enable the coupling by over-
riding the virtual functions of base classes with the functions from common
relation hierarchy. The manager is also responsible for creating a space grid
and time discretization. It allocates a common linear system and solver object,
and distributes all these data to the PDE solver classes.

It is clear that segregated solvers have "implementational" advantage over
coupled solvers. They are easier to implement, flexible and naturally extensible
if the differential model is extended by additional PDEs.

Next we review very briefly some similar projects. First we mention a
general PDE software tool Diffpack, which is an object oriented development
framework for the solution PDE. It is a commercial product and many appli-
cation examples are described in [24].

The toolbox UG is a framework for unstructured grid computations. Devel-
opment of UG started in 1990 at the University of Heidelberg and proceeded
at the University of Stuttgart from 1994. It is a flexible software tool for the
numerical solution of partial differential equations on unstructured meshes in
two and three space dimensions using multigrid methods.

A number of applications of this tool for computations of complex fluid
flows in porous media are described in [5, 17]. For the time discretization either
backward Euler, Crank-Nicholson or BDF(2) are used. The fully implicit/fully
coupled time stepping strategy is selected for a maximum of robustness and
stability. In UG the Newton method is used to solve large systems of nonlinear
algebraic equations at each time step. The linear systems arising within the
Newton method are solved with a multigrid method.

TOUGH2 is a general-purpose numerical simulation program for multi-
phase fluid and heat flow in porous and fractured media [29]. It is developed at
Lawrence Berkeley National Laboratory and is widely used for computations
on unstructured meshes (see e.g [28]).

In TOUGH2 code various strategies are implemented. In order to take
into account the hyperbolic nature of the saturation equation very accurate
explicit time–stepping algorithm TOUGH2-EOS3f with front tracking is used.

5. Computational Experiments

In this section we consider the injection process of carbone dioxide (CO2)
into saline aquifers. Here an aqueous phase is displaced by a less dense and
less viscous gas phase [28]. It is well known that immiscible displacement of a
fluid by a less viscous one leads to the creation of fingers of low viscosity fluid
penetrating the high viscosity fluid (see [18, 32]). On simulation level such
phenomena arises due instabilities of macroscopic equations when the frontal
mobility ratio is grater than one [4]. The appearance of finger–like structures
can be triggered by

• numerical round-off errors,
• introducing a mild random variations of the permeability field.
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We will note one more interesting aspect of this test problem (see [4, 15]).
The phenomenon of viscous fingering comes from instabilities on microscopic
level which are not modelled by the macroscopic equations, obtained after
averaging process. Thus we can test a possibility to represent effects from
smaller scale in a model on a larger scale. Numerical aspects of upscaling in
simulation of flow porous media are investigated in [1, 8, 16].

The parameters of the model were taken from [28]. The capillary effects
were assumed to be negligible. Then in fact the problem reduces to the Buck-
ley - Leverett equation. Exactly this formulation was used in [28]. We de-
scribe the given problem in global pressure formulation and use a developed
MfsolverC++ tool. The most important coefficients are the relative permeabil-
ity functions, which define the fractional flow function. The liquid is described
by the van Genuchten function

krl =
√

S∗

(

1 −
(

1 − (S∗)1/m
)m

)2

, S∗ =
Sl − Slr

1 − Slr
,

and the gas is described by the Brooks-Corey function:

krg = (1 − Ŝ)2(1 − Ŝ2), Ŝ =
Sl − Slr

1 − Slr − Sgr
.

For CO2 and water the viscosity was taken equal to µg = 4 · 10−5 and µl =
7.5 · 10−4, respectively. The relative permeability parameters were defined as
Slr = 0.25, Sgr = 0.05, m = 0.85.

For the validation of the numerical discretizations and algorithms we solved
one-dimensional case of this problem. Then a quasi-analytical solution is
known (see [4, 17]) and thus it is possible to investigate the convergence of the
numerical solution to the exact solution and to determine the experimental
order of convergence.

The domain is discretized with N elements. The Lp-norms of the error in
the saturation variable,

‖sg − Sgh‖Lp =
(

∫

Ω

|sg − Sgh|p
)1/p

,

are computed for p = 1, 2. The convergence rate r is determined as

r = log
( ‖sg − Sgh‖Lp

‖sg − Sg2h‖Lp

)

/ log
1

2
.

Table 1 presents the error norms and the convergence rates for different num-
bers of the cells.

The results in table show that the experimental convergence rates are not
reaching the optimal approximation orders of a step function with a linear
spline, which are equal to O(h) in the L1-norm and O(h1/2) in the L2-norm.

The fingers were triggered by a random permeability field. We modified the
permeability in the order of 5 %. It is well-known that the upwind discretiza-
tion introduces a numerical diffusion, in order to reduce it the computations
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Table 1. Experimental order of convergence for the 1D problem.

N error L1 rate L1 error L2 rate L2

65 0.1366 0.707 0.1023 0.391
129 0.0854 0.676 0.0786 0.380
257 0.0554 0.626 0.0605 0.377
513 0.0377 0.554 0.0466 0.378
1025 0.0274 0.463 0.0356 0.386

were done on very fine grids. Figure 2 shows the distribution of the gas satu-
ration for one case of parameters. We have not investigated the convergence
of the solution under grid refinement.
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Figure 2. Distribution of gas saturation. Viscous fingers are triggered by the modi-
fied permeability field.
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