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Abstract. In this paper the differential properties of Shannon wavelets are inves-
tigated. The connection coefficients of Shannon wavelets are explicitly computed
with a finite formula up to any order.
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1. Introduction

In some previous papers [2, 3, 4, 11, 13|, it has been shown that in order
to study the evolution of solitary wave profiles it is expedient to make use
of wavelets with finite support and analytically defined. Complex harmonic
wavelets [14] were applied to the solution of evolution problems [2, 3, 4, 13]. In
particular, in [13] the solution of the Burgers equation was given by using the
connection coefficients for periodised harmonic wavelets. This method shortly
consists in the Galerkin-Petrov numerical solution of a partial differential
system (see e.g. [7, 8]), so that the connection coefficients are the projection of
the various order derivatives of the basis functions along with the orthonormal
wavelet basis. By using the Galerkin-Petrov method in an orthonormal basis
the connection coefficients (also called refinable integrals) follow from the
scalar product of the basis functions with their derivatives (see e.g. [10]).

Harmonic wavelets are complex functions and band-limited in the Fourier
domain [1, 5, 11, 12, 14], so that they can be used to study frequency changes
as well as oscillations in a small range time interval. However, in practical real
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problems, it seems to be more natural to make use of real wavelet functions.
In particular, Shannon wavelets, which are derived from the real part of the
harmonic wavelets, are a family of real functions. Their connection coefficients
will be explicitly computed and it will be shown that they fulfill some recursive
formulas, thus making an easy computation up to any order.

In general the computation of the connection coefficients seems to be a
difficult task for two reasons: first, the most known (and used) wavelets are
not functionally defined by a finite formula and, second, even in presence of
a simple formula defining the wavelet family, such as the Daubechies family
[9], there does not exist a simple expression for the corresponding connection
coefficients [11]. Moreover, except for the first and second derivative, there
were not explicit formulas for higher derivatives (for the connection coefficients
of harmonic wavelets see [2, 3, 6]).

Although the investigation of non-orthonormal wavelet bases (and cor-
responding connection coefficients) would be a more interesting problem as
well as the numerical investigation of PDE solution by wavelet method [6]
(with special treatment of boundary conditions), in the following we will fo-
cus only on the connection coefficients of the Shannon wavelet, by giving for
the first time a finite formula for their computation. It should be noticed that
the Shannon connection coefficients can be easily defined but their explicit
values usually require lengthy computations. Only by using a computer alge-
bra symbolic system it was possible to obtain a finite formula for calculating
their numerical values. In fact, this formula is not evident a priori but it can
be summarized only after the computation of a large amount of numerical
sequence.

2. Harmonic Wavelets

The harmonic scaling function [5, 6, 14]

et 627711 -1

= - 2.1
ooy S (21)
is a complex function. The real and imaginary parts of this function are given
by

in2mx sin? rx
R (p(x) = 22T g (p(a)) = | (2.2)

2rx T

Since
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-1, n=2k+1, keZ,

it is, in particular,
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The harmonic scaling function (2.1) was defined [14] in such a way that its
Fourier transform

oo

~ TN de 1 —iwx
B =o@) o [ el s

results with compact support in the frequency domain (i.e. with bounded
frequency)

P(w) = % X271 + w).

The characteristic (or box) function x(w) is defined in the following way

x(w) =

1, 27 <w <A4m,
(2.4)

0, elsewhere.

It is a very well localized function in the frequency domain, despite its slow
decay in the space variable.

Starting from the scaling function it is possible to get a filter and to de-
rive the corresponding multiresolution analysis (see e.g. [14]). The harmonic
wavelet is the complex valued function [13, 14]

Amix 6271'ix

d_‘ffe _ p2miz
Py ST — i),

and, the dilated and translated instances [2, 4], are
Ami(2"z—k) _ e27ri(2"w7k)

2mi(2nx — k) ’

Up () 2n/2E (2.5)

with n, k € Z. Analogously, for each function of the wavelet family (2.5), it is

sinw (2"x — k)

[Yr (x)] = BTN

)

so that klirn | ()| = 0. The Fourier transform of (2.5), (see e.g. [14]) are

n,k,x—oco

the band-limited functions

n/2
Vi (w) = e R x(w/2m), (2.6)

~ 1
being, in particular, ¢ (w) = Py X(w). In the derivation of equation (2.6) we
T

have taken into account some properties of the Fourier transform, i.e. if f(w)
is the Fourier transform of f(x) then

Ty 1 iwb/a 7 w
flax £b) = aei b f(g) . (2.7)
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From the definition of the scalar product, of two functions f (z),g¢ (z), and
taking into account the Parseval equality, it is

/f dx—27r/f dw—27r<f g> (2.8)

where the bar stands for the complex conjugate. It can be shown that
harmonic wavelets are orthonormal functions [2, 6, 14], in the sense that
(Up (@), g5 (2)) = 6" 8nk , and (¢f! (), 05" (2)) = 6" 0k, 8", Gk be-
ing the Kronecker symbols.

2.1. Preliminary formulas

In order to define any order differential properties of Shannon wavelets, in

4
the following we will meet the integrals / £%e'™E d¢. Usually they might be
2m
expressed as

—2imm
£ _im
/f €d€ - )£+1 [ (€+ 1’5):| —4imm ’
being I'(£,€) = /te_le_tdt the Euler Gamma function, and [F(ﬁ)]g; =
£

F(&)—F(&). However, it is possible to give them an explicit recursive formula
as follows.

Theorem 1. For a given m € Z, e NU {0}, and £ € [a,b] C R, it is

b e /62 1 1m§d€+ |: fl zm§:| , 521
@ |:%€sz:| s éZO

a

Proof. It can be easily obtained by partial integration. B

In particular,
Theorem 2. For a given m € Z/{0} and £ € NU {0}, it is

k 2k -1
/52 mnfdé“ Z W, 0>1 (2.9)

and
47

/yeim&dg =0, (=0.

2m
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Proof. According to theorem 1, it is

4

[temeas -
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2
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By defining I*

27
recursive formula
=0 , I'=

We can write explicit results

So that we can write
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/ £le’™E d¢, and taking into account (2.3), we have the

(2.10)

(2.11)
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It is also
4

2 (&/(im
ﬂ:lzmmz e L€/ ))] |

By explicit computations it follows that:

‘ _ 0! (4m) ¢ _ 0 (2w
[Z ‘“#] lz k#l

1

¢ - L O [(dm)k — ‘ - L 0 @2m)k (28 - 1)
Z k! (im)¢= k+1 Z k! (im) k4T
=1

=1

Analogously, it can be shown
Corollary 1. For a given m € Z/{0} and ¢ € NU {0}, it is

—27

glemmE e = Z ﬁ (>1 (2.12)
k! (im)t—kt1 7 - )
—47
and
—27
/g‘fe—“nfdg:o, £=0.
—47

3. Shannon Wavelets

The real part (2.2) of the harmonic scaling functions (2.1), with half period,
coincides with the sinc-function,

def bln ™
sincx= .

(3.1)

T
This function, is the mother function of the so-called Shannon multiresolution
analysis. We must take as scaling function (Fig. 1.)

aet SIN T e — T

p(x) = = —, (3-2)

T 2mix

so that for the dilated and scaled instances, it is:

on/2 sinw (2"x — k)
m(2re — k)

mi(2"x—k) _ e*ﬂi(Q"wfk)

2mi (2nx — k)

Ph(2) = 20 2p(2me — k) =

— 2n/26
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Figure 1. Shannon scaling function ¢(z) (thick line) and wavelet (dashed line)

¥(x).
The Shannon wavelet is (see Fig. 1)
esinm(z — 1) —sin27r(z — 1)
O i (34)
2

e—2i7‘rr(_i+eiﬂr+63iﬂz+ie4iﬂz)

ie.
() = (m—27x)

It fulfills the condition
1
¥@) = p(z—3) —20Ce-1)

and the dilated and scaled instances ¥} (z) = 2"/%¢)(2"z — k) are

2"x—k—%)—sin27r(2”x—k—%) (3.5)

sin7r(
7r(2”x —k— %)

vp(w) = 277
The Fourier transform of the scaling and wavelet function are respectively

Blw) = 5-x(w +3m)

ie.
1/(2r), —nwm<w<m,

Plw) =
0, elsewhere,

and
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(@) = —e /2 [x(20) + x(~2w)]

<)

being, explicitly,

—e"w/2 1 < |w| < 2m,
0, elsewhere.

It follows that the Fourier transform of the whole family of wavelets is given
by

- 2—n/2

wk ((.U) _ ?e—iwk/Q"{[;(w/Qn)

i.e.

-~ -n/2 "
PR (w) = _%e—zw(k—kl/m/? [X(W/Qn_l) + X(_w/Qn—l)] ) (3.6)

Analogously, according to (2.7) and (3.3) we have for the whole family of
scaling functions:

27’”/2 —iw " n
op(w) = o€ B2\ (w)2™ + 3) . (3.7)

With the above expressions and the Parseval identity (2.8), we can easily show
that

Theorem 3. Shannon wavelets are orthonormal functions, in the sense that

(Wr (), g (2)) = 6" O

6" Opr being the Kronecker symbols.

Proof.

Wk (2), 93" ()

27 (i (@), By (@)

2_7L/2 —iw " n— n—
2m [ Z e O [ ()20 ) 4 (/2 )]

— 00

2—m/2 iw m m— m—
T D [y (/27 7) o (/2] s

_M/ew(k+1/2)/2"+W(h+1/2)/2m
2m

— 00

x Ix(w/2" ) +x(-w/2" Y] [x(w/2" ) +x(-w/2m 7] dw

which is zero for n # m. For n = m it is
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oo

O (@) 01 @) = 5 [ €I (w27 4 (/2] d

— 00

and, according to (2.4), by the change of variable £ = w/2"~1

=27 4
1 ) ,
(Y (x) , 7 (x)) = o / e 2i(h—k)¢ d§+/e—21(h—k)g de
—4m o

For h = k (and n = m), is trivially
(W (), ¥ (x)) =1.

For h # k, it is

4

—2i(h—k)¢ 3¢ — i —dim(h—k) _ —8in(h—k)\ _
/e ds 2(h—k)(e ¢ )=0.
2
—27
and analogously / e 2h=REqe — 0. M
—4m

Moreover we have

Theorem 4. The translated instances of the Shannon scaling functions ¢} (x),
at the level n = 0, are orthogonal, in the sense that

(op (x), 0 (x)) = Okn

def

being ¢ () = o — k).

Proof. Ttis

2—77,/2 ko 2—m/2 b /o
=27 / S emwh/2 X(w/2"+37r)2—e“" 12" (w/2™ + 37) dw
T

=— / e W R/2T=R/2) (w27 4 3m) x(w/2™ + 37) dw

— 00
When m = n, we have

2"

(ek (), 0p () = 55— / e Wh=/2" 4y =

-2

sin[(h — k) 7]
(h—k)=m
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Since h, k € Z, it follows that

sin[(h —k)7] L, h=k _s
(h=kr o, htkf

that is
(o (@) o (x)) = Ok -
When m # n, let say m < n, we have

2™M

/ e k/2"=h/2™) q

—2mq

27(n+m)/2
(ot (@), @) = 20

that is,
o sin[(h —2™7"k) ]
(h —2m=—nk)w
When m # n, the last expression is always different from zero, in fact (since
m < n)

sin h—L =0 = h—L T=sm, SEL,
2\771771\ 2|m7n|

th—#L h,k,s €Z

2|lm—nl’

(PR (), @7 (2)) = 20m+n/

i.e.

and h € Z only if m = n. Therefore, in order to have the orthogonality the
equality m = n should be satisfied. So that

(e (2), ¢ () = 2" O,

and, in particular, when n = 0,

(@h (@), 0h (2)) = O -
[ |
The scalar product of the Shannon scaling functions with respect to the cor-
responding wavelets is characterized by the following

Theorem 5. The translated instances of the Shannon scaling functions ¢} (x),
at the level n = 0, are orthogonal to the Shannon wavelets, in the sense that

(¢k (@), ¢35 () =0, m=>0,

def

being ) (x) = p(z — k).
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Proof. It is

(e (@), (@) = 27 (7 (@), O3 ()

3 —m/2

:27T/2—71/26—iwk/2nx(w/2"—|—377) o eiw(h+1/2)/2m
x x(w/2"7h) + x(-w/2m )] dw
:2—(7L+m)/2 / e—iwk/2"+iw(h+1/2)/2mX(w/2n+37T)

—00

x [x(w/2" ) 4+ x(—w/2" )] dw,

which is zero for m > n > 0 (since, according to (2.4), the compact support
of the characteristic functions do not intersect). On the contrary, it can be
easily seen that, for m < n it is
2"
(G (), 0 (@) = 2tz [ gmisk/2 risthr12)/2” g,
2ma

91+(m-+n)/2 (z i T2 (142 R)— K] 4 gim(h—2m " k))

27 (1+2h) —21Fmk

and this product, in general does not vanish. l

4. Connection Coefficients for the Shannon Wavelets

Any order connection coefficients of the wavelets, are defined as

ace / d'
YO (o (@) O (). (4.1)

They can be easily computed by the following theorem (for the first and second
order connection coefficients of periodic harmonic wavelets see also [2, 4, 13]).
In the Fourier domain the /-order derivative of the wavelet basis is

dd—;wm = (iw) "} () (42)
and according to (3.6)
a g-n/2
TR = () e o f2) (43)

= —(iw) e iw(k+1/2)/2" [X(w/2"71) I X(—w/anl)} '

2w
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Any order connection coefficients, taking into account the definition (4.1), are
equivalently

—

. ¢ dz " —
YO (L @) v @) = 2 v @) @), 49
Starting from equations (4.2), (4.3), the connection coefficient (4.1) can be
computed according to

Theorem 6. The connection coefficients (4.1) of the Shannon wavelets (3.5)
are given by

o il2n£ ﬂ_l-‘rl
1Ok = S L+ ()] o 27 - ) (4.5)
Z .
O (2J —1) ,
£+1 g nm
for £>1, and ~* = §kp ™™, when £ =

Proof. From their definition (4.1), taking into account equations (2.8)—(4.3),
we get

¢ T R R
< Lo ) v <x>> — o <%wz<x>w <x>> = 2 { (i)' f (@), By (@) )

2—n/2 . —iw " n— n—
—2m [ 2 () e O [y /27 71) 4 x(w0/2 )]

— 0o

2—m/2 i " . e
xTe (h+1/2)/2 [X(W/2 Y+ x(—w/2 1)} dw,

which is zero when m # n. When m = n, it follows that

2™ r . —iw(k— " n— n—
7(5)2}?:? /(zw)ee (k=h)/2 [X(w/2 D+ x(—w/2 1)]dw

— 00

and, with the change of variable w/2"~! = ¢,

E n—1)¢
(l)nn 2 )

- / glem S () £y (~O)] dE, (46)

i.e.

i€2(n71)€ 3 3
,Y(Z)ZZLL — e |:/£Z & (k— h/2 d§+/£€ i&(k—h)/2 ( g)d£:|

— 0o

(4.7)
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From where, if we notice that

/OO . x(6)de = 7...d§, /OO x(=6)de = _/Zﬂ...dg,
o o oo —An

by taking into account equations (2.9)—(2.12) there easily follows the value of
the connection coefficients. Alternatively from (4.7) with the change —§ — &
in the second integral

'£2(n—1)£
@nn _* £, —it(k— h)/2 € i€(k—h)/2
1O = / e e - / x(6)de].

— 00

we obtain
4
(©)nn if2(n-bt o[ —ig(k—h)/2 ¢ _ig(k—h)/2
Vkh T T 3 {6 +(=1)% }d@ (4.8)

Although the imaginary unit is present as a factor, the connection coefficients
are real values. In fact, by transforming the integral into trigonometric func-
tions we get

(n—1)¢
/5 fdf, ¢t=2M, M €Z,

Y kh = (4.9)

e+12(n 1)¢
/54 §d§, (=2M+1, M €Z,

being i* = +1 for £ = 2M, M € Z, and i* = +ifor £ = 2M +1 ,M € Z.
When k = h, we obtain from (4.8)

(Onn _ it2(n—1¢ 1 041 gfontmttl 1 D) (2641 _ 1
YOl = g A DI Jon= m[( + (=) 27 =1)].

When k # h, from (4.8) by taking into account equations (2.9)-(2.12) we have

Lo(n—1)¢ £ 0 (27 (2j _ 1) 9l—j+1 ‘
(O)nn __* 2 I j
o = -1 — -1y -1, £>1,
e Am j:l( ) j! [Z(h - k)]z J+1 [( ) ]
ie.
Lont L Nad(27 —1
(Onn __ Y 2 £ | ( ) j
v = > (-1 — —1)7 —1], (>1.
0= 2 om0

When / is even and j is an odd number, the denominator gives a real number,
so that its ratio with i¢ is a real number. When / is odd and j is an even number
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the connection coefficients are null. When ¢ and j are both odd numbers, the
denominator gives a complex number so that the ratio with i is a real number.
Thus the connection coefficients of Shannon wavelets are always real numbers.

The second part of the proof is easily obtained by using Theorem 3, i.e.
by noticing that when ¢ = 0 the connection coeflicients reduce to the scalar
product of the Shannon wavelet. B

In particular, by assuming k = 0,...,2" — 1, h = 0,...,2™ — 1, from (4.5),
we have explicitly:

e For the first order (¢ = 1) coefficients v at the lower scales 0 < n =
m < 3 are the following

=
O =
O =N

1
Y =0, i =4 < y (2)) , Wi =4

|
W= =
|

o= =
|
—_

|
—
|
[N}
o
O N =W

|
—
|
[N}
O N = wlnol—

yWE =4

|
—_

|
)

|
W — N

| (el ORIV I ST
— DN

O DO = ol b =
DO = GOl o] = O] =] 0

|
)
o

RN LRSI SV

QO = DN [ 00| Do

|
|

|

N[Ol =
|
|

e Tor the second order (¢ = 2) coefficients (17", at the lower scales 0 <
n=m < 3:

— 72 —28 7?2 _8
’7(2)88 = 3 ) 7(2)11c}1 = ( 3 —28x2 |

_8 3
=l2r? 39 g 32
3 ) 9
—112 7
S22 _ | 732 = 1—1?;22 -8 |
-8 —32 Tﬂ —322
_32 _8 _392 —11327r
9
—448 72
—dsx _jgg _3p 128 g _lw s 12
—128 =M8r® 198 _3p 18 _g _ls _32
—32 —128 =Msz® 98 _3p _18 _g 128
3 9 25
@3 | -1 32 128 =MST _jog 32 12 g

TORT g 1 39 9y —Msx® _j95 _gy 128

Sl g 18 39 19y —MST _y98 39

~32 i g 18 3y 198 M 98
128 32 128 128 —448~?
i 9 2~ 8 —g T3z 128 =
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e TFor the third order (¢ = 3) coefficients 717", at the lower scales 0 < n =
m < 2:

2
(3)00 _ (3)11 _ 0 48 — 561
Yk =0, v kh_<_48+56ﬂ_2 0 ,

—64(—2+2177)

0 —64(—6+71?) 48 — 2242 5
(@22 _ | 64 (-6+777) 0 —64 (—6+77%) 48 — 22472
TR 48 4 22477 64 (—6 + T?) 0 —64 (—6 + 772

Sl 484 924r 64 (—6+ 7n?) 0

We have the following

Corollary 2. The connection coefficients of the Shannon wavelets have these
symmetries with respect to the lower indices,

n

F O = yOmn - =2M € Z,

FOpn = —@Onn g =2M +1€ Z.

Proof. It immediately follows from (4.5) by a simple computation. H
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