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Abstract. An algorithm is proposed for analytical computing the stability bound-
aries of the Lagrange triangular solutions in the elliptic restricted three-body prob-
lem. It is based on the infinite determinant method. The algorithm has been im-
plemented by using the computer algebra system Mathematica and the stability
boundaries have been determined in the form of power series with respect to a small
parameter with accuracy up to the 10th order.
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1. Introduction

The restricted problem of three bodies is a famous model of classical mecha-
nics [9]. It was proposed by Euler more than 200 years ago but its general so-
lution has not been found yet. Remind that the problem describes the motion
of particle Py having infinitesimal mass in the gravitational field generated by
two particles P; and P, having finite masses m; and ma, respectively. These
two primary particles move about their common center of mass in the orbits
determined by the corresponding two-body problem.

In 1772, Lagrange proved that the particle P can move in the orbital
plane of the primaries in such a way that the particles are in the vertices of
an equilateral triangle at any instant of time. The solutions of this kind are
known as Lagrange’s triangular solutions [8, 9]. The study of their stability
turned out to be a very complicated problem and it is solved completely only
in the case of circular orbits of the particles [4].
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Studying the stability of Lagrange’s triangular solutions in the elliptic
case, we have to determine first the domains of their linear stability in the
parameter space. The system is characterized by two parameters, namely, an
eccentricity of the particles orbits e and a ratio of their masses u = _mz
mi 4 ma
So, the problem is to find the curves u = p(e) in the (u,e) plane which are
the boundaries between the domains of stability and instability of the system.

The first work in this field was done by Danby [2], who investigated the
characteristic equation of the system numerically and constructed the domains
of its linear stability in the (u, ¢) plane. One of the most exact analytical cal-
culations of this kind was done in [6], where perturbation methods were used
and the fourth order analytical expressions for the stability boundaries were
given. Recently Markeev [5] proposed an algorithm for determination of the
stability boundaries for the Hamiltonian system depending on a small param-
eter. It is based on the canonical transformations reducing the Hamiltonian
function to the normal form. Using this algorithm, he improved the calcula-
tions of Nayfeh and Kamel [6] and obtained the first four coefficients in series
expansion of one stability boundary in powers of e.

The main aim of the present paper is to develop an algorithm for ana-
lytical computing the stability boundaries of Lagrange’s triangular solutions
using the infinite determinant method [3]. This method seems to be the most
effective in computing the stability boundaries for the Hamiltonian systems
with periodic coefficients [7]. The proposed algorithm is easily implemented
with some modern computer algebra system such as Mathematica [10]. We
have done the corresponding calculations and obtained the stability bound-
aries ;1 = p(e) in the form of power series in e with accuracy O(e'?).

2. Analysis of the Linearized Equations of the Perturbed
Motion

Linearized differential equations of the perturbed motion in the neighbour-
hood of Lagrange’s triangular solutions of the elliptic three-body problem can
be written in the Hamiltonian form

dg; _OH dp; _ OH

dv — Op;’ dv _8—qj’ G =12), (2.1)

where the Hamiltonian function H is given by (see, for instance, [4], Chapter 7,
p-125 and quoted references)

1 1+ 4ecosv
H = Z(p? 4+ p2 - LT 42
2(1’1 +p3) +p1g2 — p2q1 + 8(1 + ccosr) q

—5+4decosv o

Qg t 8(1+ ecosv) % -

B 1+ecosv
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Here a true anomaly v is used as an independent variable and parameter « is

3v3(1 -2
defined as k = M Substituting (2.2) into (2.1), we obtain a system
of linear differential equations with periodic coefficients of period T = 2x
do _ L e
dv b1 T g2, div P2 —q1,
dp1 1+ 4ecosv
5_p2_4(1+ecosu) Q1+1+ecosu 2 (2.3)
dpy n K —5 4+ 4ecosv
v~ P T T ecosy 4(1 + ecosv) 2

Obviously, the right-hand sides of system (2.3) are analytic functions of e in
the neighbourhood of the point ¢ = 0 and, hence, its characteristic exponents
are continuous functions of e (see, for example, [11]). Then the properties
of its solutions for sufficiently small values of e > 0 are determined by its
characteristic exponents calculated for e = 0. In this case system (2.3) reduces
to the system of four differential equations with constant coefficients whose
characteristic exponents A\ are easily found and may be written as

A2 = Fio1, A3y = *ioo, (2.4)

where i is the imaginary unit (i = —1) and

1 1/2
2= (1 +/1— 2T+ 27u2)

It can be readily seen that characteristic exponents (2.4) are different purely
imaginary numbers only if the following inequality is fulfilled

0<2Tu(l—p) <1l or 0<p< s (2.5)

1
where p, = — — is the Routh critical mass ratio. us, inequality
h 13 9 — 4/69) is the Routh critical io. Thus, i li

(2.5) is a necessary condition for stability of Lagrange’s triangular solutions
in the case of e = 0.

According to the general theory of differential equations with periodic
coefficients [11], system (2.3) may become unstable for sufficiently small e > 0
only if there exist such values of parameter 4 in the interval (2.5) that the
following equality is fulfilled

A £ A =iN, jk=1,2,3,4; N=0,+1,£2,... (2.6)

Analyzing characteristic exponents (2.4), one can easily show that there is
only one such value of the parameter i, namely,

po= (3~ 2v9) (2.7)

when \3 = iog, Ay = —iog, N = 1 or 205 = 1. Hence, the domain of instability
of system (2.3) can exist only in the neighbourhood of the point P(ug,0) in
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the (u,e) plane. The boundaries of this domain are some curves u = u(e)
crossing the e = 0 axis at point (2.7). For sufficiently small values of ¢ > 0 we
can represent these curves in the form of power series

= o + pae + pae® + ... (2.8)

Now the problem is to calculate coefficients py in the expansion (2.8).

3. Infinite Determinant Method

In order to simplify the calculations, we rewrite system (2.3) in the form of
two second-order differential equations

d? d 3
(1+ <a<:os1/)(—q21 — 22) =~ q1 1 Kq2,
dv dv 4 (3.1)
d?qo dq 9 -
(1+ ecosv)(m + 2%) =kq + qu.

According to the Floquet-Liapunov theory (see, for example, [1]), a solu-
tion of system (3.1) can be represented in the following form

q1 = exp(iov) (ao + Z (ar, cos(kv) + by sin(kz/))),
k=1

g2 = exp(iov) (co + Z (cr cos(kv) + dy sin(ky))). (3.2)
k=1

Substituting solution (3.2) into (3.1) and canceling the multipliers exp(iov)
in the left- and right-hand sides of each equation, we obtain two Fourier
series which must vanish for all v. Hence, coefficients of cos(kv) and sin(kv)
in each equation much vanish and we obtain an infinite sequence of equations
determining the coefficients ay, by, ¢, di in (3.2).

The first two equations in the sequence arise when we equate to zero the
constant terms in the corresponding Fourier series. They are given by

3
(Z + 02)a0 + (k4 2i0)co + g(l + 02)a1 —ieoby +ieocy +ed; =0,

9
(k — 2i0)ao + (Z + 02)00 —ieca; — eby + g(l +0?)ey —ieod; = 0. (3.3)

The following four equations correspond to the coefficients of cosv and sinv.
7
ec’ag + 2ieccy + (Z + UQ)al — 2ioby + (k + 2i0)c1 + 2d; + 5(4 +0%)as
— 2iecby + ieocy + 2eds = 0,

13
—2iecag + ea’cy + (k — 2i0)a; — 2by + (I + 02)01 — 2iod; — ieocay

— by + 3(4 +0%)ey — 2ieads = 0,
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2ical + (g + 02)b1 —2c1 + (k + 2i0)dy + 2iecas + 2(4 + 02)by
— 2ecy +ieody =0,

1
2a1 + (k& — 2i0)by + 2ioer + (Ig + 02)d1 + 2eas — ieabs
+2ieaes + S(A+0%)dy =0 (34)

The rest equations are obtained by means of equating to zero coefficients of
cos(kv) and sin(kv) in both equations (3.1). For any k£ > 1 we have four
equivalent equations which can be written in general form as

g((k — 1)2 + 0'2)6Lk_1 —ide(k — 1)obg—1 +ieock—1 + e(k — 1)dk—1

+ (Z + k% + 02)% — 2ikoby + (k + 2i0)cy, + 2kdy + g((k +1)% + %) ag41

—ie(k + 1)obgy1 + teocky1 + e(k + 1)dgt1 =0,
—idecap—1 —e(k — 1)bgp_1 + g((k —1)2+0Hep_1 —ie(k — 1)odp_y

9
+ (k — 2i0)ar — 2kbg, + (Z + k2 + UQ)Ck — 2ikody — ieocak 1

—e(k 4+ bpsr + g((k £ 1)2 4 0%)cpps —ie(k + V)odys =0,
ieo(k — Dag—1 + g((k — 12+ oMby —e(k — 1D)ep_1 +ieody_1

+ 2ikoay + (% + k2 + az)bk — 2keg 4 (k + 2i0)dy + ie(k + 1)oag1

+ g((k +1)% + az)ka —e(k+ 1)cgr1 +ieodi41 =0,
e(k — 1)ag—1 — iecbi—1 +iec(k — 1)cp—1 + g((k —1)2 +0%)d_y

+ 2kay + (k — 2i0)by, + 2ikock + (% + K2+ 02)dk +e(k+ Dags1

—ieabyyr +ie(k + 1)ocei1 + g((k +1)2 4+ 0%)djp1 = 0. (3.5)

The infinite sequence of equations (3.3)—(3.5) determines the coefficients
ag, Coy Ak, by Ck, dr (k> 1)in (3.2) and is just a homogeneous system of lin-
ear algebraic equations. For a solution of (3.3)—(3.5) to exist, a determinant of
the corresponding infinite matrix must vanish, thus determining some curves
= p(e). Of course, it is impossible to calculate a determinant of the infinite
matrix. So we should truncate the infinite sequence of equations (3.3)—(3.5)
after the sth term, where s is a suitably large number. For example, taking
into account the first six equations (3.3)—(3.4), we obtain the corresponding
determinant in the form
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34+02 k+2i0 £(1402) —iec ieo e
k—2ic 2+0% —ieo —e  £(1+0?) —ieo
ec?  2iec I+0% —2ic k+2c 2
D, = . (3.6)
—2iec  eoc? Kk—2ic -2 % +0% =20
0 0 2ic  IT402 -2  K+2io
0 0 2 k—20c 2ic 402

As for every k > 1 system (3.5) contains four equations of equivalent form, the
notation D, corresponds to the determinant of the (4s + 2)th order matrix.

Let us remind now that x in (3.6) is determined by the parameter p which
is represented in the form of power series (2.8). Hence, for any s the determi-
nant D; may be represented in the form of series expansion in powers of e as
well. As it must vanish for all e, we can equate the corresponding coefficients
of €* (k > 0) to zero. Thus, we obtain a system of algebraic equations with
respect to o and coefficients p1, po, .... Solving this system, we can easily
find ¢ in the form of power series in e in the neighbourhood of the point (2.7).
Then the stability boundaries are determined from the condition that o takes
only real values.

4. Determination of the Stability Boundaries

In the case of e = 0 and pu = g we have

General analysis shows (see [7, 11]) that for sufficiently small e > 0 only o9
can have an imaginary part what means an instability of the system. So, in
order to find the boundaries between the domains of stability and instability
in the neighbourhood of the point (2.7), let us represent o in the form

1
U:§+0'21€+O'22€2+.... (41)

Now we can substitute (2.8) and (4.1) into the expression for determinant D,
and expand it in powers of e. Note that coefficients of ¢® and e turn out to
be equal to zero. Equating the coefficients of e* (k > 2) to zero, we obtain
a sequence of equations, determining coefficients oo; (j = 1,2,...) in the
expansion (4.1). Except for the first one, they are quite cumbersome and we
do not write them here. The coefficient of e? gives an equation

6403, — 1036817 +33 =0 . (4.2)
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Obviously, o21 will be real only if |u;| > T@' Thus, the boundary values of
(1 are given by

M1 = i@ . (43)

The corresponding value of o3 is equal to zero. Extracting coefficient of e3
and taking into account (4.3) and o021 = 0, we obtain an equation

2304v2p5 — 49 =0 ,

which gives
49

M 2504v2

Repeating these calculations, that can be done effectively with a computer, we
obtain the other coefficients us, 4, ..., determining the stability boundaries
(2.8). As a result we have found two curves, crossing e = 0 axis in the (u, €)
plane, in the point pg

(4.4)

W= o F e + poe® £ pse® — pget £ pse® — pee £ pre’
— pse® & poe” — pyoe’®. (4.5)

The values of coefficients u,, K =1,2,...,10 are given in Table 1.

Table 1. The coefficients py in the expansion (4.5).

Coefficient Exact Approximation
# Yo 0.0564169
he 50175 0.0150383
s 4097;\1/% 0.0225688
Ha TorTsss 0.0114165
p EeaTes 0.00520617
Heo ToSTia55958 75 0.0048933
Hr TEonttEerios 3 0.00278887
s T s 0.00238113
Ho L 0.00185662
110 28137408232597049 000160268

12414313110335127552/2

Note that coefficients in (4.5) are calculated exactly. It should be empha-
sized also that it is sufficient to calculate the determinant Dg in order to
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find them. If we consider determinants of higher order matrix we will find
the higher order corrections in (2.8). The coefficients x; that we have already
found in (4.5) will remain the same.

We can do similar calculations and find the curve crossing the axis e = 0
at the boundary point 1 = p.. In this case we should use the expansions

o= u*—i—,ule—i-,ugeQ—i—..., (4.6)

—_—1 + + 2+ (4 )

ag J11€ — 012€ i
\/5 1 12

Again the boundary (4.6) is determined from the condition that all coefficients
o1, in (4.7) are real numbers and determinant D, is equal to zero. In this case
the calculations are much more cumbersome than we have done above and
to find the first ten coefficients in (4.6) we must consider the determinant
D1p. So the calculations can be reasonably done only with the modern com-
puter algebra systems such as Mathematica. As a result we have obtained the
boundary in the form

1
u = 20~ VD)

L2 2o 239 o 8585 g
3v/69 552v/69 507841/69

2429947 4 149783831 |,

18688512160 1719343104160

(4.8)

Replacing zero order terms in (4.6), (4.7) with u = 0 and o = 0, respec-
tively, we can try to find the boundary curve crossing the e = 0 axis in the
point 1 = 0. We have done the corresponding calculations using determinant
Dq3 and found that u; =0, j =1,2,...,10. Thus the axis 4 = 0 is a stability
boundary with accuracy o(e!?).

The obtained results may be represented as the following theorem.

Theorem 1. The domains of instability of the Lagrange triangular solutions
in the elliptic restricted three-body problem are determined in the (u,e) plane
by the following inequalities:

p D << py® > ),
where 1V, 13 and 13 are given by (4.5), (4.8).

The corresponding domains of instability are shown on Fig. 1 in dark
colour. Note that in the points, belonging to the curve u(®, the system is
unstable in linear approximation, while in the points, belonging to the curves
pM ) 1® it demonstrates stable behaviour.

5. Conclusion

In the present paper we have developed an algorithm for analytical com-
puting the stability boundaries for the fourth order Hamiltonian system of
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Figure 1. Domains of instability for the Lagrange triangular solutions.

linear differential equations with periodic coefficients. It is based on the infi-
nite determinant method and can be easily implemented with the computer
algebra systems, e.g. Mathematica. Using the algorithm, we have determined
the boundaries between the domains of stability and instability in the pa-
rameter space for the Lagrange triangular solutions in the elliptic restricted
three-body problem. They have been found in the form of power series in
the eccentricity of the particles orbits with accuracy up to the 10th order.
The obtained results are in a good agreement with similar results of [4, 6],
where calculations are done with smaller accuracy and different methods are
used. It should be emphasized that the proposed method is very effective not
only for determining the stability boundaries but for computing characteristic
exponents of the system as well.
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