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Abstract. New propositions on A\-boundedness for generalized Euler-Knopp met-
hod of summability (£,T), where T is a linear bounded operator from Banach space
X into X, are proved. Using these results are verified a proposition on convergence
acceleration by (€£,T) and a Tauberian remainder theorem for (£,7T).
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1. Introduction and Lemmas

Let X, Y be Banach spaces and £ (X,Y) be a space of all linear bounded
operators from Banach space X into Y. A sequence x = (&) (& € X) is
called A\— bounded if

Flimé&, =& A B =M (& — &) A B =0 (1),

whereas A = (A\;) with 0 < A, 7.

Let m’ be the set of all A—bounded sequences. A sequence z = (&)
is called summable (see [20] and [8]) by a generalized method A = (4,x),
Apr € L(X,Y) if y = (1) with

M=) Ankér (1.1)
k=0

is convergent. Let u = (u) with 0 < ug . The transformation A is called
preserving A-boundedness (see [6] and also [1, 2, 9, 14]) if
Am’ C my-.

The transformation A is called accelerating A\-boundedness if
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Am’ € mb (1.2)

with lim g /A = 0o. A method A = (A,) with A, € L£(X,X) is called
regular if Acx C cx and
limn, = 1i]£n§k,

while cx is a set of convergent sequences with &, € X and 7, is defined by
(1.1). We denote by I and 6 the identity and zero operator on any Banach
space, respectively.

Kornfeld (see [10]) proved that any regular numerical method of summa-
bility can not universally accelerate the convergence. In [6] it is proved that
any regular triangular generalized method A satisfying the condition

S A =1 (1.3)
k=0

can not accelerate the convergence. Regardless of this fact in applied mathe-
matics linear triangular methods are used to accelerate the convergence (see
[16]). Such acceleration is possible in some subsets of m% . The present article
is a sequel to the inquiries [6, 16, 17, 18, 19]. Main results of convergence
acceleration using nonlinear methods are presented in [4].

Let us denote by (£,T) or shortly £ the generalized Euler-Knopp method
of summability defined (see [3, 12, 18]) by

Euk = { T -T) ™, (k=01 ) (14

where T € £ (X, X), while T # 6 and T° = I.

To prove our propositions we use the following Lemmas. It is easy to prove
Lemma 1 and Corollaries 1 and 2 in the same way as the analogical assertions
(see [2]) are proved in the case of number matrices.

Lemma 1. The product of generalized Euler-Knopp methods (£,U) and (€£,V),
where U,V € L (X, X), is Euler-Knopp method (£,UV).

Corollary 1. If T € L(X,X) and m € N, then (£,7)" = (£,T™)
Corollary 2.1 T € L(X,X) and T' € L (X, X), then the (£,71) is the
inverse of the method (€,T).

Let &, € X and () = (51(:)) , while

€0 =¢,, £V =S"FE. (veNy), (1.5)
k=0

E,., are determined by the use of (1.4) and z(*+1) = £2*),
Analogically as in the case of number matrices (see [15]) it is possible to
prove the next Lemma.
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Lemma 2. If (£,T) is a generalized FEuler-Knopp method of summability de-
fined by (1.4), and sequence =) = (5 V)) is defined by (1.5), then

“~k
A (v+1) _ k n—k (1/) ]
e =38 () T -t ag (16)
k=0
while ) o
Aé‘f’;j) = ’H.V B gnu_l (n € M ’
) (n=0).
Lemma 3. (see [12]). Method (£,T) is regular if and only if
1T+ I-T<1, |I-T|<L (L.7)
Remark 1. As

L= =T+ =D <ITI+ (T =D,
then the first inequality in (1.7) implies
1T+ 1T =T = 1.
Remark 2. If T = cI with 0 < ¢ <1, then the method (£,T) is regular.

Lemma 4. (see [6]). Let us have A = (Ank), Anr € L(X,Y), and ex (<) :=
(5,6,6,...) withs € X. If

dlim A, = Ay (k € No) (1.8)
in norm, then the conditions
Aex () € m’{, (¢ e X), Z)\ 1||AkH < 00, (1.9)
pn > A Ank — Axll = O(1) (1.10)
k

are sufficient for the inclusion (1.2).

2. Convergence Preservation and Convergence
Acceleration

Proposition 1. (see also [18]). If X is a Banach space and (£,T) is deter-
mined by (1.4) , then the conditions (1.7) and

T T||”kZiO (Z) Aik <|I|THT||>]€ ~0(1) (2.1)

are sufficient for the inclusion

(E,T)m% C m. (2.2)
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Proof. Let us verify the conditions of the Lemma 4 by fixing A = £. By
Lemma 4 the conditions (1.7) are sufficient for the regularity of the method
E. As & is regular, then (see [12]) Ar = 0 (k € Np). The second condition
(1.9) follows from Ay = 6 (k € Nj). Using (1.1) and (1.4) we get for ¢ € X
that

= Xn: <Z>T’“(I—T)”’“<=(T+(I—T))”<=I<:< (n € No).
k=0

So we have
n =limn, =lim¢ =g,
tin (M —m) = pn (s =) =0, Eex(c) em (c€X).

That means the first condition (1.9) is satisfied. As Ay = 6 (k € Ny), by the
second condition (1.7) we get
n n—k
(I -T
()rre-n

n k n—k nm—oo
< (31t - o,

So the condition (1.8) is satisfied. The condition (1.10) follows from the con-
dition (2.1). The conditions of Lemma 4 are satisfied and from (1.2) we get
(2.2). This completes the proof. B

[Ank — Ag | = [[Ankll =

Corollary 3. The conditions (1.7) and

=11 (1) 5 () -0 (23

k=0

are sufficient for

(&, T)my C m. (2.4)
Corollary 4. If
Tl = -7 = 3, (25)
then .
% kzo <Z> Aik —0(1) (2.6)

implies (2.4).

As any regular triangular generalized method A, satisfying the condition
(1.3) can not accelerate the convergence (see [6]), then the following assertion
is valid.

Corollary 5. If the conditions (1.7) are satisfied, then the generalized Euler-
Knopp method (£,T') can not accelerate the convergence.
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Lemma 5. The conditions
IT=7 I-T|=1-7,0<7<1 (2.7)
and
An = O(1) (n+1)°W (2.8)
imply (2.4).

Proof. Tt follows from (2.7) that conditions (1.7) are satisfied and the condi-
tion (2.3) takes a form

>

k=0

The conditions 0 < 7 < 1 and (2.8) imply (2.9) (see [15]). It follows from
Corollary 3 that (2.4) is valid. B

3. Tauberian Remainder Theorems

In [13] the first Tauberian theorems for the generalized methods of summa-
bility are proved. In [7] Tauberian theorems for semigroups are studied. In [5]
statistical Tauberian theorems in metric spaces are examined. In [11] Taube-
rian conditions, under which statistical convergence follows from statistical
summability, are studied. In [15] several Tauberian remainder theorems for
Euler-Knopp methods in the case of number matrices and X = R are proved.

Proposition 2. If the conditions

0<onT, @n/nl (n€Ny), (3.1)

An Pn A&(LV) :O(l) (3'2)

and (2.3) are satisfied, then

/\n Pn

A = oq), (3:3)

whereas €Y is defined by (1.5).

Proof. Using (1.6) we get

Jaen) < S (1) iyt g -+ gl (3.4
k=0

Applying (3.4), (2.3) and (3.2) we obtain
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(v+1) - @_i ﬁ k _ n—k
o a0 < 302 K (W) Je ey -

k=0

k=0

So the conditions (2.3) and (3.1)—(3.2) imply (3.3). W
Corollary 6. The conditions (2.3), (3.1) and
An Pn HAan = 0(1)

imply (3.2), whereas £ (v € N) is defined by (1.5).

DY ()32 I h -7 = o)

(3.5)

Proposition 3. Let v € Ny. If A = (), () = (gl(:)) and T are satisfying

the conditions (2.8),
Vi1 [ A6 = o),

(&, 7)™ e m}

and (2.5), then ") € m)..

Proof. Let m = [n/2]. If

o (TL) — A\, i (2:) Tk (I _ T)Qn—k (5](:) _ 51(11/)) ,

k=0
2n—m—1 m

p2(n) = A, Z < L )Tk (I - T)2nfk (5](;/) _ €£Ly)) ,
k=m+1

2n 9 - ,
p3(n) = An (;)Tk(I_T)Q k(fli)_ 1(:))

and p(n) = p1(n) + p2(n) + p3(n) is equal to

pln) = (5,7 =€)
If 0 <k <m, then
5](:) _ gr(zu) — _ Z Aé-z(l/)

i=k+1
and (3.6) implies
e =] = o).

Therefore using (2.5), (3.9) and Stirling’s formula, we get

(3.6)

(3.7)

(3.8)
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m 9 B ,
lortll < 3 Y- () I I = P el - €
k=0
=0 (nA27") Y <2]:‘) =0 (n*A,27°") G:) =0(1).
k=0

Ifm+1<k<2n—m—1, then (3.6) and (2.8) imply
In — k|
AnvV/n+1°

2 (1) o= (3)

then using (2.5), (3.10) and Stirling’s formula we get

e =] = o (3.10)

2n—m—1

2n n— v v
loatoll <3 S (YU -7 el -
k=m+1
2n—m—1
_ 2n |n — k|
= A, 27%" O(l)———
k:%—l <k> ( ))‘" n+1
2n—m—1
—0(2) 2 <2”) n— k| = 0(1).
n+1 Pt k

If 2n — m < k < 2n, then (3.6) implies (3.9). Using (2.8), (2.5) , (3.9) and
Stirling’s formula we get

llps(n)ll = O(1).
Therefore using (3.8) we obtain
lp(n)|| = O(1). (3.11)
As
A (607 =€) = 2 (887 =)+ an (5270 —¢).
while

lim ggjfl) =¢,

then using the conditions (3.11), (3.7) and (2.8) we finish the proof. B

Corollary 7. If v € No, A = (A\), x = (&) and T are satisfying the conditions
(2.8), (2.5) and

AV + 1A =0(1), (£, T™)x € mk, (3.12)

A
then € mx.

Proof. Using Corollary 6 and Proposition 3 we get step by step the assertion
of Corollary 7. B
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