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Abstract. The anisotropy in particular environmental phenomena is detected
when behavior of a physical process differs in different directions. In this paper
geometric and zonal anisotropies are considered. Various methods of geostatistical
analysis, also isotropic and geometrical anisotropic variogram models are compared
and applied for the Curonian lagoon depth data. The results demonstrate that af-
ter robust estimation, i.e. elimination of outliers and after elimination of geometric
anisotropy the precision of prediction and adequacy of models are much better. All
computations have been performed by means of gstat, base and spacial packages of R
system. Prediction results are compared with the results of research where outliers
and geometric anisotropy were not eliminated.
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1. Introduction

For spatial locations {s; = (z;,;) : s;€D C R?}, suppose we observe re-
sponses Z(s;),i = 1,...,k where Z = (Z(s1), Z(s2), ..., Z(sx))" are viewed as a
vector of random field observations. The process Z is said to be Gaussian
if, for any k > 1 and locations s;, sg,..., s, the vector Z has a multi-
variate normal distribution. The process Z is said to be strictly stationary
if the joint distribution of (Z(s1), Z(s2),..., Z(sk)) is the same as that of
(Z(s1 + h),Z(s2 + h),...., Z(sk + h)) for any k, spatial points s1, S2, ..., Sk,
and any heR?, provided only that all of sy, sg, ..., 5,51 + h,s2 +h,....,s6 + h
lie within the domain D.

The process Z is said to be second-order stationary (also called weakly
stationary) if p(s) = p (i.e., the mean is the same for all s) and
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Cov(Z(s;),Z(s;)) = C(s; — sj), forall s;,s; €D,

where C(s) is the covariance function of observations at locations shifted by s.
A Gaussian process which is second-order stationary is also strictly stationary
(see [9], 35 p.)-

Intrinsic stationarity is a weaker property than second-order stationarity.
The variogram of intrinsic random function is written as

2v(h) = Var[(Z(si) - Z(s]))]

The function 2v(-) is called the variogram and ~(-) the semivariogram. If the
semivariogram (covariance) depends only on distance between locations the
process is called isotropic.

Most of the geostatistical techniques are applied to a stationary data field.
But in modeling the correlation structure of a spatial process Z(s), the as-
sumption of isotropy is often untenable. The spatial process Z(s) is said to
exhibit anisotropy when C(s; — s;) depends upon both the magnitude and
orientation of separation vector (s; — s;). In literature there is some dis-
agreement about the terminology used for describing the different kinds of
anisotropy. Traditionally the term geometric anisotropy is used when the range
changes with direction, while the sill is constant. This is the kind of anisotropy
mostly observed in nature. Journel and Hiujbregts (1978) use the term zonal
anisotropy for all kinds of anisotropy that are not geometric, e.g. the sill or
both sill and range change with direction. According to Zimmerman (1993),
anisotropy can take three forms: sill anisotropy, nugget anisotropy and/or
range anisotropy. Isaaks and Srivastava (1989) use geometric anisotropy to de-
scribe changes of range with direction and constant sill, and zonal anisotropy
when the sill changes while the range remains constant (see [4, 8] p. 45). In
this paper the last definitions of geometric and zonal anisotropy will be used.

In our previous paper [7] the precision of the results obtained by two
methods, i.e. kriging and cokriging, were compared by using cross-validation
method. The results have showed that precision of predicted values is better
when the cokriging method is used. Paper [5] presents maps of the predicted
values in the whole Curonian lagoon, where the prediction is based on mea-
surement, data that are mentioned above. The general parameters of a semi-
variogram, i.e. sill, nugget and range are also described in this publication.

Further information about geostatistical analysis could be found in the
books by N.C. Cressie [2] and J.P. Chiles and P. Delfiner [1]. Various types of
variogram interpretation and methods of modeling could be found in [6].

In the previous research the process under studying was presumed to be
isotropic. The objective of this research is the analysis of variograms in or-
der to detect and eliminate geometric or zonal anisotropy. The data used in
the study consist of depth measurements in 263 locations over a Curonian
lagoon. The definition of two main anisotropy types and elimination of geo-
metric anisotropy are introduced in Section 2 and also the universal kriging
is described here. The results of the study are presented in Section 3.
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2. Anisotropic Variogram Models

2.1. Estimation and modeling of the isotropic semivariogram

Determination of spatial variability is often based on a semivariogram. For
isotropic random fields the sample estimator of the classical semivariogram
(variogram) (Matheron, 1962), which is based on the Method-of-Moments
(MoM), is defined as:

. 1
o) = 5o DL [Zlsi) = Z(s))P,
2N(|h])
(si,s;)EN([R])
where N (|h|) denotes all pairs (s;, s;) for which |s; —s;| = |h| ([8], 38 p.). The
classical variogram estimator is not robust against outliers in data. This may
result in incorrect variances when estimating the value of the data by kriging.

One of robust geostatistical procedures for data with outliers is the variogram
of order 1/2:

. 1 o) — (s )12 0.494
mh')_2N<|h|><w,.>ze;v<|h>[z( )= 2]/ (0457 + G )

This type of variogram has been developed by Cressie and Hawkins ([1], p. 41-
44). By estimating and plotting both kinds of semivariograms (variograms),
the influence of outliers can be examined (see [2]).

Potential models are compared with the estimated semivariogram and the
best fitted model is used in the kriging estimation. Several methods have been
proposed for fitting semivariogram models. One relatively simple method that
appears to perform well is the weighted least squares method.

Isotropic processes are convenient to deal with because there is a number
of widely applied parametric forms for v(-), such as linear, spherical, exponen-
tial, Gaussian and others. An often used semivariogram model is linear and
spherical one with the nugget effect. A reason for this is an easy interpretation
of the parameters.

Figure 1a shows representation of a general variogram. Each variogram
model is described by three variogram parameters: sill, nugget and range [1,
2, 4, 6, 3]. The linear isotropic semivariogram model with sill is defined as (see
Fig. 1b):

0, if |n/=0,
h
Y(|h]) = C°+Cl|7|’ if 0<|h|<a, (2.1)

Co+Cy, if |h/>a.

The spherical isotropic semivariogram model (Fig. 1¢) is given by:
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Figure 1. Representation of general variograms: a) idealized form of semivariogram
function; b) linear semivariogram; c) spherical semivariogram.
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where Cy is the nugget effect, a is the range and Cjy 4+ C; is the sill.

Traditionally fitting of the semivariogram is done by eye rather, because
it has been shown that predictions computed by kriging are insensitive to the
specification of the semivariogram model. The best semivariogram model can
be found using the least squares criterion [§].

2.2. Directional detection and anisotropy variograms

Exploratory data analysis (EDA) techniques are often used to assess departure
from isotropy: Kaluzny, Vega, Cardosa and Shelly (1996) propose directional
semivariograms, Isaaks and Srivastava (1989) propose rose diagram and a
contour plot of empirical semivariogram surface in R? (see [4]). In practice,
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the directional semivariograms are often used. Semivariograms which utilize
indiscriminately-oriented data pairs are called omnidirectional. The directional
semivariograms are calculated using data location pairs of certain orientation,
typically in four directions: N-S, E-W, NE-SW and NW-SE (0°,45°,90° and
135°) for each lag with the tolerance angle 22.5° (see Fig. 2).

Figure 2. Direction, angle and tolerance of the directional semivariograms.

An anisotropy is said to be "geometric" when the directional semivari-
ograms have the same shape and sill but different range values (Figure 3a).
This is a situation in which Euclidean space is not suitable for measuring
distance, but there may be a linear transformation of Euclidean space.

ry(=7a(a)
11 h/a)=1q(h)

— "7;‘1'7

h'a 1 h a a, Ay

a) b)

Figure 3. a) Geometric anisotropy; b) zonal anisotropy.

When the directional variograms show different variability in the different
directions the sills are not comparable. In such case geostatistics can be used
to establish a variogram model made up of components having a so-called
"zonal" anisotropy (Fig. 3b). Pure zonal anisotropy is usually not seen in
practice: typically it is occurs in combination with geometric anisotropy.
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2.3. Elimination of geometric anisotropy

The basic procedure of correction of the geometric anisotropy is as follows:

Identification of the directions for the maximum and minimum range.
Rotation of the data axes to match directions of anisotropy.
Reducing of the directional variograms to a single variogram with stan-
dardized range 1.

e Producing a single matrix A by multiplying matrixes of the rotation and
distance scaling transformations.

The simplest case is when the anisotropy direction coincides with a coor-
dinate axes (then no rotation is necessary).

The direction of maximum anisotropy rarely fall on one of the usual coor-
dinate axes. We would like to express the distance h in terms of the anisotropic
coordinate system rather than the usual coordinate system. Suppose that axes
of anisotropy have been identified in direction (z’,%’) that differ from the co-
ordinate system (x,y) by an angle of clockwise rotation « (2D case). If the
directions of maximum and minimum range are orthogonal we can rotate the
axes without changing any distance:

a’ cosa sina| [z
y ]  |—sina cosa| \y )’
The variables in the rotated coordinate system are:

2 =xcosa+ysina, 3y =ycosa — wsina.

A vector h = (hy, hy) from the standard coordinate system can be expressed
in the new coordinate system by transformation matrix R:

R, cosa sina| |h
W=7 =] | ‘| =Rn.
hy, —sina cosa| |hy
If the directions of maximum and minimum range are not orthogonal to each
other then the transformed distance between s; and s; (where s; and s; are

locations separated by a vector h) h = ,/h/? + h;?, where h is the distance
between locations s; and s;, hy = x; — x; and hy = y; — y;. The distance

transformation h — h’ can be represented in matrix form

h' = TRh = Ah,

where .
~ 0 . .
Qg a cosa sina
o I e
0 - 0 — —sina cosa
ay ay

Matrix A defines the transformation from the initial space, i.e. a circle of
radius a (see Fig. 4a), to the isotropic space, i.e. an ellipse, which is a linear
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transformation of a circle (see Fig. 4b). Here a; is chosen positive number, «
is often taken as the direction of maximum range and a;/a, is the anisotropy
ratio, which is is the ratio of the minor range to the major range and its value
is between 0 and 1 ([1], p. 94). The variogram can therefore be written as

v(h) =~o(|Ah]).

a) b)

Figure 4. a) Isotropy case (a circle of radius a), b) geometric anisotropy case (an
ellipse).

2.4. Universal kriging

Kriging is a procedure for spatial prediction at an unobserved location, using
data at observed locations, optimized with respect to a specific error criterion.
Basic model for kriging is given by

Z(s) = p(s)+4d(s), se€D,ueR,

where 1 denotes the unknown population mean function. This can also be
regarded as the trend, signal, or large-scale spatial variation. The correlated
error process is given by

6()=W() +n() +e(),

here W(-), n(), e(-) are smooth small-scale variation, micro-scale variation,
measurement error or noise, respectively (see [2], 113 p.)

Universal kriging assumes that mean value p(s) of Z(s) can be expressed
as linear combination of known functions f1(s), ..., f4(s):

u(s) = B'f(s), £(s) = (f1(s),..... fo(s))', BER?.
Thus .
Z(s) =Y Bifi(s) +6(s).
1=1
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For instance, in our case where Z(s) is a random process representing Curo-
nian lagoon depth p(s) is the third order trend surface:

11(s) = B + Box(s) + Bsy(s) + Baz(s)? + Bsx(s)y(s) + Bey>(s)
+ Bra3(s) + Bsx®(s)y(s) + Box(s)y>(s) + Broy>(s)

and g = 10. The value Z(sg) of the random process Z at location s is given
by
Z(SQ) = ﬂlf(SQ) + 5(80)

According to the universal kriging theory, the linear predictor Z (so) of the
value Z(sg) can be expressed as a linear combination of the measured values
Z(sy) at n locations:

2(80) = Z U)kZ(Sk),
k=1

where wy, is the weight for the observation Z(sy), which are chosen to minimize
the mean squared error MSE = E(Z(so) — Z(s0))?, Z(s0) is unbiased for
Z(so) if Y op_qw = 1.

The variance of the universal kriging predictor:

n q
OTaprig = 2 wrY(sk = 50) +mo+ > _mufi(so),
k=1 =1

where m’ = (my,...,m;) is a vector of Lagrange multipliers. The details can
be found in [2].

3. Results and Discussions

3.1. The data

Procedures of robust estimation, directional semivariogram model fitting, and
universal kriging were applied to the depth data of the Curonian lagoon. The
Curonian lagoon is a large (length 95 km, width up to 48 km) shallow (mean
depth of 3.8 m, the maximum 5.8 m) coastal water body in the south-eastern
part of the Baltic Sea. The outlet of the lagoon to the Baltic Sea, Klaipéda
Strait, is artificially deepened down to 12 m. The data have been collected
in 1990 by S. Gulbinskas. It consists of bed sediments and depth data of the
Curonian lagoon. In this research only depth data of the Curonian lagoon was
used. The depth was measured at 263 locations. Their x coordinate values are
between 278199 and 333376 and y coordinate values are between 6088178 and
6172784. The locations of the measurements of the Curonian lagoon depth
data are shown in Figure 5a.

For data analysis and mapping R system packages base, spatial and gstat
have been chosen. They are available for free on

http : //www.GSTAT.org/GSTAT.pdf .
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The depth data of the Cutonian lagoon Histogram of the Curonian lagoon depth data
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Figure 5. a) Locations of the depth measurements, b) the histogram of the depth
data.

There are the other packages in R for geostatistical analysis, e.g. fields, geoR,
geoRglm, gstat, spatial.

Package gstat is a program for modelling, prediction and simulation of
geostatistical data in one, two and three dimensions. The package provides
prediction and estimation using a model that is the sum of a trend modeled
as a linear function of polynomials of the coordinates or of user-defined base
functions, and an independent or dependent, geostatistically modeled resid-
ual. This allows simple, ordinary and universal kriging, simple, ordinary and
universal cokriging, standardised cokriging, kriging with external drift, block
kriging and "kriging the trend", as well as uncorrelated, ordinary or weighted
least squares regression prediction.

3.2. Data analysis by descriptive statistical methods

The histogram of the sampled depth data is given in Figure 5b. The depth
data is positively skewed and may be this is a reason of extreme values of
data.

The summary statistics of the depth data with outliers and without outliers
are presented in Table 1.

Table 1. Summary statistics of depth data.

Minimum  Maximum Mean Standard deviation

with outliers 0.100 10.000 3.161 1.5224
without outliers  0.100 8.000 3.135 1.4651
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As described in Section 2.1, the estimation and plotting of the classical
and robust semivariograms can be used to examine the influence of outliers.
ANOVA analysis, partially presented in Table 2, shows that Multiple R? the
trend is the largest for the third order polynomial. Thus we can conclude that
the depth data constitute to the third order polynomial trend, which has the
following drift coefficients:

B =(2.9194, 3.3264, —3.8400, —2.3292, —6.8664, 8.1018,
0.5259, —3.2525, 5.1536, 4.0109).

Here L, @, P denote linear, quadratic and polynomial trends, respectively.

Table 2. The partial results of the ANOVA tables.

Trend Mult. Fitted: Residuals:
type: R%:

Min 1Q Med. 3Q Max Min 1Q Med. 3Q Max
L 0.1094 2.440 2.776 2.983 3.401 4.660 -3.777 -0.919 0.042 1.055 5.286
Q 0.2109 1.188 2.713 3.164 3.738 4.117 -3.855 -0.844 0.207 0.906 5.266
P 0.3581 0.114 2.477 3.106 3.761 4.944 -3.999 -0.727 0.121 0.811 4.040

Figure 6a presents estimated model of classical omnidirectional semivari-
ograms without third order polynomial trend and b part of the figure shows
analogous graph for robust estimates of omnidirectional semivariograms for
nontrended data without trend elimination. The estimates of extreme value,
depth of 10 m, significantly influence the behaviour of variograms.
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Figure 6. a) Omnidirectional (classical) semivariogram for depth data without
eliminated trend (with outliers), b) omnidirectional (robust) semivariogram of depth
data (without eliminated trend and outliers).
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The directional semivariograms are calculated in four directions N-S, E-
W, NE-SW and NW-SE (0°,45°,90° and 135° clockwise from north) for each
lag with the tolerance angle 22.5° to identify the anisotropy directions and
to find parameters for the optimal semivariogram model. The parameters of
directional linear and spherical semivariogram models are presented in Table 3.

Table 3. Variogram parameters for directional variograms.

Linear model Spherical model
Direction Sill Nugget Range Sill  Nugget Range

0: 1.31  0.4843 4177.81 131 0.3741 5058.37
45: 1.15 0.3445 6978.73 1.18 0.3429 10372.08
90: 1.30 0.5809 7869.18 1.29 0.5519 9924.36
135: 1.37  0.5490 736899 1.39 0.5270 10207.5

The results demonstrate that the sill in four directions for all semivari-
ogram models is almost the same, but the range is different. Thus, we can
focus our attention on the case of geometric anisotropy. The highest range
for the linear model is detected in the direction 90° clockwise from north,
for spherical model in the direction of 45°, while the smallest range for both
models is found in the north direction. Consequently, the anisotropy ratio for
the each semivariogram model is calculated and the semivariogram models es-

timated in these directions. The estimates of semivariogram models are given
in Table 4.

Table 4. Anisotropy ratios and the minimized sum of the squared residuals.

Type of semi- Anisotropy = The minimized sum of
variogram model ratio the squared residuals
Linear 0.531 0.00000796
Spherical 0.488 0.00000788

From Table 4 we deduce that the spherical semivariogram model is better.
The fitted robust directional semivariogram for spherical model is presented in
Figure 7. Now the best fitted semivariogram model can be used in the kriging
prediction procedure. As described in Section 2.4, the universal kriging is used
when the mean field can be described by a linear (with respect to parameters)
trend model. The universal kriging models have been evaluated and compared
for the depth data of the Curonian lagoon for the two different cases:

1) outliers and geometric anisotropy is eliminated,
2) outliers and geometric anisotropy is not eliminated.
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Figure 7. The fitted robust directional semivariogram for spherical model.
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Figure 8. The universal kriging prediction and variance maps when outliers, trend
and geometric anisotropy is eliminated.

Maps of the results are presented in Figure 8 and Figure 9. The summary
statistics of these maps are given in Table 5.
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Figure 9. The universal kriging prediction and variance maps when outliers and

geometric anisotropy is not eliminated.

Table 5. Summary statistics of prediction and variance maps
of two universal kriging method.

Values of prediction Values of variance

The case Minimum Maximum Mean Minimum Maximum Mean

1) -4.0976 3.6851 1.2398 1.225 4.833 1.487
2) -0.5956 5.1270 3.1038 0.5843 4.1987 1.1110

The summary statistics in Table 1 and Table 5 prove that the universal
kriging prediction with eliminated outliers and geometric anisotropy is more

realistic (more close to the true depth data).

4. Conclusions

The main focus of the study was geometric anisotropy, which is a special case
of anisotropy, and occurs when the spatial dependence changes with direction
in an elliptical fashion. The effects of geometric anisotropy on the prediction

of the Curonian lagoon depth data was analysed.
Results demonstrate that:

1. The depth data have asymmetric distribution with a left tail by reason of

one extreme value 10 meters depth.

2. The spatial process of the depth data constitute to the third order poly-

nomial trend.

3. The sill of four directional semivariogram spherical and linear models is
almost the same, when the range is different. This is case of geometric

anisotropy.
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Spherical model best describes semivariance of depth data.

Prediction results of the depth data after elimination of outliers and geo-
metric anisotropy made by universal kriging shows that variation of data
are more close to the mean value.

Detailed work is required to test anisotropy influence on cokriging esti-

mation of depth data of the Curonian lagoon for mine planning purposes.
Optimal methods of depth estimation will continue to be explored.
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