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Abstract. Subcritical convection with hexagonal flow pattern is registered in 3D
computer simulation of convective mass transfer in ternary solution under phase
transition conditions. The calculations are evaluated by the classical theory of hy-
drodynamic stability and display a good agreement with linear and finite amplitude
stability analysis.
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1. Introduction

Numerical study of convective heat and mass transfer for crystal growth tech-
nology have developed into a distinctive and vital branch of fluid mechanics.
Experimental data, as well as theoretical analysis, prove the profound influ-
ence of natural convection on the properties of grown material. Computer
simulation for flow field and associated thermal and concentration distribu-
tions is widely used to optimize the configuration and operation of production
facilities, to complement and interpret experimental results.

Convection usually is an undesirable factor adversely affecting the solidifi-
cation conditions [22, 25]. In most cases diffusive regimes of matter transport
towards the solidification front are preferable for the grown material proper-
ties. Therefore evaluation of the stability threshold for the transition from the
diffusive mode to the convective one is of primary importance for the design of
well controlled crystal growth techniques. Also it contributes to the stability
theory of convective motion.

The paper deals with computer simulation for the onset of convection in
ternary nondilute alloy under phase transition conditions. The problem arises
in numerical study of liquid phase epitaxy (LPE), which is an important
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crystal growth process from both practical and fundamental viewpoints [3,
25, 27].

In a typical setup a solution of the components A and B in molten C is
brought into contact with a substrate AxB;_xC. For definiteness, the substrate
is supposed to be placed horizontally under the solution. At the initial tem-
perature the solution is saturated and in equilibrium with the solid AxB;_xC.

The epitaxial growth is realized through the gradual system cooling. When
the temperature changes, then initially saturated solution becomes supersatu-
rated. To restore the local equilibrium at the solid/liquid interface components
A, B precipitate out of the solution onto the substrate. Interface concentra-
tions of the two phases assume values compatible with the phase diagram
and mass conservation, while the bulk of the liquid retains supersaturated.
The reduction in the concentration of the dissolved units in the vicinity of
the growing layer gives rise to the nonlinear concentration profile and leads
to density gradient normal to the substrate. It can be stable, if the solvent
has a greater density than the solutes, and unstable, if the densities are differ-
ently disposed. Here we consider the latter case and suppose both components
A and B contribute to instability. Concentration gradient provides a driving
force for convective motion. This is the principle convective mode in LPE
[3, 5, 7].

The second mode may occur due to the gradual temperature changes.
The non-dimensional parameters, characterizing the relative strength of buoy-
ancy forces in natural convection, are solutal (Rap,) and thermal (Rar)
Rayleigh numbers. They are induced by concentration and temperature gradi-
ents respectively: Rap, = gB3;H>*AC;/(D;v), Rar = gBrH3AT/(kv), where
i = A, B, g is the gravitation constant, [3; is solutal expansion coefficient, H is
the characteristic dimension, v is the kinematic viscosity, D; is the diffusion
coefficient, AC; is the characteristic concentration difference, « is the ther-
mal diffusivity, G is thermal expansion coefficient, AT is the characteristic
temperature difference.

For reasonable operating conditions, solutal Rayleigh number varies in the
range Rap ~ 103 + 10°. The thermal Rayleigh number, due to slow cooling
rate and good heat conductivity of the liquid phase, is far lower than solutal

D;

one: ~ 10% [3]. It means that thermal convection is negligible. The

temperatflre distribution is approximately uniform throughout the system,
but it’s value changes with time. These temperature changes do not affect the
fluid flow and solute transport significantly. They displace the equilibria and
alter the phase relations at the crystal-liquid interface [5, 7, 13].

2. Mathematical Model

Computer simulation for LPE growth of AxB;_xC structures is based on the
following assumptions. The growth takes place under quasi-equilibrium condi-
tions. In particular, it means that, at the solid-liquid interface, the composition
of the two phases are related by phase diagram of the system. Temperature
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throughout the system is supposed to be uniform in space and changes in
time according to the prescribed rule: T'(t) = To — a(t)t, where Ty is the
initial temperature, «(t) is the cooling rate and ¢ is time.

The surface kinetics effects are ignored, the growth rate is not limited
by the interface phenomena and controlled by bulk transport. Mass transfer
in the solution is determined by diffusion and natural convection. Diffusion
in the solid phase is neglected. Furthermore, as the thickness of epitaxial
layer is usually within 1 — 2% of the solution depth, the change of the liquid
volume caused by the film growth is neglected. The solution is supposed to
be incompressible and the Boussinesq approximation is adopted.

Under the above assumptions, the process is described by 3D time-
dependent fluid flow and mass transport equations. In Cartesian coordinates
(z,y, z), the dimensionless governing equations take the form

2

OV + (VV)V = —Vp+ AV + Y GriCie., (2.1)
VV =0, - (2.2)
0,C;s + (VV)C; = Slci AC:, (2.3)
where
O = a%’ V = (0r,0y,0.), A=V?=05,+0;,+02.,

(z,y,2) € D, D = [0,L] x [0,L] x [0,1], V = (V,,V,,V,) is the velocity
vector, p is pressure, C;, i = A, B is the concentration of the correspondent
H3AC;
component dissolved in the liquid phase, Grp, = 7951 5 * is the solutal
1%
Grashoff number, Sc¢; = v/D; is the Schmidt number, e, = (0,0, —1).

The non-dimensional variables are introduced by scaling the length with
the liquid phase depth (H), time is scaled with H?/v and concentration is
scaled with the initial concentration of one of the components in the solution.
The phase transition is going on the substrate that is placed under the solution
at z = 0. The interface conditions on concentration fields consist of the mass

balance between the transported and incorporated solute species:
anCZ = ‘/QTSCZ(CZS — Cl), 1= A7 B (24)

and phase diagram representing the equilibrium between the solution and
growing layer:
F;q(C;,T) =0, Fsu(C;,C:,T)=0 (2.5)

where T'(t) is temperature of the system, C? is concentration of the corre-
spondent solute specie in the solid phase V;, — growth rate. On the remainder
of the boundary: 0,,C; = 0. The boundary condition for the velocity field is
V =0.
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Table 1. Non-dimensional parameters.

Parameter Notation Value
Grashoff number for component A Gra 23
Grashoff number for component B Grg 17 =25
Schmidt number for component A Sea 57
Schmidt number for component B Scg 57
Aspect ratio L/H 20=25

Typical values of non-dimensional parameters used in our simulation are
listed in the Table 1. They correspond to Cd — Hg — T'e system [5, 6, 27]. The
phase diagram is described in [4, 6].

At t = 0 the liquid is in the static state. Initial condition for concentra-
tion is determined by phase diagram at temperature 7y and the substrate
composition with which the liquid is in equilibrium.

3. Model Problem

Let us make some additional assumptions that clear up a link between the
process under consideration and known problems concerning the onset of finite
amplitude convection in horizontal layer with nonlinear undisturbed profile of
active scalar quantity.

We neglect the existence of component A with the smaller Grashoff number
in the body force term, and suppose that it does not influence the solubility
of the component B in the melted component C. Also we assume the linearity
of the phase diagram and write it in the following form:

Cg =C8+ NT)(T -Ty), X\T)>0,

where A(T') is the slope of phase diagram. While the solution temperature
changes in time at a given rate «, the equilibrium concentration at the inter-
face is represented by

Cgl.mo = CR +iit, 7= —a\T).

All these assumptions reduce (2.1)—(2.5) to the standard problem of natural
convection with respect to concentration Cg as the active scalar quantity:

OV + (VV)V = -Vp+ AV + GrQe.,
VvV =0, (3.1)
1
%Q+(VV)Q = 540,
where @ is the active scalar, Gr = Grg, P is the Schmidt number (for thermal

convection it would be the Prandtl number). The boundary condition for Q
at z=01is
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Q.m0 = QW +7jt (32)

0
on the remainder of the boundary 8_f12 0.
In the static case the solution of (3.1)—(3.2) establishes at

U

Qt,z) = QO 4 ijt + ——2(z — 2). (3.3)
Our goal is to study convective instability in the horizontal fluid layer with
nonlinear undisturbed profile of active scalar (3.3).

The deep insight into the problem is given in [17, 18]. R.Krishnamurty
performed the finite amplitude stability analysis for an infinite horizontal
layer of fluid (0 < z < 1) with the mean temperature changing steadily at a
given rate. Upper and lower surfaces were rigid and perfectly conducting. The
boundary condition for the Boussinesq equations were the following:

V=0 2=0, 2=1, (3.4)
1

Q|z:0 :+§5Q+77t7 2:07
1 (3.5)

Qli=t = —50Q +nt, z=1.

The static state solution that satisfies (3.5) is given by:

~ 1 P

Qt:2) = QO+t = 3Q(z — 5) + T2z 1), (3.6)

where 6Q = Q|.—0 — @|.=1. This example represents the case in which the
conduction temperature profile is parabolic, its shape does not depend on
time, while all points of the liquid are changing with respect to temperature at
the same rate 1 as the boundary values. The sign and the absolute magnitude
of n define the direction of the profile curvature and the curvature itself,
respectively.

Profile (3.6) is similar to (3.3). In epitaxial growth, the concentration plays
the role of active scalar quantity instead of temperature. Its evolution at
the interface is governed by the parameter 7 = A(T)a, 7] can be treated as
the temperature changing rate 7 in [17]. The analogy allows us to use the
finite amplitude analysis and experimental results from [17, 18] to assess our
numerical results. For the sake of self-containment, a brief overview of the
stability studies concerning the problem under consideration is given below.
The details can be found in [17].

4. On the Finite Amplitude Stability

Analysis of finite amplitude convection is based on the expansion of stationary
solution of the governing equations (3.1) and the Rayleigh number in series of
powers of amplitude parameter ¢ and parameter 7, that are responsible for the



62 V.V. Kolmychkov, O.S. Mazhorova, Yu.P. Popov

nonlinearity of undisturbed active scalar profile. Both parameters supposed
to be finite but small. In our case the active scalar can be written as

Qt,w,y,2) = Qt,2) + 0(x,y, 2).

The stationary fields and the Rayleigh number then read:

Vizg,y,2)= Y "V (a,y,2), (4.1)
n=1,m=0
O,y 2) = 3 o (a,y, 2), (4.2)
n=1,m=0
Ra = Z enym R, (4.3)
n=0,m=0

The expansions (4.1)—(4.3) are substituted into the governing equations and
using € and 7 as ordering parameters an infinite set of linear inhomogeneous
equations is obtained. The problem of ordering the non-linearities by the ex-
pansion in powers of € and the convergence of the expansion were studied in
[20, 23]. The coefficients R("™) are determined in such a way as to satisfy
the solubility conditions of the inhomogeneous equations. Thus 7 appears as
a given small parameter in equations having known solutions when 7 = 0.

The lowest order terms in (4.1)-(4.2) V19 910 are solutions of linear
stability problem for the linear undisturbed profile. The vertical component
of the velocity is given in the following form

N

Vz(l,o) = f(2)w(z,y), w(z,y) = Z Ay exp(iky - T). (4.4)
n=—N

Here r is a horizontal position vector, k;, is a horizontal wave vector, w(z,y)
represents the plan form of the stationary critical motion [9, 10]. R(®?) in (4.3)
is the well known critical Rayleigh number equal to the minimum eigenvalue of
the linear stability problem. It determines the point at which the static layer
becomes unstable. For the case of two rigid boundaries R = R, = 1707.8
[9, 10].

Calculations of the succeeding series terms performed in [17] give R(0) =
RO = 0 and produce the following expression for the Rayleigh number:

Ra = R0 4+ p2R02) 4 cppD 4 2RZ0) 4 (4.5)
where R(0:2)<0, R(29>(0. For hexagonal planform RV >0, and R(\:1)=0 for

all the other plan forms.
The main consequences from the representation (4.5) are the following.
e The critical Rayleigh number corresponding to a nonlinear undisturbed

profile (n # 0) is smaller than for the linear profile (n = 0.) In the limit
case taking an infinitesimal amplitude we get
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R.= R0 4+ 2RO2 RO (4.6)

For example, in the case of two rigid boundaries R. = 1537.5 for nondi-
mensional parameter n = —8 (see [17]).

e For all plan forms, except for hexagons, linear stability theory should cor-
rectly predict the lowest Rayleigh number at which the fluid starts to be
unstable. Taking into account that R(:D=0 (R(1:1=£0 only for hexago-
nal plan form), it can be found that Ra — R, = ¢2R(>?). Since R0 is
positive, a real amplitude ¢ is impossible at

Ra < R., |e|]~+/Ra— R,

and liquid is stable at Ra < R, (see Fig. 1).

e For hexagonal plan form (R(%1=0), the motion is possible below R.. The
static state is unstable with respect to finite amplitude disturbances, since
infinitesimal perturbations are known to decay below R.. Solving (4.5) for
e gives the following solution:

2
nRMY nR(1:1) Ra — R,
T 2R(2,0) + 2R(2,0) + R(2.0) ° (4.7)

The minimum Rayleigh number for which ¢ exists is given by

B (77 R(l,l) )2
len = Rc — W, (48)
and the corresponding value of the amplitude parameter is equal to
R
U (4.9)

Emin = — QR(Q’O) .

e As it is clear from (4.9) the direction of the flow in hexagonal cell is
determined by the sign of 7. If n < 0, then the direction of the flow in
the center of hexagonal cell is upward, i.e. the cells are of I-type, and it is
downward if > 0, i.e. the cells are of g-type.

In order to be obtained in experiments, the steady state finite amplitude
solution must be stable at least with respect to disturbances of infinitesimal
amplitude. The stability of the finite amplitude flows with parabolic undis-
turbed profile was investigated in [17]. Qualitatively the results are the same
as F.H.Busse has obtained studying finite amplitude convection in the fluid
with varying physical properties [2]. The results are summarized in fig. 1.

If the Rayleigh number increases, the convection starts growing at the
critical Rayleigh number R¢ and at finite amplitude value we get a flow in the
form of stable stationary hexagon. The direction of the motion is determined
by the sign of 7). In the case of linear undisturbed profile, two—dimensional rolls
are known to be the unique stable solution near the critical Rayleigh number
[23]. For nonlinear profiles rolls are unstable in the range Rc < Ra < Rp.
At higher Rayleigh number Ra > R, hexagons become unstable and rolls
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min

Rriin Re Rn R Ra

Figure 1. Qualitative dependence of the amplitude on the Rayleigh number for
rolls and hexagons. Solid lines correspond to stable states, dashed ones to unstable
states [2].

are found to be the stable flow. If the Rayleigh number is decreased, then a
transition from rolls to hexagons occurs at Ry and convection decays when
Ra = Rpy, is passed. Thus there is the hysteresis effect, because the convection
at a certain Rayleigh number depends on the way in which the Rayleigh
number has been reached [2].

The experimental test with the fluid in the rectangular parallelepiped with
aspect ratio 15 x 15 x 1 confirms the theoretical results [18]. When the mean
temperature was held near constant value (undisturbed profile is approxi-
mately linear), two-dimensional rolls were found to be stable flow pattern
near the critical Rayleigh number. The subcritical convection in the form of
hexagonal cells was observed while the mean temperature changed at a con-
stant rate 7. In particular, for non-dimensional value |n| ~ 5=+ 10, a change up
to 40% from the critical number has been established. The direction of flow
at the center of the hexagon was downward for positive n and upward if n was
negative.

Though in real crystal growth process the value of the active scalar func-
tion changes at the boundary with a varying rate 77 and there is no stationary
solution, it is interesting to obtain the Rayleigh number for the onset of con-
vective motion, i.e. the Rayleigh number beyond which the steady state would
become unstable, and to compare it with theoretical predictions. The result
would also have a significant practical value, because diffusion limited mass
transfer in liquid phase epitaxy is favorable for the material quality [5, 6].
For this purpose within the scope of the model described in section 2, direct
numerical simulation of the process has been carried out.

5. Numerical Procedure

We apply a sequential procedure to solve the governing equations (2.1)—(2.3).
A new value of the velocity is computed using the species concentration from
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the previous time layer in the force term. The calculated velocity field is
inserted into the mass transfer equations that are solved with respect to con-
centrations (Ca, Cg). The problem is approximated at staggered grid [8] using
control-volume approach. Discretization is conservative for kinetic energy and
concentration of dissolved species. The finite-volume scheme is implicit and it
has second order accuracy in space and first order in time [12].

The Navier-Stokes equations (2.1)—(2.2) are solved by the projection
method with pressure correction [1, 14].

Preliminary step. A preliminary pressure p is computed from the Poisson
equation with Neumann boundary conditions:

Ap = divF™ in Dy,

n =0 on dDy,

here F™ is the gravity term computed by using the concentration from
the previous n—th time layer. This step corrects the temporal evolution
of the pressure in accordance with the given concentration field.

Prediction step. A predicted velocity field V is computed implicitly from
equation (2.1) in which the pressure gradient at the current time step
tn+1 is replaced by the preliminary pressure:

v-vt, (V*"V)V = —Vj+ AV + F" in Dy,
T (5.2)

V=0 ondDy.

The set of algebraic equations for each component of the momentum is
solved in turn, treating the grid point values of the dominant velocity
component as a sole set of unknowns. To determine the velocity we use
the conjugate gradient method [26].

Projection step. The velocity field V is corrected by taking into account the
pressure gradient at time ¢,,,; in order to satisfy the incompressibility
constraint:

Vi =V — V(" — ). (5.3)

This step is performed by computing the pressure correction dp = p"+!—p
from the Poisson boundary value problem:

A(dp) = divV in Dy,
@ =0. ondDy.
on

The final velocity and pressure fields then are defined as:
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Vntl =V — 7Vdp in Dy,
Vntl =0 on 0Dy,

anrl :54’ 627 in Dp.

The calculated velocity field is inserted into the mass transfer equations.
Being independent inside the region, they are coupled at the solid-liquid inter-
face by mass balance conditions (2.4) and phase diagram (2.5). Attempts to
decouple them into some sequential procedure or by using iterations produced
highly unreliable procedures with poor if any convergence [21]. To overcome
these difficulties, we use the algorithm based on the coupled solution of mass
transfer equations with respect to the concentration of both species and the
Newton method is used to deal with nonlinearity in boundary conditions. The
linear systems obtained at each Newton iteration are solved by the conjugate
gradient method. This approach has been used successfully in 2D case [5, 6]
and here we have extended it to 3D problems.

6. Numerical Results

The onset of convection is studied in the domain where the length of horizontal
sides is L = 25 mm, the vertical size changes in the range H = 0.5 mm +1.2
mm. The aspect ratio of the domain is more than 20. In such a case the
critical Rayleigh number determined for the infinite layer should be close to
one for the finite region [24]. To analyze the results we introduce the viscosity
and diffusion time scales as t, = H?/v and tp, = H?/Dg respectively. The
actual Rayleigh number is time dependent and it is based on the averaged
9B H?3Cs

concentration difference observed in the calculations Ra(t) = i)
BV

The average difference for component B is determined as
8Cg = (Ca(H, 1)) — (Ca(0,1)), (Ca(2,1)) = Co(2, 1)l 1 s/ L*.

In these runs we keep the cooling rate constant « = 0.25K/min, and change
the liquid depth.

Initially the fluid is at rest, its composition is uniform through out the
space and in equilibrium with the substrate. The transition to unsteadiness is
allowed to develop from the actual noise that is presented in calculations. A
grid of size 50 x 50 x 15 and time step 7 = 0.5¢,, are usually used. Such mesh
provide a good compromise between the CPU time and calculation accuracy.

To begin with it is worth to establish a critical depth for the onset of
convection in 2D case. Under the same operating conditions (substrate length,
cooling rate, phase diagram), convection was determined at H = 1.2 mm in
the form of steady rolls [4, 5]. The subcritical convection is essentially 3D
process and it is impossible to get it in 2D approach, only rolls are admissible.
Thus a linear stability theory with infinitesimal amplitude is valid and the
lowest Rayleigh number beyond which the flow becomes unsteady is predicted
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by (4.6). In our calculation we have obtained n ~ —4 + —5 Ra, = Ra?P =
1545. This value is unexpectedly close to Ra. = 1537.5 computed from the
truncated expression (4.6) in [17]. Though the latter value was obtained for
steady solution at n = —8.

In 3D case, calculations show the static state for H < 1 mm. We observed
the onset of convection at H = 1.1 mm. The temporal evolution of the kinetic
energy and actual Rayleigh number are plotted in Fig. 2.

Ra/Ra,, Ein
08 2 ra
064 F2

0.4 L

02 * T T 0

Figure 2. Time evolution of kinetic energy Fii,(t) (line 1) and Ra(t)/Racr, Racr =
Ra?P = 1545 (line 2).

1E-003

0E+000 :
0 z 1.1

Figure 3. Distribution of C(2) = (Cs(z,t)) — (Cs(0,t)) versus z for time moments
t = 1.5tp (line 1), for ¢t = 4.5¢p (line 2), for t = 7.5¢tp (line 3).

An unstructured pattern of weak flow was firstly registered at t = 2.1¢p.
At the initial stage of the process: diffusive mass transfer and initiation of
convection, (Fig. 3, lines 1,2) concentration difference 6Cg increases with time.
Actual Rayleigh number also increases and reaches the value 1260. After the
initiation, between time moments 2.1¢p and 3tp, convection slowly grows up.
There is a short period of stability for the Rayleigh number which is followed
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by its decline. This is an eventual response to quick increase in kinetic energy
at 3tp <t < 4.2tp : developing convection produces a better solute stirring,
hence 6Cg (Fig. 3, line 3) and Ra (Fig. 2) decrease. The Rayleigh number
drops down to the value approximately 1000. It is about 40% below the well
known critical point Ra=1708 (it corresponds to n = 0,) and 35 % less than
the value predicted by liner analysis [18] and 2D calculation [5]. Convection
continues in a finite-amplitude subcritical state with asymptotically constant
Rayleigh number.

¢) time = 12.3tp d) time = 37tp

Figure 4. Flow patterns. Concentration field, view from the top.

Fig. 4 illustrates the evolution of the flow structure. Near t = 4.2tp, when
the kinetic energy reaches its maximum value, the flow deposits in a definite
pattern. It consists of a set of primary rolls with a weaker perpendicular set of
secondary ones (a bimodal pattern [28]). The intersection of the rolls produces
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structure similar to square cells with fluid rising in the center and falling at
the peripheries of the cell. (Fig. 4a)

After the kinetic energy passes its maximum value, a transition from bi-
modal convection to rolls begins. The down flow in some sides of the quadri-
laterals weakens forming fragments of slightly curved rolls. Fig. 4b shows such
intermediate pattern. There is a general rule, that rolls should approach a ver-
tical boundary at a right angle [11, 19, 29]. So at the corners of the domain one
can see segmented rolls, that are curved to adjoin both sides of the domain
at a right angle.

The fully-developed flow in the form of rolls establishes near ¢ = 12.3tp
(see Fig. 4c). At this time practically the whole layer is covered with a roll
pattern. Convection remains as cells confine to the two edges of the domain.
Then the transition from rolls to hexagons begins. The evolution of the plan
form is very slow. The final pattern of uniform hexagonal cells is established
approximately at t = 37¢p (see Fig. 4d). Distortions of the structure are
observed only at the edges where imperfect packing occurs. In the dark spots
the concentration of dissolved species is smaller, the solution is lighter and
moves upward. Bright sides of hexagons correspond to heavier liquid where
concentration is larger and the flow is downward (the cells of I-type). The flow
pattern is stable and observed up to ¢t = 96t p.

Thus, according to linear stability theory, in full scale computer simulation
of LPE growth, after initiation the convective motion shows the tendency to
two-dimensional rolls. The growing amplitude of the motion and increasing
curvature of undisturbed concentration profile makes rolls unstable and they
broke down into hexagon, that is the only stable flow pattern near the crit-
ical Rayleigh number. The direction of the circulation in the convective cell
coincides with theoretical predictions [17].

The results of our computations can be interpreted as finite amplitude
instability occurring at Rayleigh number below that predicted by linear theory.
The onset of hexagon flow pattern in our simulation is a long term process,
that is also essential to subcritical convection [28].

Initiation of convection in the form of rolls with ongoing transition to
hexagons attributes both to hysteresis gap and evolution of concentration
profile, because we approach the critical point with decreasing Rayleigh num-
ber (see Fig. 2), while solidification increases the profile curvature. The last
means that 7 becomes larger and convection in hexagonal form appears to be
preferred [2, 17, 18].

In order to validate our numerical results, a series of calculations on the
refined grids has been done. The spatial resolution has been doubled, while the
time step has been decreased two and four times. Computations have shown
different time thresholds for convection when the grid size is varied. Such
result should be expected since convection develops from the noise presented
in calculations. At the same time comparison of the flow patterns and integral
properties of the solution, such as kinetic energy of the motion, time history
of Rayleigh number are not affected by grid refinement [15, 16].
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7. Conclusions

Finite amplitude subcritical convection has been registered in a full scale
3D computer simulation for liquid phase epitaxy of ternary compounds. The
calculations are compared with theoretical results on the stability of horizontal
layer of fluid with nonlinear undisturbed profile of active scalar quantity. The
convection starts in the form of rolls at Rayleigh number near the critical
one. In our simulation, roll flow pattern, as it should be according to finite
amplitude stability analysis, appears to be unstable and breaks down into
stable hexagonal flow. The hexagons have been registered at Rayleigh number
less than predicted by linear theory. The direction of flow circulation in the
cell as well as the lowest Rayleigh number at which the static state becomes
unstable also correspond to the finite amplitude stability analysis.
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