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Abstract. We present some new ideas and results for finding convergence rates
in Tikhonov regularization for ill-posed linear inverse problems with compact and
non-compact forward operators based on the consideration of approximate source
conditions and corresponding distance functions. The new results and studies com-
plement and extend in numerous points the recent papers [5, 7, 8, 10] that also
exploit the distance functions originally introduced in [2] which measure the vio-
lation of a moderate source condition that works as a benchmark. In this context,
we distinguish as in [8] logarithmic, power and exponential decay rates for the dis-
tance functions and their consequences. Under specific range inclusions the decay
rate of distance functions is verified explicitly, whereas in [10] this result is also used
but formulated only in an implicit manner. Applications to non-compact multipli-
cation operators are briefly reviewed from [8]. An important new result is that we
can show for compact operators a one-to-one correspondence between the maximal
power type decay rates for the distance functions and maximal exponents of Holder
rates in Tikhonov regularization linked by the specific singular value expansion of
the solution element. Some numerical studies on simple integration illustrate the
compact operator case and the specific situation of discretized problems. Finally,
some ideas of generalization are mentioned concerning the fact that the benchmark
of the distance function can be shifted.

Key words: linear ill-posed problems, Tikhonov regularization, approximate source
conditions, distance functions, convergence rates, compact operator, singular value
asymptotics, multiplication operators, range inclusions
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1. Introduction

Let X and Y be infinite dimensional Hilbert spaces, where the symbol | - ||
denotes the generic norms in both spaces as well as associated operator norms.
Moreover, (-,-) designates the inner product in Hilbert space. In this paper
we are going to study ill-posed linear operator equations

Az =y (xeX, yey) (1.1)

with injective and bounded linear operators A : X — Y having a non-closed
range R(A), for which the stable approximate solution requires regularization
methods. In the sequel we focus on the Tikhonov method (see, e.g., [1, 2, 4],
[6, 21]) as a standard approach. Let zg € X be the unique solution of equation
(1.1) for an exact right-hand side y = Az € Y. Instead of y we assume to
know the noisy data element y° € Y with noise level § > 0 and

Iy —yll < o.
We distinguish regularized solutions
To = (A*A+al) 'A%y
with regularization parameter « > 0 in the case of noise-free data and
2) = (A*A+al)™' A%y°

in the case of noisy data.
Here we focus on the noise-free error function

f(@) = |[wa = 20| = lla(A"A+al) ™" x| (a > 0) (1.2)

for fixed A and zy. Taking into account the noise level ¢ this function deter-
mines the total regularization error of the Tikhonov regularization

e(a,8) = g — zoll < [lwa — zoll + |5 — zall (1.3)
in case of noisy data with the well-known estimate

]

e(@9) < flo) +[(A"A+al) " AW - y)ll < fla) + 5=

(1.4)

2. Convergence Rates for Tikhonov Regularization
Based on Approximate Source Conditions

To obtain convergence rates for the Tikhonov regularization and other linear
regularization methods, in recent years general source conditions

xg = @(A*A)w (we X) (2.1)
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with index functions ¢(¢) (0 <t < := ||A||?) were used (see [11, 15, 18] and
[20]). In the sense of [15] we call ¢ an index function if this function is contin-
uous and strictly increasing with ¢(0) = 0. For the Tikhonov regularization
method we search for estimates of the error function of form

fl@) = la(A"A+al) oA A w| < Ke(a)[lw]  (0<a<i) (22)

with some K > 1, which imply estimates of form

] _

e(a,d) < Ko(a)||w|| + e 0<a<i) (2.3)
for the total regularization error. Then the following proposition can be ob-
tained from the literature (see, e.g., [3, 15, 16]). In this context, we should note
that a real function f defined on [0, ] is said to be operator monotone if for two
selfadjoint bounded linear operators S; and S; mapping in X with spectrum
in [0,¢] the semi-ordering S; < S, which is defined as (Syz,z) < (Saz,z) for
all x € X, implies f(S1) < f(S2). The use of operator monotone functions in
connection with the analysis of ill-posed problems is due to [14].

Proposition 1. We assume that (2.1) holds and p(t) (0 <t <*t) is an index
function. If (a) ©(t)/t is monotonically decreasing on (0,t], or (b) o(t) is
concave on [0,t], then (2.2) holds with K = 1. If (¢) ¢(t) is operator monotone
on [0,7], then (2.2) is valid with some K > 1. If there eists a t € (0,7) such
that (d) o(t)/t is monotonically decreasing on (0,t] or (e) (t) is concave on
[0,1], then (2.2) is true with K = o(t)/¢(t).

Avoiding the use of explicit general source conditions (2.1) this paper
presents an alternative approach for finding estimates of the form (2.2) and
hence (2.3) and consequently convergence rates for the Tikhonov regulariza-
tion on the basis of the following lemma. We extend and complement in nu-
merous points the corresponding results on this topic, which were published
by the first author and coauthors in the recent papers [5, 7, 8] and [10].

Lemma 1. Based on the distance function
d(R) := inf {|jzg — A*v| : vEY, |]v]| < R} (2.4)

that measures for xo the violation of the specific source condition

Ty = A* Vo ('UO €y, HU()” < R), (25)
we obtain Ja
a

fla) = llza —wo|| < d(R)+ - R (2.6)

for all o > 0 and R > 0 as an estimate for the error function of regularized
solutions in Tikhonov regularization in the case of noise-free data.

Proof. Letwv €Y with ||v]| < R. Then based on formula (1.2) we can estimate
f(a) by the triangle inequality as follows:



44 B. Hofmann, D. Divelmeyer, K. Krumbiegel

fla) = la(A*A+al) oy —a(A*A+al) " Ao+ a (A*A +al) "' A%y
< e (A* A+ od) ™ (zo — A™0)|| + o (A*A 4 ad) " A%
< al (A A+al) | oo — A%o|| + all (A" A+ o) A7 |||

1
2/a

IN

1 1
allzo — A + o loll < llwo — A%0l] + 5 VaR.

Since the inequality
Fla) < llro — A%]| + 5 Va R
also remains valid if we substitute ||zo — A*v|| by
inf {||xg — A*v]| : v €Y, ||v|]| < R},
we immediately find the inequality (2.6). This proves the lemma. B

Note that an estimate

fla)

IN

d?>(R) + a R?
implying the inequality
f(a) < d(R) + VaR, (2.7)

which was already used in the papers [5, 8, 10], had been originally shown
in [2, Theorem 6.8, p.97-98]. Compared to (2.7) our formula (2.6) has a
smaller constant. On the other hand, the proof of Lemma 1 is much eas-
ier than Baumeister’s proof in [2]. Therefore, we have presented the proof in
this section, although Lemma, 1 is only a corollary of Lemma 2 from Section 6.

Evidently, for every xg € X the nonnegative distance function d(R) from
(2.4) depending on the radius R € [0, 00) is well-defined and non-increasing
with Rlim d(R) = 0 as a consequence of the injectivity of A and R(A*) = X.

The distance function d(R) expresses the behaviour of zy with respect to the
benchmark condition (2.5) which can be rewritten as zo = (A*A)2w (w € X)
and which is moderate within the family of source conditions (2.1) of power-
type p(t) = t" for exponents 0 < n < 1.

Ezample 1 [Logarithmic type decay]. If d(R) decreases to zero very slowly as
R — o0, the resulting rate for f(a) — 0 as @ — 0 is also very slow. Here, we
consider the family of distance functions

d(R) < K (InR)™P (R< R < ) (2.8)

for some constants R > 0, K > 0 and for parameters p > 0. By setting

R=R(a):=a" (0</<;<%)
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and taking into account that a = o((In(1/a))"?) as & — 0 we have from
Lemma 1 and (2.8)

flo) < K (In(1/a))™? (0<a<a) (2.9)

for some @ > 0 and a constant K > 0. Then by using the a priori parameter
choice a(0) = ¢p 6% with some exponent 0 < x < 2 we obtain the logarithmic
convergence rate

e(a(8),8) = O ((1n(1/5))—p) as §—0 (2.10)

discussed, e.g., in [11] with respect to general source conditions (2.1) and
corresponding logarithmic index functions ¢.
Ezample 2 [Power type decay|. If d(R) behaves as a power of R, i.e.,

d(R) < K/RT~ (R< R < ) (2.11)

with parameters 0 < v < 1 and constants R > 0, K > 0, then by setting
-1
R =R(a):=a 7 we derive from Lemma 1 an estimate

fla) < Ka? (0 < a<a) (2.12)

for some @ > 0 and a constant K > 0. Here, the exponent in (2.11) attains
all positive real numbers when v covers the open interval (0,1). If the a priori

parameter choice a(J) ~ 57 is used, we find from (1.4) and (2.12)
e(a(6),8) = o(aﬁ) as 6 0. (2.13)

For 0 < v < 1 formula (2.13) includes all Holder convergence rates that are
slower than the rate O(v/0) which characterizes the source condition (2.5).

Ezample 3 [Exponential type decay|. Even if d(R) falls exponentially, i.e.,
d(R) < K exp(—cR?) (R<R <o)

for parameters ¢ > 0 and constants R > 0, K > 0 and ¢ > %, the convergence
rate O(1/§) cannot be obtained on the basis of Lemma 1. From (2.6) we have
with R = R(a) := (In(1/a))"/? the estimate

fla) < K (In(1/a))"" Va (0<a<a)

for some @ > 0 and a constant K > 0. Hence with «(8) ~ & we derive a
convergence rate

e(a(8),8) = O ((1n(1/5))1/q JS) as & — 0,
which is only a little slower than O(v/9).

At the end of this section we should note that a modified variant of distance
function (2.4) with a graph norm || - || instead of the generic Hilbert space
norm || - || was already exploited for an error analysis in [13].
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3. An Application Based on Range Inclusions

In paper [10] the situations of Examples 1 and 2 in Section 2 apply to spe-
cific linear operators A with non-closed range, which are forward operators in
inverse PDE problems. The theoretic background to those applications is for-
mulated by the following proposition based on range inclusions. The estimate
(3.2) of this proposition helps to characterize the decay rate of d(R) — 0 as
R — oo under the formulated assumptions.

Proposition 2. We assume that the solution smoothness of the operator equa-
tion (1.1) is characterized by a condition

(E():Gw (’U}EX),

where G : X — X is an injective, compact, positive self-adjoint, linear oper-
ator. Moreover, we assume that there exists an index function o(t) (0 <t <
IGI) such that

R(0(G)) € R((A7A)%) = R(4"). (3.1)
We set () =t/o(t) (0 <t < ||G|) and suppose that ¢ is strictly decreasing

on the interval (0,e] for some small positive value ¢ and fulfills the limit
condition }111(1] P(t) = oo. Then we have for the distance function (2.4) the

estimate from above
d(R) < Cyy~'(R) (R<R <) (3.2)

with some constants C7; > 0 and R > 0. This implies an estimate from above
for the error function of form

fla) = [lza = zoll < C207'(Va) (3.3)

with some constant Cs > 0 and for sufficiently small positive .

Proof. The hypotheses of the proposition ensure that the standing assump-
tions of [10] are satisfied with o1 (¢) = o(t) and g2(¢) = ¢. As formulated in the
proof of Theorem 1 in [10] and essentially based on Lemma 2 of [10] it can be
seen that there exist constants C; > 0 and R > 0 such that (3.2) holds. Then
we have from (2.6)

fla) < Cro™'(R) + @ R<Cy (v7HR)+VaR)

with Cyp = max(Cq,1/2) and sufficiently large R > 0. By setting R = R(a) =
o0 1(y/@)//a we see that R(a) — oo as a — 0, since t/o(t) — oo as t — 0.
Now we have o(v/a R(a)) = o(o~!(y/@)) = v/a and hence
VaR(a)
= avar) ~ V)
which gives ¥ ~!(R(a)) = v/a R(«). Consequently, we obtain for sufficiently
small a > 0
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fl@) < Co (v H(R(e) + VaR(e)) =2Co VaR(a) =2Cho (V).
This yields (3.3) with Co = 2 Cj and proves the proposition. H

Note that the range inclusion (3.1) characterizes the interplay between
solution smoothness in a very general sense expressed by properties of the
operator G and the smoothing property of the forward operator A. The index
function ¢ measures that interplay. More details on the interplay of smoothing

conditions for Tikhonov regularization are given in [3] and for a general linear
regularization approach in [17].

4. An Application to Non-Compact Multiplication
Operators

Now we are going to illustrate the situations of Examples 2 and 3 in Section 2
in the context of non-compact multiplication operators A. In this section we
consider X =Y = L2(0,1) and specify A as a multiplication operator

Ax](t) = m(D)e(t)  (0<t<1)

defined by a multiplier function m € L*°(0,1) with essential zeros such that
R(A) is not closed. For simplicity, let us assume

zo(t) = 1 0<t<1) (4.1)

in the following two situations. Then we can formulate the following results.
For proofs we refer to [§].

Proposition 3. For the solution (4.1) of equation (1.1) and the multiplier
function
m(t) = t 0<t<1)

we have with some constant R > 0 an estimate of the form

d(R) < Y= (R<R < )

for the distance function (2.4) of the pure multiplication operator A.

The situation of Proposition 3 corresponds to the case v = % in Example 2
and yields f(a) = O({/) implying the Holder rate O(V/6), which is order
optimal in that situation.

Proposition 4. For the solution (4.1) of equation (1.1) and the multiplier
function
m(t) = Vit (0<t<1)

we have with some constant R > 0 an estimate of the form
1
d(R) < exp (= 3R?)  (R<R<o)

for the distance function (2.4) of the pure multiplication operator A.
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Obviously, the situation of Proposition 4 corresponds to the case ¢ = % and

q = 2 in Example 3 and yields f(a) = O ( (Inl) ) For that situation our
alternative approach does not provide us with the order optimal convergence
rate f(a) = O (y/«). This is a drawback of the suggested method based on
Lemma 1. By construction of this approach we cannot obtain higher order
rates f(a) = O(a*) with p > 3. This is some kind of limitation for the
presented technique.

5. A New Theorem on Compact Operators and a Case
Study Concerning Simple Integration

In this section we focus on ill-posed equations (1.1) with compact opera-
tors A which are characterized by the singular system {o;; u;;v;} of A. Here
01 > 03 > ... > 0 denote the ordered singular values of A with o; — 0 as
i — 00, Au; = o;v; and A*v; = o;u;, where {u;} C X and {v;} C Y are the
orthonormal eigensystems of A*A and AA*, respectively. First we present a
theorem which shows that the converse result on distance functions d(R) for
general operators A formulated as Proposition 2.6 in [8] can be improved in
case of compact A. As a consequence of this new theorem it becomes evident
that possible decay rates of power type for d(R) — 0 as R — oo are completely
determined by the asymptotic behaviour of the Fourier coefficients (g, u;).

Theorem 1. Let the injective linear operator A : X — Y of equation (1.1) be
compact with the singular system {o;,u;,v;} and let, for given y € R(A),
the uniquely determined solution xo € X of (1.1) satisfies the condition
xo &€ R(A*). Then a general source condition of power type

zo = (A*A)% w (we X) (5.1)
implies for every exponent 0 < n < 1 the estimate
d(R) < K/R™  (0< R < ) (5.2)
with some constant K > 0.
Proof. For xy ¢ R(A*) based on the Lagrange multiplier method we have
d(R) = A(R) || (A" A+ A(R)D) a0,

where A = A(R) > 0 is for all R > 0 the uniquely determined solution of
equation
R® = ||A(A"A+ X)) tao . (5.3)

As already mentioned in [8, Proof of Lemma 2.5] this gives the formula
d(R) = f(MR)). (54)

On the one hand from (5.1), (5.4) and Proposition 1, taking into account that
©(t) = t? is concave for all 0 < 17 < 1, we immediately derive an estimate
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d(R) < (A(R))"?|w]. (5.5)
Because of the well-known equivalence
x90 €ER ((A*A)%> — i M < 0o (5.6)
i=1 Uz'2 !

(see [4, Proposition 3.13]) we have from (5.1) that

and hence the estimate

2 ,2(141) y1-n

A(A* A I —1 2 _ <x07ui> 3 n—1 < A yn—1
(| A( + ML) o] ; o2 (02 4+ \)2 AT SCOANT,

. o2(+n) y1-n
since ~ e

On the other hand, we easily see that A(R) < A(R) for the solution A(R)
of equation (5.3) whenever A\ = A(R) > 0 denotes for all R > 0 the uniquely

determined solution of equation

< 1 is a consequence of Young’s inequality.

RZ=C "1,

Then we have A(R) = CR#"7 with C' = (C’)ﬁ Taking into account (5.5)
this provides us with a constant K > 0 such that (5.2) is valid. H

Remark 1. As a complement to Theorem 1 we obtain from Example 2 in Sec-
tion 2 that an estimate of the form (2.11) with some fixed 0 < v < 1 can
only hold if z, satisfies source conditions of the form (5.1) for all 0 < n < .
Namely, from (2.11) we had found an inequality of the form (2.12) which im-
plies (5.2) for all 0 < n < v (see [19]). More precisely, for an element zy € X
with

o (0, us)?

0<78up::sup{7>0:2027<oo}<1 (5.7)

i=1 i
we have estimates (2.11) of the distance functions d(R) if and only if
0 < v < Ysup, i-e., via the value 7,,;, there is a one-to-one correspondence
between maximal power type decay rates of the distance function d(R) — 0
as R — oo and maximal power type decay rates of the error function f(a) — 0
as a — 0 of Tikhonov regularization.

In the remaining part of this section we are going to illustrate the theory
by some case studies concerning the simple integration operator

(A (s) = /x(t) it (0<s<1) (5.8)
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mapping in X =Y = L?(0,1) with explicitly available singular values
o=~ — o~ iTh (121,20 (5.9)

and eigensystems
ui(t) = V2 cos ((i — %)wt) , vi(t) = v2sin ((i — %)mﬁ) (0<t<1). (5.10)

Then the degree of ill-posedness of a corresponding equation (1.1), the solution
of which corresponds to the problem of finding the first derivative, is one and
the problem is mildly ill-posed (for more details see, e.g., [9]).

We return in the sequel to the specific source condition (2.5) which can be
rewritten for the integration operator (5.8) as

1

zo(t) = [A*0](t) = /v(s) ds  (0<t<1) (5.11)

t

with ||v]| 2., < Ro. This is equivalent to zo € H'(0,1) with ||2{]| .20, < Ro
and x0(1) = 0 requiring a smoothness and a boundary condition for the
function xo € L?(0,1) to satisfy (2.5).

Ezample 4. In this example for equation (1.1) with operator A from (5.8) we
are going to consider what happens with respect to the loss of convergence
speed in the Tikhonov regularization if a solution z( satisfying (2.5) is per-
turbed by adding a nonzero constant function ¢(¢) = ¢ > 0 such that the
homogeneous boundary condition z¢(1) = 0 gets violated. We assume the
specific situation

xo = A*v+ ¢, where (v,v;) ~o; and (c,u;) ~o; forc#0. (5.12)
Then in view of
(o, ui) = (A"v 4+ c,u;) = (v, v;) + (¢, uy)

( > 0?2 if ¢ =0,
o, Ui o; ifc#0.

it is evident that

Moreover, we recall that the equivalence (5.6) is valid for all » > 0. Now for
¢ =0 we have

Z 202~ oo if and only if Zi27’_4 < 00,

i=1 % =1

which is equivalent to 0 < 7 < 2 and 7., = 3 in the sense of (5.7). Con-

sequently we obtain in the unperturbed case ¢ = 0 the rate f(a) = O(a"/?)
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just for all 0 < 1 < 3. For an appropriate a priori parameter choice a(§) we
can get here e(a(d),8) = O(6%/°) for zg = A*v.
On the other hand, we have for ¢ # 0 in the perturbed case

Z U’fnl < oo if and only if Zi2"_2 < 00,
i=1 i i=1

which is equivalent to 0 < 1 < 1 and 7, = 3. This reduces the possi-
ble decay rates of the error function f(a) = O(a”/?) to the smaller interval
0<n< % Here, for an optimal a priori parameter choice «(d) we can obtain
e(a(d),0) = O(6%). Hence for z( from (5.12) the convergence rate exponent
jumps downwards whenever with ¢ # 0 the condition (2.5) gets violated. How-
ever, the jump altitude does not depend on the absolute value of c. Because of
Theorem 1 an analogous jump occurs for the maximal exponent in the power
type decay rate of d(R).

. n=50
10 : 10°
TV 3
||X05_X0”2,n 7”)(01 m_xollz,zoo
_1 3 ~ o
107" - - -l =Xl 1107l 5 i
0‘op/« 07N g 10 ”’”xaom Xoll2,100 jﬁ;
- 0181 2 I, “Xollz 0
107 107 o T
+ o5l
107 107}
107 107}
10757**%“# 107°L
6 -6
10 : 10 - .
107° 3 107 107° 510°

Figure 1. Error rates of Tikhonov regularization for solution zo(t) = (t — 1).

For a case study (see [12]) illustrating Example 4 we consider the family
of functions
zo(t) = (t—1)*+Ct+c (0<t<1) (5.13)

with arbitrary real constants ¢ and ¢, where we can compute the inner products
(x0,u;) explicitly as

(o, us) = V2 (E+ )ay(=1)"F + (2 = 9)o? — 203 (1)) (i=1,2,...)

with o; from (5.9) and w; from (5.10).
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If we discretize the operator equation (1.1) with A from (5.8) in an appro-
priate way by a linear system of algebraic equations with a system matrix of
dimension n x n and use the Tikhonov regularization for the discrete analogue
of (1.1) with solution (5.13) and ¢ = ¢ = 0, then we have (z,u;) ~ o2 and
can check the convergence rate behaviour by a numerical study. Using double-
logarithmic scales in Figure 1 we show some results of this case ¢ = ¢ = 0,
where discrete L? norms | - ||2,, in the n-dimensional Euclidean vector space
were used to measure the regularization errors.

In the left part of Figure 1 we compare for dimension n = 50 the total
errors e(a(d), 0) of the Tikhonov regularization for an a priori parameter choice
a(d) = C6 (solid line) and for an optimal parameter choice (dashed line). The
star-shaped line indicates as a benchmark the rate O(1/4). It is shown that
the optimal rate e(a(8),8) = O(5%/%) only takes place in the mid part of the
figure, whereas for larger ¢ the error seems to behave more like O(+/3). On the
other hand, we can see that for very small § the discretization errors dominate
the behaviour and they lead to a constant minimal error level. The right part
of this figure clearly shows that this minimal error level as expected decreases
with growing dimension n of discretization.

107 5 15‘5 16 16 5 16 10
Figure 2. Errors for solutions x;(t) = (t — 1)? + jt (j = 0,1, 2,3) and n = 300.

In Figure 2 we present results of another case of this study, where the
functions x;(t) = (t — 1)? + jt (j = 0,1,2,3) as perturbations of (¢t — 1)?
belong to the family (5.13) with ¢ = j and ¢ = 0. We denote by e; the
errors e(op(9),0) of the discrete Tikhonov regularization for solutions x;.
The star-shaped line with rate O(§'/3) serves here as benchmark. One can
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see that the perturbations in particular influence the results for 6 which are
not too small and were zoomed in the right part of the figure. For § > 104
we see a significantly smaller decay rate of the errors e, es and es compared
to the unperturbed case e.

The case study confirms that theoretically expected convergence rate
jumps between the perturbed and the unperturbed case also occur if we
consider a discrete version of Tikhonov regularization. However, for J small
enough the discretization error clearly dominates all other effects.

6. On Distance Functions with Alternative Benchmarks

By construction of d(R) in (2.4) the rates of f(a) — 0 as @ — 0, which
can be obtained by our distance function method, are slower than O(\/«)
(cf. Example 2 in Section 2). Hence the corresponding convergence rates in
the case of noisy data are slower than ©(1/3) and hence there is a considerable
gap to the saturation rate O(62/3) of the Tikhonov regularization. In order to
close this gap, we can replace the specific source condition (2.5) as benchmark
for the distance function d(R) by a general source condition (2.1) with some
index function ¢. Then we have to consider the associated modified distance
function

d(R) = inf {||zo — p(A*A)w| : w € X, |jw|| < R} (6.1)

with a new benchmark. Here, d(R) measures the violation of zy with respect to
the shifted benchmark. Based on formula (2.2) an analogue of Lemma 1 holds
whenever one of the hypotheses of Proposition 1 concerning ¢ is satisfied.

Lemma 2. Let ¢(t) (0 <t < ||A||?) be an index function that satisfies one of
the requirements (a) — (e) in Proposition 1 with the corresponding constant
K > 1. Then we obtain for the distance function (6.1) the error function
estimate of the Tikhonov regularization

f(@) = [[za =20 < d(R)+ Kp(a) R (6.2)
for all o > 0 and R > 0.

Proof. Let w € X with ||w|| < R. Then based on formula (1.2) and formula
(2.2) we can estimate by the triangle inequality as follows:

fla) = la(A*A+al)  zg—a(A*A+ o) p(A* A)w
+a(A A+ al) " p(A* Aw||

< Ja(AA+al) ™ (20 — p(A"Aw)| + [la (A"A+ al) ™ p(A* A)w|

< al (A A+al) | oo — p(A A)wl| + lla (A"A+al) ™ (A" A)w|
1 * *

< a—llzo — p(A"Awl + Ko(a) [[wl] < [lzo — p(A"Aw] + Kp(a) R.
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Since the inequality
fla) <llzo — (A" Aw| + Kp(a) R
also is true if we substitute ||xg — p(A*A)w|| by
inf {[lzg — p(A" A w] - we X, [wl| < R},
we obviously have (6.2). This proves the lemma. B

In particular for the interesting limit case ¢(t) =t we have the estimate

f(a) < d(R) + aR (6.3)

for all @ > 0 and R > 0. Along the lines of Examples 1 — 3 this may yield
all convergence rates which are slower than f(a) = O(a) provided that a
sufficiently rapid decay of J(R) — 0 as R — oo occurs. Then for noisy data
convergence rates can be derived which are arbitrarily close to the saturation
rate O(62/3).

In the forthcoming work of the first and the second authors and coauthors
we will study the consequences of Lemma 2 for examples and will extend the
applications presented in Sections 3-5 to the case of general benchmark func-
tions ¢ in (6.1). However, we should mention that the only consideration of
the limit case p(¢) =t in (6.1) with inequality (6.3) does not make superflu-
ous all the studies on ((t) = v/t and distance function (2.4) presented in this
paper. Namely, for example a range inclusion

R(e(G)) C R(AA),

which then would be required instead of (3.1), is more difficult to satisfy than
(3.1), because the range R(A*A) can be essentially smaller than the range
R(A*) under consideration in this paper.
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