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Abstract. In the interval [0, 1] function s, (z) = r sin 7z behaves similar to logistic

function h,(z) = px(1l — z). We prove that for every r > —Vﬂ:H there exists subset
A C [0,1] such that s, : A — A is a chaotic function. Since the logistic function is
chaotic in another subset of [0, 1] but both functions have similar graphs in [0, 1] we
conclude that it can lead to errors in practice.
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1. Introduction

Difference equations usually describe the evolution of certain phenomena over
the course of time. If a certain population has discrete generation, the size of
the (n + 1)-th generation z(n + 1) is a function of the nth generation x(n).
This relation expresses itself in the difference equation

2(n+1) = f(z(n)).

We start in the point x¢ and use the following notation

F(zo) = f(f(z0)),  f*(x0) = F(F(f(20)))-

Letting x(n) = f™(xo), we have
z(n+1) = " (wo) = f(f"(x0)) = f(z(n)).

The exponential models have only a limited predictive power in population
problems since as time passes the predicted population becomes so large that it
is no longer realistic. For most biological species it is valid that the population
increases until it reaches a certain upper limit. Then, due to the limitations of
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available resources, the creatures will become testy and engage in competition
for those limited resources. In 1845 Pierre-Francois Verhulst had offered for
investigation of population the following mathematical model

z(n+1) = pa(n)(1 — z(n)),

where z(n) is the size of a population at time n and p is the rate of growth of
the population. This equation is the simplest nonlinear first-order difference
equation but it describes a complicated dynamics. The quadratic function
hu(z) = px(l — ), z € [0,1], is called also logistic function. The logistic
function is widely studied (see, for example, [3, 4, 5, 6]).

hu(x) = pe(l —x),

—  sp(z) =rsinmz.

Figure 1. The logistic and sin functions.

The function
sp(x) = rsinmx

also has a similar behaviour in the interval [0,1], here » > 0 is a parameter
(see Fig. 1). If we fix 2y and consider the orbit

{zo, sr(x0), Sr(sr(20)),.-es

then similar to logistic function the dynamics of s,.(z) is very complicated.
There exist more functions with similar behaviour in [0,1], but we consider
sine function, because it is very popular to approximate real functions with
trigonometric series, especially by using Fourier series. Let D C R.

DEFINITION 1. (R.Devaney, [2]) The function f : D — D is chaotic if
a) the periodic points of f are dense in D,

b) f is topologically transitive in D,

c) f exhibits sensitive dependence on initial conditions in D.
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We prove that for every r > ——— there exists a subset A C [0,1]

such that s, : 4 — A is chaotic functio?l by Devaney’s definition. The chaotic
function preserves a certain amount of regularity and mixes the domain well.
Even very small changes in the initial position may result in dramatically
different results in values of the iterated function.

2. The Dynamics of Sine Function
VT

In this section we prove that for every »r > ——— there exists a subset
7r

A € [0,1] such that s, : A — A is a chaotic function. At first, we clear
up conceptions of the Devaney definition of chaotic functions (see [3]). Let
D CR.

DEFINITION 2. Let A be a subset of B C R. Then A is dense in B if for each
point « € B and each ¢ > 0 there exists y € A such that |z — y| < e.

DEFINITION 3. The function f: D — D is topologically transitive on D if for
any two points x and y in D and any € > 0, there exists z in D such that
|z —z| < e and |f"(z) — y| < € for some n.

DEFINITION 4. The function f : D — D exhibits sensitive dependence on
initial conditions if there exists a § such that for any « in D and any ¢ >
0, there is a y in D and a natural number n such that |z — y| < ¢ and

|f"(x) = [ (y)] > 6.

The result by Banks, Brooks, Cairns, Davis and Stacey [1] demonstrates
that when the domain of definition of a continuous function is infinite, then
the density of periodic points and topological transitivity imply sensitive de-
pendence on initial conditions.

Theorem 1. ([1]) Let D be an infinite subset of the real numbers and f :
D — D be continuous. If f is topologically transitive on D and the periodic
points of f are dense in D, then f is chaotic on D.

In our case s.(z) = rsinma is continuous function in segment [0,1]. If
the function f is differentiable at each point of D C R and both f and f’
are continuous then f is said to be continuously differentiable or to be a C*
function. For this class of functions the following result is valid.

Theorem 2. ([5], p.38-39, Theorem 5.2 and 5.3) Let f : R — R be a C!
function and I, ..., I, be p disjoint closed bounded intervals with p > 2. Let
J= U?zllj. Assume that f(I;) D J for 1 < j < p. Also assume that there is a
constant A > 1 such that |f'(x)| > X forx € JNf~1(J). Let A =N, f~*(J).
Then the following statements are valid: a) A is a Cantor set, b) the set of
periodic points of f is dense in A, c)f is topologically transitive on A.

We consider the set A; = [0, Larcsin1] U [1 — Larcsind, 1] (or A; =

)

{z|sr(x) is in [0, 1]}, » > 1). Now we prove the following proposition.
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Proposition 1. If s,(z) = rsinmz and r > ——— ~ 1.05, then
77
inf{|s](z)||x € A1} > 1.

Proof. The derivative of s, is given by s\.(z) = rrcosma. Also the estimate

sl'(z) = —rr?sinmz < 0 is valid for all z €]0,1[. So the smallest value of

|s/.(x)] on Ay occurs where s,.(z) = 1. Solving equation

1=s.(z) =rsinmx

1 1 1 1

we get o = — arcsin — and x; = 1 — — arcsin — (see Fig.1). For these points
™ r ™ r

we have

sy.(xg) = rm cos (m - 1 arcsin l) — /21,

m r
1 1

si(xy) =rmcos (m- (1 — = arcsin =) = —m\/r2 — 1.
m T

We need to satisfy the inequality | s/.(zo1) |= 7vr? —1 > 1. From it we find

/2 1 /2 1
r > L Therefore if r > vrtl then
T T

inf{|s/.(z)] |z € A1} > 1.
]
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Theorem 3. If r > ———— > 1, then there exist a subset A C [0,1] such
T
that s, : A — A is a chaotic function.

Proof. The function s,(x) = rsinwz is a C! function. Since
1 1 1 1 1
Tog= —arcsin— < - <x; =1 — — arcsin —
s r 2 T r
(see Fig.1), then
1 1 1 1
I, = [0, —arcsin —] and I = [1 — — arcsin —, 1]
T r s r

are two disjoint closed bounded intervals. Besides s,(I;) D Iy U I, j = 1,2.
By Proposition 1 there is a A, = inf{|s/.(x)| | « € A;} > 1 such that for
x € (I Uly) Ns,; (11 UL) we have |s..(x)| > \,. Then by Theorem 2

A= ﬁziosr_k(ll @] IQ)

is a Cantor set, that is, it is an infinite subset of the real numbers, and s, :
A — A is continuous. By Theorem 2 the set of periodic points of s, are dense
in A and s, is topologically transitive on A. From Theorem 1 it follows that
s, is chaotic on A. B
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We
1.

ie.,
iteration of s,.. If r =
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make three remarks.

Suppose we have 100 points of graph of function s,(z) = rsinwz, r >
Vr®+1 and we do not know that exactly this function is considered. What

is g possibility that if we make approximation we choose s,.? Graphics of
s, and h,, are similar (see Fig. 1 in case r = ). Since quadratic function
is more simple, therefore it is high possibility that we make approximation
with quadratic map. If this quadratic map is h,, = pz(1 — ), p > 4, then
we know that there exists a subset A;, C [0,1] such that h, : Ay, — Ay is
chaotic ([3, 5]). Also there exists a subset A, C [0, 1] such that s, : 4, —

Ay is chaotic. But Ay, # A (for example, if r = % then

1 o1 1 o1
r9 = —arcsin—, x; =1 — — arcsin —
T T s T

belong to A, but not to Ay).

. The function s,(z) = rsinwa, x € [0, 1], has the following properties:

(1) it is smooth function and s, : [0,1] — R,

l //1 _ 2
2ands,.(2)— rme #£ 0,

2)
(3) it is monotone in segments [0, Z,,[ and |@.,, 1],
(4)

it has maximum point x,, =
4) it has negative the Schwarz derivative, i.e., Vz € [0,1] \ {z,}

s =20 -3 () =03 (33)) <

T T

By [4] in this case there exists bifurcation diagram for s, and it is similar
to hy.

. Let hy(x) = pax(1 —x), p > 4, and let A, C [0,1] is a set in which A, is

chaotic. It is known that if z ¢ A, then the limit of 2j;(z) is equal to minus

infinity as n goes to infinity ([3, 5, 6]). Let s,.(z) = rsinmz, r > ¥YT+=2

and let A, C [0,1] is a set in which h, is chaotic. Since |rsin m:\ <1 then
if © ¢ A, then the limit of s!'(x) is not infinity as n goes to infinity. This
is a very interesting difference.

1
For example, we consider point z,, = 3" If r € N then

1 1 1
sr(f):r>1, 33(7):7*5111777':0, sf(f):(), k> 2,
2 2 2
T, is eventually fixed point and z,, returns to the interval [0, 1] under
5, m € N and m is an odd number then
m
1 m 2(1) m . mT™m 9 m=1+dl,l1eN, 31)_m
2 27

2 2 —% m=3+4l,1 € N,



40 1. Bula, A. Vintere

1+ 41 1
We see that if r = +T’ [ € N, then z,,, = 3 is eventually a fixed point but

344l

1
it does not belong to [0, 1]. If r , 1 €N, then z,, = 3 is eventually a

periodic point with period 2 and it also leaves the interval [0, 1] under iteration
of s,.
Generally, if » > 2 then there exist two points x1, x5 € [0, 1] such that

sr(x1) = sp(x2) = 2, sf(zl) = sf(:rg) =rsinrm =0,

i.e., 1 and xo are eventually fixed points and they return back to the interval
[0, 1]. We also remark that if > 2 then for every y €]1, 2] there exist x3 and
x4 in [0, 1] such that

sp(x3) = sp(za) =y, si(ws) = s2(z4) € [-1,0].

Since s.([—1,0]) = [-7,0] and s.([—2,—1]) = [0,r] then there exist points
such that they leave the interval [0, 1] in the first iteration and return back to
the interval [0, 1] under iteration of s,..

4. Conclusion

We conclude that functions with similar graphs have different "chaotic" prop-
erties. If we make approximation of real data with one chaotic function but in
reality this data was generated by another chaotic function then it is possible
that the errors of our forecast are higher than we expected. In the case of
chaotic functions the long-term forecast is not possible and we can not define
precisely exact functions thus the choice of models with chaotic functions is
unpredictable.
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