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Abstract. The present research is devoted to some polyconvolutions generated
by various integral transforms. For example, we study convolutions of the Hankel
transform with the following factorization properties:

Hy[h](z) = Hu[f](@)Hurv[g)(2),  Hopm[h](z) = 27" Hopm [f](z)Ho 9] (),
H, [h](z) = & "Hu[fl(2)Holg](z),  Hulhl(z) = & Hy [f](z)Hy[g](2),

where H,[f](x) is the Hankel transform. Conditions for the existence of the con-
structed polyconvolutions are found. The results of this research are applied for
solvability of ODEs and PDEs by the method of integral transforms. The derived
constructions allow us to solve various nonuniform equations.
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1. Introduction

The Hankel transform is the most extensively studied area of the theory of
Bessel transforms. This transform is used to solve many problems of mathe-
matical physics. It is defined by the integral

Fy(u) = Hy [f](u) = / fOtl(utydt, zeR,, (L1)
0

where J,(z) is the Bessel function of the first kind of order v, Rev > —1/2.
With the help of the definition of polyconvolution, or generalized convolu-
tion, we can construct various polyconvolutions generated by transform (1.1).
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This definition was first introduced by V.A. Kakichev in 1967 [8]. This is the
key definition of the present research.

DEFINITION 1. Let A;, A; and As be operators. The generalized convolution
of function f(t) and g(t), under Ay, As, Az, with weighted function «(z), is

the function h(t) denoted by ( fa, *g A2) N (t) for which the following factor-
3

ization property is valid:

(am) = 4s | (12, F8.) | | @) = alo)ti o) d20) o),

3

In case of the Hankel transform we denote polyconvolution by ( fu * gn) (t)
v
if it satisfies the factorization property

(@) = H, [ (£ 90) | @) = 2*H,[f]@)H,[g](@).

The classical convolution of the Hankel transform was first introduced
by Ya.l. Zhitomirskii in 1955 [16]. In 1967 V.A. Kakichev constructed this
convolution with help of definition [8].

The explicit expression of this convolution is

s oo

(fu * gu)y(t) = 21,\/%1—1?:_,'_1/2) }J/Singusdso/f(T)

g (V2 + 712 —2tTcoss)
X
(12 + 72 — 2tT cos s)l'/2

vt dr

The Hankel transform is the Mellin convolution type transform. There are
many works, which are devoted to study of these transforms and their convo-
lutions (see, for example, 7, 13, 15]). A number of convolution constructions
involving the Hankel transform was derived by N.X.Thao and N.T.Xai [12].
Some polyconvolutions obtained by the author with the help of an approach
by V.A. Kakichev were given in [9].

2. The Generalized Convolutions of Hankel Transform

The polyconvolutions with the factorization properties

H, [h(z) = =7 "H,[f1(z)H,[g](2), Hu[h](z) =2~ "H,[f](x)H,[g](z). (2.1)

were introduced in [4]. Let us consider the functions
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hi(t) :t_”//u”f(u)g(v)Pl(t;u,v) du dv
lu—v|<t<u4v
-t [ du | uf(u)g(v)@Q1(t;u,v)dv, (2.2)
[*]
[e%e] t+v
ha(t) zt”_l/dv / uVTf(u)g(v) Py (t; u, v) du

0 jeu|

— / dv / w T ()g()Qa(twv)du,  (23)

0 t+v

where

1 —v o
P(t;u,v) = —0v" p'/? (coss;) sin” V2 s; | (2.4)

\/E pn—1/2

2 v=1)mw -y -
Qi(t;u,v) = 71_3—\//_2 sin{(u - V)w] e Ty Qi/_zl/Q(ch ri)sh? "2 (2.5)

i=1,2, P/(z), Q}(x) are the associated Legendre functions of the first and
second kind, respectively, and

Quv cos 81 = u? + v? —t2, Quvchry = 2 — u? —vQ,

2tv cos 59 = £ + v2 —uQ, 2tvchre = u? — 2 — 2.

Consider the following theorems which present the conditions of existence
of polyconvolutions (2.2) and (2.3).

Theorem 1. Suppose that \tf(t), Vtg(t) € L(0,0) and Rev > 1/2,
Rep > (2Rev — 3)/4. Then the function hy(t) exists and the following fac-
torization relation is valid.

Hy [h](x) = =~ "Hy[f](x)H,[g](x) -

Proof. It is well known that [10]

o0

/xl_”Ju(a:t)J#(xu)Jﬂ(xv) de =1, (2.6)
0

where Re p > —1, Rev > —1/2,

0, 0<t<l|u—uv|,u,v>0,

ul/—l

vtY
u’~ 1

vt?

Pi(t;u,v), |lu—v<t<u4wv,uv>0,

Q1(t;u,v), t>u4v, wu,v>0
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and the functions P;(t;u,v) and Q1(¢;u,v) are defined by relations (2.4)
and (2.5), respectively.

Using the asymptotic expansion of Bessel functions of the first kind (see,
for example, [1]), we can easily show that there exists a positive number C;
independent of ¢ € (0, 00) such that

WVtT, ()| < C1, Ve (0,00) (2.7)

and t7VJ,(t) € L(0, 00), for Re v > 1/2. Therefore,

N N

/ a7V (wt) T (wu) T (wv) de| < % /

0 0

2 tRev—1
SCt /‘,,J (2)

where C' is independent of ¢, u,v and N.
Since Vtf(t), vtg(t) € L(0, c0), we obtain

x VI, (xt)| dz

CtReu 1

Vuv

dz <

ha(t)] < Ctﬁeufl//\/wf(u)g(u) dudv < oc. (2.9)
0 0

Thus, the function h(t) defined by expression (2.2) exists. Let us now
prove the validity of factorization relation (2.1). It follows from (2.8) and
(2.9) that the Lebesgue theorem on the convergence under the sign of the
integral is applicable in our case and

o0

//uvf /xl Y (xt)d, (zu) g, (zv) dz du dv

0
=/ 2], (at)a ™ H, [ f)(0) o)) da (2.10)
0

Here we have also used the theorem on the existence of the Hankel transform
of the function f(t) belonging to L(0, co) with weight /% (see [13]). Tt is well
known that

H,[fl(z) = O@="), x— 40,
for \/tf(t) belonging to L(0, co) (see [6]). Therefore,
H(x) = 2 "H,[f](z)H,[g](z) = O(=*7"), x— +0. (2.11)

On the other hand, applying inequality (2.7) and taking vtf(t) € L(0, o)
into account, we obtain



General Convolutions of Integral Transforms and their Applications 27

H,[f](x)| < %7}@%)‘ \mwt ‘dt< % x € (0,00),
)

where (1 is independent of z and p.
Similarly, H,[g](z) = O(z~/2). Thus, H(z) = O(z7"7!) for all z € R.
In particular,

H(z)=0(x"""Y), z— +oo. (2.12)

Therefore, for Re v > 1/2 and Re u > (2Re v — 3) /4, it follows from (2.11)
and (2.12) that \/zH(z) € L(0, c0); formula (2.10) can be rewritten as hq (t) =
H,H[H (2)](2).

Further, applying the theorem on the inversion of the Hankel transform in
the class L(0, co) with weight \/z (see [13]), we can write the function H(x)
as follows:

H(z) = Hy[h1(t)](z) - (2.13)

Formulas (2.11) and (2.13) yield factorization relation (2.1). The theorem is
proved. l

The following assertion can be proved in a similar way.

Theorem 2. Suppose that \/tf(t), tg(t) € L(0,0) and Rev > 1/2,
Reup > Rev — 1. Then the function ha(t) exists and the following factor-
1zation relation is valid

Hy[ho](x) =« "H,[f](x)H,[g](x) (2.14)

The other convolution construction generated by the Hankel transform is
the polyconvolution with the factorization property

Hytm[h](2) = 27 Hypm [f](2)Hy [g] (2). (2.15)
In this case we prove the following theorem [5].

Theorem 3. Suppose that V/tf(t), Vtg(t) € L(0, o), g(t) is the continuous
function with o bounded variation on any interval (0, R) and Rev > 1/2.
Then the polyconvolution

2v=1vm! I (v .
h(t) = ———= T2 +m) /C (cos s) sin?

)

x/f \/t2+72—2tTcoss)TV+1dT
(t2 4+ 72 — 2tT cos 5) 2
0

exists and factorization relation (2.15) is valid. Here C% (z) is Gegenbauer’s
polynomial.



28 L.E. Britvina

Proof. The function

H(z) = 2~ "Hyom[f](z)H, [g](2).

belongs to L(0, co) with weight v/t for Rev > 1/2 (see [5]). The inequal-
ity Re (v +m) > —3/2 is true for Ym € Ny and Vv, Rev > 1/2. Therefore,
the function

h(t) = H, 1, [H(2)](t)
exists and h(t) is continuous and bounded for all ¢ € R;. We obtain

o0

W) = / S VHy o [)(@)H [g] () Ty (t)
0

o0 o0

:/Tf(T)/Hu[g](x)xl_”Ju+m(a:t)Ju+m(xT) dxdr.
0

0

It is known that [14]

ov=1,vpv 'F
Jytm (@) Jyim(b) = — ZVTm /C cos 5) sin?

J, (Va2 + b2 — 2ab cos s)
(a2 + b2 — 2abcos )2

ds, Rev > —1/2. (2.16)

Using formula (2.16) we find explicit form (2.16) for the polyconvolution h(t).
The theorem is proved. B

Sometimes we need to introduce the differential operators [2]

d\" k

Npoy=t'{— | t™7, 8¢ —=[Np_vNmoviml®, 2.17

) by = NN ] 2.17)

which allow us to find the conditions of existence of generalized convolutions.
These operators possess the following properties:

k k
) Sm v = Sm —v Skm,ua

1 n
where S, , = S, , = S7, = [

d? n 1d 21"
dt? tdt t2

b) Nm, :tu+kmNm, iu+(kfl)m---Nm, :I:u+mNm, +v — Nm(kJrl), +v+km -

It should be noted that some special cases of these operators occur in
the main equations of mathematical physics, for example, in elasticity theory.
Using properties (a) and (b), it is readily verified that all well-know differential
operators related to the Hankel transform can be expressed in terms of Ny, +,
and Sy, . Therefore, we restrict ourselves to operators (2.17).
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Suppose that C (0, 00), is the set of functions f(¢) with continuous deriva-
tives on the interval (0, 00) such that the following asymptotic estimates hold

[2]:
f&)=0@{), t—=+0, f(t)=0(t"), t— +oo.

Further, p, A € R, p > 3/2 and A\ > —1/2. In this case we can construct,
for example, the polyconvolution with the factorization property

Hy [h)(z) = Hu[f](2) Hyuo [9] (). (2.18)
Theorem 4. Suppose that /tf(t) € L(0, oo) and

VENs & () +29(t) € L(0, 00),  Ni i (upi)+9(t) € Cx(0,00),,
k=0,1, Rep > —1/2, Re (4 v) > —1/2 + max {0, 72},

then the polyconvolution

/2 [e%s}
21ty / ;
h(t) _ —/ez(#—u)s costt? S/f \/2 215 1 120 ZS)COS S)
™
—7/2 0

. PNk 7
x (%™ +t%e %) = rtldrds (2.19)
exists and factorization relation (2.18) is valid.

Proof. Using the definition of polyconvolution and the definition of Hankel
transform we obtain

h(t) = Hy ' [H, (] (2)Hyps o] / H [](@)Hy 0 [g] (@), (at) da
0

_ / / PO [0)(@) Jy () o (e7) de dr dz. (2.20)
0 0

Let us prove the existence of function h(t).

Ih(t) / /Mf ) IWZ ()| [Vt m||f i lgl(@)]
%
<2 / [y [g) (@) do / NZ Gl (2.21)

Here we have used inequality (2.7). Function H,1,[g](x) belongs to L(0, co)
with weight /¢ (see [3]). Therefore,

nio)] < <L gl @)IHVTF (@)l < o0, t > 0.

\/— HH,LH—V
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Thus, the polyconvolution h(t) defined by expression (2.19) exist.
Let us now find the explicit form for the function h(t). Using formula
(2.12.27.10) from [10]:

/2
2#+Va,ubu / iv)s iy ey
Tuae) gy (be) = T [ ot cost s ()] H s ep(s)) ds,
—m/2

Re(p+v)> -1, a,bc>0

and the theorem on the inversion of the Hankel transform in the class L(0, co)
with weight /z (see [3]), we obtain the explicit form (2.19) for the polycon-
volution h(t). The theorem is proved. B

3. Application of Polyconvolution to ODE and PDE
Problems

The results of this research are applied for solvability of ODE and PDE by
the method of integral transforms [11]. The derived constructions allow us to
solve various nonuniform equations.

Consider the equation

> arllu(t) = f(t), (3.1)
k
where £ is a operator. For example,
dFu(t
Lru(t) = dZ’E ) r L(t) = u(t — wy).
The solution of this equation can be represented as a polyconvolution
u(t) = (e $m) ®). (3.2)

Ezample 1. Consider the equation (3.1) with the differential operators (2.17)
LER(t) = Sk h(t), k=0,1,2,...n, tcR,

and zero conditions. Then

and the solution of this equation is given by
u(t) = (£, ¥ 0.) .

Ifn=1a =a,a1 =1, 1/2 < Rev < 3/2, then we have the following
equation
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Lu d 2
Ffjjué <:—2—a)u(t):f(t).

Applying the results given above we obtain
Sl Yo (lelt), ifa=c?,
—|le|* K (|c|t), ifa = —c?,

where Y, (z) and K, (z) are the Bessel function and the modified Bessel func-
tion of the second kind of order v, respectively. Then

u(t) = eV \/_ sin? sds/f

(v + 1) +1

Y, (le]V/t2 + 72 — 2t7 cos s)

1/+1d — 2
(2 +72 —2trcossy/z | T 1T
and
e /’T /°°
wt)=———1 [ sin? sds
®) 2yl (v +3) i
0
K, (|e|[vt2 + 72 — 2tT cos s
(| v )TV+1dT, a=—c.

(t2 + 72 — 2t7 cos s)V/?

Example 2. Let us consider the equation

0? 0? 10 b2
(ot )+ (v ) vttt = 1)
2

ot? Ots?  to Oto
with the following conditions
u(+0, tQ) = UO(tQ), u;l (—FO, tQ) = ul(tg).

The solution of this equation is given by

u(ti, t2) = (f * )L (1, t2) + (uo * e, )u(tr, t2) + (ur * 9)u(t1, t2)

= (f*Y)Lu(t1,t2) + aitl(uo x 1), (t1,t2) + (w1 * ), (t1,t2),

where L is the operator of the Laplace transform and
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_ 1 1971 é-y
vihet) = LH, [P2+b2§2+c]’

(f V)L (t, t2) = 21’\/—1‘ il /d5/81n2” Sds/f £,0)

LWt — & VB + P — 2 cos s)

v+1
(3 4 (2 — 2t3C cos 5) 2 ¢
t T 7
(ur 5+ )(tr, 1) = ——=—2—5 [ sin® sds [ up(C)
2 \/EF (V + 5) O/ 0/

W(t1, /13 + (% — 2t2( cos s)

— ("Td¢, k=0,1.
(t3 4+ ¢2 — 2taC cos s)2 ¢ ¢ ’

If c=~2 >0,y € R, then

|’Y|V+ltu 2,2 2\—x—L 2,9 2 |’Y| 242 2
Y(tr,t2) = N 07ty —t3) 2 (b7t —t3)J 1 ol bty —t5 | .
If ¢ =0, then
2Y\/mt 1
bltnte) = o2 (f_? O~ ) ).

Ezample 3. Let t1,t2 € Ry, —1/2 < Rev < 5/2. Then we consider the follow-
ing equation

Pu L, (0 10 2\
8_tf+a <8_t§+58_tg_g) u(ty, t2) = f(t1,t2)

with the conditions
u(—f—O,tg) = ’U,O(tg), Uty (+07t2) = ul(tg).

The solution of this equation is given by

D (ug % @) (s t2) + (r % D) (b 1),

u(ty, t2) = (f *¥)Lu(t1,t2) + 9t

where
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(F sl te) = e / ¢ / sin? sds / £€.0)

L Wt — & VB + %~ 2aCcoss)

v+1
(t3 + (2 — 2ta( cos s)v/? ¢ dg,
tl/ 71' oo
(up * )y (b1, t0) = ———2—— [ sin® sd ©
Uk 1,02 QV\/EF(I/_A'_%)E)/NH SSO/uk

Y(t1, /13 + (2 — 2ta( cos s)
(3 4+ ¢2 — 2taC cos s)v/?

¢rtrde, k=0,1;

w(tlatQ) = L*lH;l [é-yw(p7 f)] (tlatQ)
124 1 . 7w v 1 v to*
= - —_— F - .=, 1’ I~
gty v o 2(2’2’2Jr " 64a2t?

INCE: 1 o (V—Fl.:’) v+3 tod )
142 PPN -
2 2

_ cos £
2vH3|q|v 24 v 4 1 2

Thus we obtain

1 12
—Si|——2—], if v=0
2[a] ( 4|a|t1>’ e

P(t,t2) =
(b1, t2) 1. t3 .
——sin | —— |, if v=1,
|a|t2 4|0,|t1
where
< t
Si(x) :/¥dt
0
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