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Abstract. The article concerns with a model discribing the growth of a biofilm
made by chemotactical bacteria within a saturated porous media and affects the
flow through the pores. The underlying model describing this process on the macro-
scale is derived in [21]. Therein also solvability in a weak sense and boundedness of
solutions with high regularity is investigated. This current paper verifies the existence
of bounded weak solutions in case of less regularity assumptions on the data.
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1 Introduction

In porous media, biofilms, which attach on the surface of the solid matrix,
occupy pore space. Since microbial biofilms can significantly affect the hy-
drodynamics (porosity, permeability, diffusivity, etc.) of a porous medium,
cf. [7], they also influence the flow as well as the mass transport of dissolved
substances within the pores. Thus, such microbes can be used in building bio-
barriers that restrict the flow of ground water, e.g. to control the propagation
of contaminants. Besides, in filter systems they lead to an unwanted decrease
in efficiency (biofouling). Further examples of the beneficial applicability of
biofilms in porous media are subsurface remediation, carbon sequestration, and
enhanced oil recovery.

In terms of non-rigid porous media, the literature offers only a small number
of analytical results. Upscaled diffusion–precipitation equations with effective
coefficients coupled with a level set equation are considered in [22]. An effective
model describing biofilm growth in porous media is already derived in [20], but
neglects completely chemotactical effects.
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Some bacteria even are able to move chemotactically, thereby is chemotaxis the
ability of organisms to direct their movements according to certain chemicals
in their environment. The significant role of chemotaxis of bacteria in porous
media has been studied by numerous researchers, see e.g. [6, 10, 27]. Indeed,
the averaged bacterial velocity caused by chemotaxis is of a similar scale as
the averaged velocity of groundwater flow in fine-pored soil: ∼ 1m/day. The
chemotactical movement is controlled in such a gradient in the direction of
higher concentrations of attractive substances:

∇ · (bχ(n)∇n) ,

where b is the concentration of bacteria, n is the concentration of attractive
substances and χ(n) := χ0K

(K+n)2 denotes the chemotactic sensitivity for some

constants χ0,K > 0. Owing to this high order nonlinear term, chemotaxis leads
to mathematical difficulties which have been investigated by several authors,
see e.g. [1, 3, 4, 13, 32]. For example, it is well known that classical solutions to
the so called Keller-Segel system{

∂tb−∆b+∇ · (b∇n) = 0, in Ω × (0, T ),

∂tn−∆n = −n+ b, in Ω × (0, T )

remain bounded when either the dimension is 2 or the total mass
∫
Ω
b0 of the

initial data is sufficiently small. In contrast, finite in time blow-up does occur
for large classes of initial data if one of these both conditions is not satisfied,
e.g. cf. [15, 30]. Hence, the boundedness of solutions to chemotactical systems
is of particluar interest. A possible way to overcome this difficulty is to add
a self-diffusive motility flux of the bacteria, i.e. the diffusion coefficient is
assumed to be bounded from below by cbb

m̄ for some cb, m̄ > 1, cf. [5]. Such
a regularizing effect can be justified since the random mobility of the bacteria
may increase for large concentrations. In [12, 25] such a chemotaxis system
is coupled with the Stokes equations and describes the motion of swimming
bacteria in an incompressible fluid. It turns out that in the two-dimensional
case marginal self-diffusivity m̄ > 0 suffices to entail a bounded solution to
this chemotaxis-Stokes model. However, to ensure the existence of a bounded
global in time weak solution to the three-dimensional model [2] determines a
lower bound for m̄ which is improved recently in [31] to m̄ > 7/6. In [26] this
condition is weakened to m̄ > 8

7 to obtain global-in-time weak solutions still
bounded within each finite time interval (0, T ). In this case, the solution may
become unbounded in the limit T →∞.

Let Ω ⊂ Rd, d = 2, 3, be a bounded domain with smooth boundary ∂Ω and
be filled with a saturated porous medium. In [21] the growth of a biofilm pro-
duced by chemotactical bacteria within this porous medium is considered and
an upscaled model for this evolution is formally derived. This model describes
the behavior of the flow, the biofilm, and the transport of mobile bacteria as
well as nutrients in ΩT := Ω × (0, T ):
Darcy’s law:

q = −K(θ)∇p, (1.1a)

∇ · q = −∂tθ.

Math. Model. Anal., 22(6):852–869, 2017.
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Transport equations:

∂t(θb) = ∇ ·
(
Db(θ, b)∇b− θbχ(n)∇n− qb

)
+ θ(Rmon,l(b, n)− b) +RI(b, n, θ), (1.1b)

∂t(θsn) = ∇ ·
(
Dn(θ)∇n− qn

)
− θRmon,l(b, n)− (θs − θ)Rmon,b(n). (1.1c)

Change of porosity:

∂tθ = Rb(n, θ) +RI(b, n, θ) (1.1d)

with homogeneous Dirichlet boundary conditions, i.e.

b = c = n = 0 on ∂Ω and q · ν = 0 on ∂Ω . (1.1e)

The unknowns of the above equations (1.1) are b, n, θ, v and p denoting
the concentration of the bacteria and the nutritious substances, the porosity
as well as the velocity and the pressure of the fluid, respectively. The hydro-
dynamic parameters namely the permeability K of the porous medium, the
diffusivity with respect to the bacterial transport Db and to the transport of
the nutrients Dn depend on the porosity θ. Due to the assumed self-diffusivity
of the microbes, the diffusivity Db is additionally depending on b. The change
of porosity is caused by inner reactions Rb (bacterial reproduction and mortal-
ity) as well as by de-/attachment reactions RI along the bioflim-fluid interface
at the pore-scale. Furthermore, Rmon,l and Rmon,b denote the bacterial repro-
duction within the fluid and the biofilm, respectively. The function χ describes
the chemotactical sensitivity. The clean surface porosity θs ∈ (0, 1) is the sum
of volume fractions of the fluid and the biomass.

The solvability in a weak sense (cf. Definition 1) is shown in [21] in the
two-dimensional case if slight self-diffusivity is provided. With more regularity
assumptions on the initial data unique existence global in time or at least up
to a possible clogging phenomenon is proven. Let us remark at this point that
(post-)clogging phenomena are not considered. In [21] the proof for bound-
edness of the solution requires sufficient regularity assumptions on the initial
data, cf. (2.5) below. These assumptions are necessary to control the nonlinear
chemotactical term. In more detail, an estimate

sup
t∈(0,T )

‖∇n(t)‖γ < C(γ) for all γ <∞ (1.2)

with an appropriate upper bound C(γ) is needed to apply an iteration proce-
dure of Moser type and hence obtain boundedness of b.

This current article verifies bounded weak solutions in case of less regu-
larity assumptions on the data. For this we use entropy-type estimate and
proceed mainly as in [25]. Together with a semigroup approach, this method
enables us to establish an estimate of type (1.2). Contrary to [25], including
the porosity requires an adaption of the applied estimates. Furthermore, we
extend this method to the three-dimensional case. Under rather weak regular-
ity assumptions on the initial data and a self-diffusivity of order m > 2

9 (d− 2)
we finally prove the existence of a bounded weak solution up to a possible
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clogging phenomenon. At this point we emphasize that the following investi-
gations and appropriate results may be obtained for general models describing
chemotactical movements in evolving microstructures. That means the porous
media is not restricted to change only due to biofilm growth but also because of
heterogenous reactions (dissolution of minerals [28], precipitation of electrical
charged particles [19], etc.).

Beside the intrinsic mathematical interest the result of this current article
is also of significance for real applications. The underlying biofilm-chemotaxis
model is not able to describe the behavior of a specific microorganism in detail.
Nevertheless, it presents the phenomenological interactions and importance of
several physical variables. In this sense, also this paper provides a qualitative
statement of corresponding solutions which is a first step for understanding the
investigated process.

This paper is organized as follows. In Sect. 2 we present the main results,
Theorem 1 and 2.3 on boundedness of strong solutions and on the existence
of bounded weak solutions, respectively. Next, in Sect. 3 we establish several
auxiliary lemmata. In particular, we obtain the useful estimate for ∇n of
type (1.2), see Lemma 4 below. Sect. 4 and 5 concerns with the proofs of
Theorem 1 and 2.3. Finally, the article ends with a brief conclusion.

2 Main result

Let us introduce the following function spaces

H1
∗ := L2(0, T ;H1

0 (Ω)) ∩H1(0, T ;H−1(Ω)),

H2
∗ := L2(0, T ;H2(Ω)) ∩H1(0, T ;L2(Ω)) ∩H1

∗ ,

Y := H1(0, T ;L2(Ω)), Z := L2(0, T ;H1
div ,0(Ω))× L2(0, T ;L2(Ω)/R) with

H1
div ,0(Ω) := {φ ∈ L2(Ω)2 | ∇ · φ ∈ L2(Ω) and φ · ν = 0 on ∂Ω}.

We denote the essential solution space by X0 := H1
∗ ×H2

∗ × Y × Z.
In the following the norm of the Banach space Lp(Ω), p ∈ [1,∞], is denoted

by ‖ . ‖p. All the rest of occuring norms below are denoted intuitively. Through-
out this article C describes positive constants, where the value may differ from
one occasion to another. The indices in the constant C(·, ..., ·) indicate the
dependence of parameters.

Before presenting the main results we define the reaction functions occuring
in (1.1). Let us introduce the notation [a]+ := max{0, a} for all a ∈ R, the
averaged macroscopic de-/attachment rates Rdet

att
as well as the following terms

RI(b, n, θ) := |ΓI(θ)| (Rdet −Ratt) , Rb(n, θ) := [θs − θ]+ (1−Rmon,b(n)) ,

which separate the processes leading to a change of the biofilm at the inter-
face RI from inner de-/increase Rb. Here |ΓI | denotes the specific surface of
the biofilm-fluid interface. Furthermore, we assume bacterial reproduction of
Monod-type

Rmon,l(b, n) := µl
n

1 + |n|
b , Rmon,b(n) := µb

n

1 + |n|

Math. Model. Anal., 22(6):852–869, 2017.
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and the chemotactic coefficient

χ(n) :=
χ

(1 + |n|)2
.

These definitions are motivated in [20, 21]. However, the following analytical
results hold more generally if the functions above are at least assumed to be
bounded and sufficiently smooth.

In the following we list several integrability and continuity assumptions on
the parameters K, Db, Dn as well as on the reaction functions. Let the interface
reaction rate RI be bounded, sufficiently smooth and a Lipschitz continuous
map RI : X̃ → L∞(ΩT ), depending on (b, n, θ) ∈ X̃ := L2(0, T ;L2(Ω))2 × Y,
i.e. for some constant L > 0 there holds the estimate

‖RI(b1, n1, θ1)−RI(b2, n2, θ2)‖L∞(ΩT )

≤ L‖(b1 − b2, n1 − n2, θ1 − θ2)‖X̃ (2.1a)

for all (bi, ni, θi) ∈ X̃, i = 1, 2. Also the Jacobian DRI : X̃ → L∞(ΩT )3

with respect to (b, n, θ) is assumed to be bounded and Lipschitz continu-
ous in the sense of (2.1a). Similar properties hold for the nonnegative func-
tions Rb, Rmon,l/b,Rmon,b and χ. To ensure θ ≤ θs and also nonnegativity of
the concentrations b and n an additional assumption on RI is needed, cf. [21]:

RI(θ) ≤ 0 for θ ≥ θs and RI(b) ≥ 0 for b < 0 , (2.1b)

that means in particular with respect to our underlying model that in case of
a clear surface attachment of bacteria is the dominant interface reaction.

The effective permeability K, the effective diffusivity parameters Db as well
as Dn are assumed to be symmetric, continuous and uniformly positive def-
inite with respect to θ within every interval [θclog + δ, θs], δ > 0, cf. [20],
where θs ∈ (0, 1) and θclog := inf{θ ∈ [0, θs) | ∂Y ∩ ΓI(θ) = ∅, x ∈ Ω} ∈ [0, 1).
Furthermore, we assume these maps depending on θ (and the derivatives) also
to be Lipschitz continuous with respect to their corresponding (co)domains:

K−1,Db,Dn : Yδ → L∞(ΩT )(d,d) , (2.2a)

where we define Yδ :=
{
θ ∈ Y | θ(x, t) ∈ [θclog + δ, θs] a. e. (x, t) ∈ ΩT

}
for δ > 0. Moreover, beside the “standard” diffusivity caused by the fluid we
additionally assume self-diffusivity of the bacteria, i.e. Db does not only depend
on θ but also on b in such a way that for some cb, Cb > 0 and M ≥ m ∈ (0, 2)

cb(|b|m + 1) ≤ Db(b, θ) ≤ Cb(|b|M + 1) (2.2b)

and the Jacobian of Db with respect to the argument (b, θ) can be estimated
by

DDb(b, θ)≤ Cb(|b|M + 1) . (2.2c)

Definition 1. A tuple (b, n, θ, q, p) ∈ X0 of functions is called a weak solution
to the upscaled model (1.1) if for all test functions (ϕ1, ϕ2, ϕ3) ∈ H1

0 (Ω) ×
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H1
div,0(Ω)× L2(Ω) and a. e. t ∈ (0, T ) there holds∫

Ω

K−1(θ)q · ϕ2 = −
∫
Ω

p∇ · ϕ2 ,

∫
Ω

(∇ · q)ϕ3 = −
∫
Ω

(∂tθ)ϕ3 , (2.3a)

〈∂t(θb), ϕ1〉H−1,H1
0

= −
∫
Ω

(
Db(θ)∇b− θbχ(n)∇n− qb

)
∇ϕ1

+

∫
Ω

(
θRmon,l(b, n)− θb+RI(b, n, θ)

)
ϕ1 , (2.3b)∫

Ω

θs(∂tn)ϕ1 = −
∫
Ω

(Dn(θ)∇n− qn
)
∇ϕ1

−
∫
Ω

(
θRmon,l(b, n) + (θs − θ)Rmon,b(n)

)
ϕ1 , (2.3c)∫

Ω

(∂tθ)ϕ3 =

∫
Ω

(
Rb(n) +RI(b, n, θ)

)
ϕ3 (2.3d)

and if (b, n, θ) takes the initial value (b0, n0, θ0) ∈ L2(Ω)3 in the sense

|〈b(t)− b0, φ〉L2,L2 |+ |〈n(t)− n0, φ〉L2,L2 |+ |〈θ(t)− θ0, φ〉L2,L2 | = 0 (2.3e)

for all φ ∈ L2(Ω) if t↘ 0.

We say a weak solution (b, n, θ, q, p) ∈ X0 is strong, if the triple (b, n, θ) even
belongs to the space

H2
∗ ×

(
L∞(0, T ;H2(Ω)) ∩H1(0, T ;H1(Ω))

)
× L∞(0, T ;W 1,κ(Ω))

for some κ > d. The additional assumption on θ guarantees the continuity of
the θ-depending parameters. Let us remark that a strong solution satisfies not
only (2.3c) but also∫

Ω

θs(∂tn)ϕ3 =

∫
Ω

∇ ·
(
Dn(θ)∇n− qn

)
ϕ3

−
∫
Ω

(
θRmon,l(b, n) + (θs − θ)Rmon,b(n)

)
ϕ3 (2.4)

for all ϕ3 ∈ L2(Ω) and a. e. t ∈ (0, T ).
In case of d = 2, [21] ensures boundedness of the solution for initial data

with high regularity

b0 ∈ L∞(Ω) ∩H1
0 (Ω) , n0 ∈ H1

0 (Ω) ∩H2(Ω) and θ0 ∈W 1,ρ(Ω) (2.5)

for some ρ > 2 +
√

2. On the other hand, for d = 3 sufficiently smooth initial
data lead also to a strong solution, but boundedness can not be verified with
the methods applied in [21]. Therein the inequality (1.2) is obtained via the
Solobev embedding W 1,d(Ω) ↪→ Lγ(Ω) for all γ < ∞. But the standard
parabolic L2-theory enables to estimate supt∈(0,T )‖∇n(t)‖H1 . However, strong
Lp-theory of parabolic equations lead to bounded (strong) solutions for smooth
initial data if d = 3.

Math. Model. Anal., 22(6):852–869, 2017.
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The purpose of this work is to prove for d = 2 the existence of bounded
global in time weak solutions to (1.1) corresponding to the initial data

b0 ∈ L∞(Ω) ∩H 1
3 (Ω) =: X , n0 ∈W 1,∞

0 (Ω) and θ0 ∈W 1,∞(Ω) (2.6)

if clogging does not occur during the evolution. Otherwise we show the exis-
tence of a bounded weak solution to (1.1) associating with (2.6) up to such a
clogging phenomenon. Actually, in order to reduce the regularity of b and n
we assume more integrability on θ0.

Beside the case d = 2, we deal with 3 dimensions. In this case we assume
the diffusivity parameter Dn to be independent of θ, i.e. Dn is a constant
tensor. But this models equality of the diffusivity in the fluid Dl and in the
biofilm Db. Experimental measurements show that Db/Dl ranges from 0, 2
to at least 0, 8 when water represents the fluid, cf. [23]. In [33] a scheme for
numerical calculation of this ratio is provided. However, the simplification of a
constant diffusivity tensor Dn, i.e. Db/Dl = 1, is less of practical importance,
but rather of mathematical interest. In this case, the transport of the nutrients
in pores with different biomass only differs due to advection, since the diffusion
coincides. As already mentioned, in the three-dimensional case we do not obtain
boundedness of strong solutions via the methods of [21].

An estimate of the L∞-norms for strong solutions is established for d = 2
in [21], where the upper bound depend on rather strong norms of the ini-
tial data. In order to transfer the property of boundedness from strong to
weak solutions, the L∞-norms should be estimated from above uniformly by
some C(‖b0‖X , ‖n0‖W 1,∞

0
, ‖θ0‖W 1,∞ , T ) > 0. However, the following result

yields such a wanted estimate for strong solutions.

Theorem 1 [Boundedness of the strong solutions]. Let (b, n, θ, q, p) be
a strong solution to (1.1) in Ω × (0, Tmax), Tmax ∈ (0,∞], corresponding to
nonnegative initial data (b0, n0, θ0) of type (2.6) and m > 2

9 (d − 2). Then for
all T < Tmax there holds

sup
t∈(0,T )

‖b(t)‖∞ < C(‖b0‖X , ‖n0‖W 1,∞
0

, ‖θ0‖W 1,∞ , T ) .

Proceeding as in [25] we approximate the initial data in (2.6) with a se-
quence of smooth initial data inducing bounded strong solutions. Owing to the
previous theorem, the L∞-norms of the approximative solutions may be esti-
mated from above uniformly by an appropriate constant. Then a compactness
argument yields the existence of a bounded weak solution (up to a possible
clogging phenomenon) corresponding to the initial data (2.6).

Theorem 2 [Existence of bounded weak solutions]. Let m > 2
9 (d − 2)

and (b0, n0, θ0) be a nonnegative initial data satisfying (2.6) with θ0(x) ∈
(θclog + δ, θs(x)) for a. e. x ∈ Ω. Moreover, let (2.1) and (2.2) be satisfied.
Then there exists a weak solution (b, n, θ, q, p) ∈ X0 solving equations (2.3)
either global in time (i.e. Tmax := ∞) or there exists an instant Tmax >
0 such that limt→Tmax

‖θ−1(t)‖∞ = θ−1
clog. In particular, the solution satis-

fies b(x, t), n(x, t) ≥ 0, θ(x, t) ∈
(
θclog, θs(x)

]
for a. e. (x, t) ∈ ΩTmax

and

sup
t∈(0,T )

‖b(t)‖∞ + sup
t∈(0,T )

‖n(t)‖∞ <∞ for all T < Tmax .



Boundedness in a Biofilm-Chemotaxis Model in Porous Media 859

3 A gradient estimate for n

First of all let us briefly introduce the following useful Lemmata. Boundedness
of n, θ and q is obtained easily:

Lemma 1. Let (b, n, θ, q, p) be a nonnegative weak solution to (2.3). Then n
and θ are bounded, i.e.

sup
t∈(0,T )

‖n(t)‖∞ + sup
t∈(0,T )

‖θ(t)‖∞ <∞ for all T < Tmax .

Proof. For γ ≥ 2 we test nγ−1 to (2.3c) and obtain with (2.3a)

1

γ

d

dt

∫
Ω

θsn
γ +

1

2
(γ − 1)‖n

γ−2
2 |∇n|‖22

≤ (γ − 1)

∫
Ω

qnγ−1∇n = −γ − 1

γ

∫
Ω

∂tθn
γ .

Gronwall’s Lemma yields

sup
t∈(0,T )

‖n(t)‖∞ = sup
t∈(0,T )

(
lim
γ→∞

‖n(t)‖γ
)
≤ 2

δ
‖n0‖∞ exp (‖∂tθ‖∞T ) .

The boundedness of θ follows directly from the boundedness of Rb and RI . ut

Lemma 2. Let (b, n, θ, q, p) be a nonnegative strong solution to (2.3). Then q
is bounded, i.e. supt∈(0,T )‖q(t)‖∞ <∞ for all T < Tmax.

Proof. We consider the elliptic equation −∇ · (K(θ(t))∇p̂(t)) = −∂tθ(t) in Ω
for a. e. t ∈ (0, T ). Owing to the continuity of K(θ(t)) ∈ W 1,κ(Ω) ↪→ C(Ω̄)
there exists a unique strong solution p̂(t) ∈ W 2,κ(Ω) satisfying ‖p̂(t)‖W 2,κ ≤
C(ρ,K)‖∂tθ‖∞, cf. [8]. Defining q̂ := −K(θ)∇p̂ ∈W 1,ρ(Ω) the tuple (q̂, p̂) ∈ Z
solves the equations (2.3a) and supt‖q̂(t)‖∞ ≤ C(K) supt‖∂tθ(t)‖∞ <∞. Due
to the uniqueness of solutions to (2.3a) in Z there holds (q̂, p̂) = (q, p). ut

In the following we establish a gradient estimate for n of type (1.2) if there
holds supt∈(0,T )‖b(t)‖γ ≤ C(γ). For d = 3 we apply [11, Lemma 1] or [9,
Lemma 4.3] since Dn is independent of θ. Instead of these articles a strong
solution n satisfies in the two-dimensional case the non-autonomous abstract
Cauchy problem{

∂tn(t) = A(t)n(t) + f(t), for t ∈ (0, T ),

n(0) = n0

with the operator A(t) := ∇ · (Dn(θ)(t)∇) − ρId : D(A(t)) → L2(Ω) and
the inhomogeneity f := ρn − ∇ · (qn) − (θRmon,l + (θs − θ)Rmon,b). The
constant ρ > 0 is chosen sufficiently large such that the spectrum of A(t) lies
in {z ∈ C |Re(z) < 0}. The domain D := D(A(t)) = H2(Ω) ∩ H1

0 (Ω) is
dense in L2(Ω) and independent of t. Since Dn is assumed to be symmetric

Math. Model. Anal., 22(6):852–869, 2017.
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and uniformly positive definite, the densely defined, closed operator A(t) is
self-adjoint and dissipative. Furthermore, this operator is sectorial for each t ∈
[0, T ).

Owing to the assumption θ0 ∈ W 1,∞(Ω) and H1(Ω) ↪→ Lγ(Ω) for d = 2
and γ <∞ the gradient of θ(t) can be estimated in each Lγ-norm, γ <∞:

‖∇θ(t)‖γ≤ C(γ)‖∇θ(t)‖H1≤ C(γ, θ0, RI)‖b(t)‖H2 + ‖n(t)‖H2 .

Therefore, the operator Aγ(t) := ∇· (Dn(θ)(t)∇) : D(Aγ(t))→ Lγ(Ω), γ <∞,

with D(Aγ(t)) = W 2,γ(Ω) ∩W 1,γ
0 (Ω) is well-defined and is nothing but the

restriction of A(t) on D(Aγ(t)).
Instead of a representation formula for n via semigroups as in the au-

tonomous case, we may represent n via a evolution system (U(t, s))t≥s, see [17,
§ 5, Def. 5.3]:

Definition 2 [Evolution system]. A two-parameter family of bounded linear
operators U(t, s), 0 ≤ s ≤ t < T , on a Banach space X is called an evolution
system if the following conditions are satisfied:

(i) U(s, s) = IdX and U(t, r)U(r, s) = U(t, s) for 0 ≤ s ≤ r ≤ t < T .

(ii) The map (t, s) 7→ U(t, s) is strongly continuous for 0 ≤ s ≤ t < T .

Moreover, the following property of A is necessary to obtain a useful repre-
sentation of n: there exists a constant α ∈ ( 1

2 , 1] such that

‖(A(t)−A(s))A(τ)−1‖Lγ→Lγ . |t− s|α for s, t, τ ∈ [0, T ) . (3.1)

In fact, assuming (3.1) there exists a unique evolution system (U(t, s))t≥s such
that

n(t) = U(t, 0)n0 +

∫ t

0

U(t, τ)f(τ) dτ , (3.2)

cf. [17, § 5, Theor. 6.1].
For each fixed t ∈ (0, T ), the operator −A(t) generates a C0-semigroup

St(s), s ≥ 0, on the Banach space Lγ(Ω) the evolution system U(t, s) of A
reads as follows, cf. [17, § 5, (6.3)]:

U(t, s) = Ss(t− s) +

∫ t

s

Sτ (t− τ)R(τ, s) dτ

with R(t, s) =
∑∞
m=1Rm(t, s) and recursively defined summands

R1(t, s) := (A(s)−A(t))Ss(t− s) , Rm+1(t, s) :=

∫ t

s

R1(t, τ)Rm(τ, s) dτ .

However, for our purpose the inequality

‖R(t, s)‖Lγ→Lγ≤ C(γ)(t− s)α−1 (3.3)

suffices, cf. [17, § 5, (6.26)].
The next result is a standard estimate and holds in a much more general

setting. Since we will use it only once to obtain the gradient estimate, it is
stated in this special way:
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Lemma 3. Let s, t, τ ∈ [0, T ), β ∈ (0, 1) and γ < ∞. Then there holds the
inequality

‖A(t)βSs(τ)‖Lγ→Lγ≤ C(γ)τ−β .

Proof. The proof for the autonomous case, see [17, § 2, Theor. 6.13], holds
for A(s)βSs(τ), but can easily be extended by applying the bounded opera-
tor A(t)A(s)−1 : Lγ(Ω)→ Lγ(Ω). ut

With the help of the previous Lemma, we are now able to prove an appro-
priate gradient estimate for n:

Lemma 4. Let (b, n, θ, q, p) be a strong solution to problem(2.3) with
supt‖b(t)‖γ≤ C(γ), γ <∞. Then the gradient of n satisfies

sup
t∈(0,T )

‖∇n(t)‖γ ≤ C(γ) for all T <∞ .

Proof. Defining f1 := −q∇n and f2 := f − f1 we have with Lemma 1

‖f2(t)‖γ≤ C(γ) ((ρ+ ‖(∂tθ)(t)‖∞) ‖n(t)‖∞ + ‖b(t)‖γ + 1)≤ C(γ) . (3.4)

The first summand N1 of the representation formula of n

n(t) = S0(t)n0 +

(∫ t

0

Sτ (t− τ)R(τ, 0) dτ n0 +

∫ t

0

U(t, τ)f(τ) dτ

)
=: N1(t) +N2(t) , (3.5)

which comes from (3.2), is bounded in W 1,γ(Ω), i.e. ‖S0(t)n0‖W 1,γ≤ C(γ, T ).
By applying A(t)β for β ∈ (0, α) on the remaining function N2 we obtain with
Lemma 3 and (3.3)

‖A(t)βN2(t)‖γ ≤
∫ t

0

‖A(t)βSτ (t− τ)R(τ, 0)n0‖γ dτ

+

∫ t

0

‖A(t)βSs(t− s)f(s)‖γ ds+

∫ t

0

∫ t

s

‖A(t)βSτ (t− τ)R(τ, s)f(s)‖γ dτds

≤ C(γ)

[∫ t

0

(t− τ)−βτα−1 dτ ‖n0‖γ

+

∫ t

0

(t− s)−β‖f(s)‖γ ds+

∫ t

0

∫ t

s

(t− τ)−β(τ − s)α−1‖f(s)‖γ dτds
]
.

Now we use (3.4) and have

‖A(t)βN2(t)‖γ≤ C(γ)

[(
1

α
+

1

1− β

(
T

2

)α−β)
‖n0‖γ

Math. Model. Anal., 22(6):852–869, 2017.
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+

(
1

1− β
T 1−β +

(
1

α
+

1

1− β

)
1

1 + α− β

(
T

2

)1+α−β
)

sup
t∈(0,T )

‖f2(t)‖γ

+

∫ t

0

(
(t− s)−β +

(
1

α
+

1

1− β

)(
t− s

2

)α−β)
‖f1(s)‖γ ds

]
≤ C(γ)

[
Tα−β‖u0‖W 1,∞ + T 2+α−2β (C(γ) + 1)

+ sup
t∈(0,T )

‖q(t)‖∞
∫ t

0

(t− s)α‖∇n(s)‖γ ds
]
. (3.6)

Real interpolation implies for β ∈ ( 1
2 , α)

D(Aγ(t)β) ⊂
(
Lγ(Ω), D(Aγ(t))

)
β,∞ ⊂

(
Lγ(Ω), D(Aγ(t))

)
1
2 ,γ
⊆W 1,γ(Ω) .

cf. [14, Prop. 1.4, 4.7]. Finally, we estimate ‖A(t)βN2(t)‖γ from below by
‖∇N2(t)‖γ , combine (3.5) with (3.6) and apply Gronwall’s Lemma to obtain

sup
t∈(0,T )

‖∇n(t)‖γ≤C(γ, T ) exp
(
C(T ) sup

t∈(0,T )

‖q(t)‖∞
)

as was to be shown. ut

We conclude this section with an elementary inequality, which can be veri-
fied directly by applying twice Young’s inequality.

Lemma 5. Let αi > 0, i = 1, 2, 3, with
∑3
i=1 αi < 1. Then for all ai ≥ 0, i =

1, 2, 3, the estimate

aα1
1 aα2

2 aα3
3 ≤ α1a1 + Caλ2 + α3a3

holds, where C = C(α1, α3) := 1 − α1 − α3 > 0 and λ = λ(α1, α2, α3) :=
α2

1−α1−α3
< 1.

4 Proof of Theorem 1

First of all let us briefly note that the estimate (4.6) and hence (4.1) below are
not necessary for the three-dimensional case since we assumed independence
of Dn of θ. However, in the two-dimensional case the result holds for any b0 ∈
Xρ, ρ > 0, by choosing κ sufficiently close to 2. In more detail, the initial

data b0 ∈ X entails ∇b ∈ L2(0, T ;H
1
3 (Ω)) ↪→ L2(0, T ;L3(Ω)).

Proof of Theorem 1: We assume (b, n, θ, q, p) to be a strong solution to (2.3).
Testing the ODE

∂t(∂xiθ) = DRb(ñ, θ̃)∂xi(ñ, θ̃) +DRI(b̃, ñ, θ̃)∂xi(b̃, ñ, θ̃)

for the spatial derivative ∂xiθ, i = 1, ..., d, which corresponds to (1.1d) with
(∂xiθ)

2 we have

d

dt
‖∇θ‖33≤ C(Rb, RI) (‖∇θ‖3 + ‖∇b‖3 + ‖∇n‖3) ‖∇θ‖23 . (4.1)
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Let γ, r > 0 be numbers satisfying γ > max
{

6,m+ 2
d , C0(b0, n0, θ0, T )

}
and r ∈

(
d
2 , rsup

)
with rsup := 1

γ−m

[
(m+ γ) d

d−2 (1− 1
γ ) + 1

]
(note for d =

2: r ∈ (1,∞)). By testing bγ−1 to (2.3b) we obtain

1

γ

d

dt

∫
Ω

bγ + (γ − 1)

∫
Ω

(
|∇b

m+γ
2 |2 + |∇b

γ
2 |2
)

≤(γ − 1)

∫
Ω

b−m+γ |∇n|2 + C(RI)

∫
Ω

(|b|+ 1) |b|γ−1 .

We estimate the first summand on the right-hand side by Hölder’s inequal-
ity
(

1
r + 1

r′ = 1
)
: ∫

Ω

b−m+γ |∇n|2 ≤ ‖b
m+γ

2 ‖
2(−m+γ)
m+γ

2(−m+γ)r
m+γ

‖∇n‖22r′ .

Furthermore, the Gagliardo-Nirenberg inequality [16] yields

‖b
m+γ

2 ‖
2(−m+γ)
m+γ

2(−m+γ)r
m+γ

≤C(γ)
(
‖∇b

m+γ
2 ‖

2(−m+γ)
m+γ a

2 ‖b
m+γ

2 ‖
2(−m+γ)
m+γ (1−a)

s

+ ‖b
m+γ

2 ‖
2(−m+γ)
m+γ

s

)
, (4.2)

where a = 1− 1
(−m+γ)r ∈ (0, 1) and 1

s = m+γ
2 −

d−2
2d [(−m+ γ)r − 1] ∈ (0, m+γ

2 ],

and also with Lemma 1

‖∇n‖22r′≤ C
(
‖∆n‖

2
4−d ( dr−d+2)

2 ‖n‖
2

4−d (2− dr )
∞ + ‖n‖2∞

)
≤ C

(
‖∆n‖

2
4−d ( dr−d+2)

2 + 1

)
. (4.3)

Owing to 1
γ <

2
m+γ

1
s (this holds, since r < rsup) we may estimate ‖b

m+γ
2 ‖

2
m+γ
s =

‖b‖m+γ
2 s≤ C‖b‖γ and hence with (4.2)

‖b
m+γ

2 ‖
2(−m+γ)
m+γ

2(−m+γ)r
m+γ

≤C(γ)
(
‖∇b

m+γ
2 ‖2

−m+γ− 1
r

m+γ

2 · ‖b‖
1
r
γ + ‖b‖−m+γ

γ

)
. (4.4)

Now let us test (2.4) with −∆n ∈ L2(Ω):

d

dt

∫
Ω

|∇n|2 +

∫
Ω

|∆n|2≤ C
∫
Ω

[
(|∇θ|+ |q|)|∇n|+ |b|+ 1 + |∂tθ||n|

]2
. (4.5)

We use Lemma 2 and the estimate for d = 2∫
Ω

|∇θ|2|∇n|2≤ C‖∇θ‖23‖∇n‖26≤ C‖∇θ‖23
(
‖∆n‖2·

2
3

2 + 1
)

(4.6)

to obtain

d

dt

∫
Ω

|∇n|2 +

∫
Ω

|∆n|2≤ C
(
‖∇θ‖63 + ‖b‖22 + 1

)
≤ C(γ)

(
‖∇θ‖63 + ‖b‖γγ + 1

)
.
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Finally, this leads with (4.3) and (4.4) to

d

dt

(
1

γ
‖b‖γγ + ‖∇n‖22

)
+ (γ − 1)

(
‖∇b

m+γ
2 ‖22 + ‖∇b

γ
2 ‖22
)

+ ‖∆n‖22

≤C(γ)(γ − 1)

{
‖∇b

m+γ
2 ‖2

−m+γ− 1
r

m+γ

2 · ‖b‖
1
r
γ + ‖b‖−m+γ

γ

}

×
{
‖∆n‖

2
4−d ( dr−d+2)

2 + 1

}
+ C(γ,RI)

(
(‖b‖γ + 1)‖b‖γ−1

γ + ‖∇θ‖63 + 1
)
.

Adapting the idea of [25, Lem. 2.6] we set α1(ξ) := −m+γ−ξ
m+γ , α2(ξ) := ξ

γ

and α3(ξ) := 1
4−d (dξ − d+ 2) for ξ ≥ 0. Then for ξ0 :=

{
0 , if d = 2 ,
1
3 , if d = 3

there

holds

0 <

3∑
i=1

αi (ξ0) =
−m+ γ − ξ0

m+ γ
+
ξ0
γ

+ 0 < 1 .

Since the functions αi are continuous, there exists for sufficiently large γ a real
number r ∈ (d2 ,

d
d−2 (1− 1

γ )) with 1
r arbitrary close to ξ0 such that

∑3
i=1 αi < 1,

where αi := αi
(

1
r

)
, and 1− m

γ +α3 < 1 (note for d = 3 and m > 2
9 there exists

a number r < rsup such that d
r < (4−d)mγ +d−2). Applying Lemma 3.6 leads

to

d

dt

(
1

γ
‖b‖γγ + ‖∇n‖22

)
+ ‖∇b

m+γ
2 ‖22 + ‖∇b

γ
2 ‖22 + ‖∆n‖22

≤ (C(γ)(γ − 1))
λγr ‖b‖λγγ + C(γ,RI)‖b‖γγ + ‖∇θ‖63 + 1 , (4.7)

where λ := α2

1−α1−α3
< 1. Combining (4.7) with (4.1) yields

d

dt

(
1

γ
‖b‖γγ + ‖∇n‖22 + ‖∇θ‖63

)
≤ (C(γ)(γ − 1))

λγr ‖b‖λγγ

+ C(γ,Rb, RI)
(
‖b‖γγ + ‖∇θ‖63 + (‖∇b‖3 + ‖∇n‖3)

2 ‖∇θ‖43 + 1
)
.

The norms ‖∇b‖L2(L3) and ‖∇n‖L2(L3) can be estimated by an appropriate con-
stant C0(b0, n0, θ0, T ) := C(‖b0‖X , ‖n0‖W 1,∞ , ‖θ0‖W 1,∞ , T ) > 0. Thus Gron-
wall’s Lemma [24, Prop. 3.4] together with the restriction on γ leads to

sup
t∈(0,T )

(
1

γ
‖b(t)‖γγ + ‖∇n(t)‖22 + ‖∇θ(t)‖63

)
.
[ 1

γ
‖b0‖γγ + ‖∇n0‖22

+ ‖∇θ0‖63 + 1 +
(

(C(γ)(γ − 1))
λ
α2 T

) 1
1−λ

+

(
1

3
γ

)3 ]
exp (γT )

.

[
1

γ
‖b0‖γγ + ‖∇n0‖22 + ‖∇θ0‖63 + 1 + C̃(γ)

]
exp (γT ) ,

where C̃(γ) :=
(

(C(γ)(γ − 1))
λ
α2 T

) 1
1−λ

+
(

1
3γ
)3

and hence with γ
1
γ . 1

sup
t∈(0,T )

‖b(t)‖γ . C(T )

[
‖b0‖γ + ‖∇n0‖

2
γ

2 + ‖∇θ0‖
6
γ

3 + 1 + C̃(γ)
1
γ

]
.
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We assume that r even is chosen in that way such that α1 + α̃2 + α3 < 1

is satisfied, where α̃2 :=
m+ 1

r

γ ∈ (α2, 1 − α1 − α3). Thus, λ < 1
mr+1 and

hence 1
1−λ < 1 + 2

dm . Moreover, there holds λ
α2
· 1
γ < 1

α̃2γ
< 1

m . However,

since γ > 6 we obtain with 1
m · (1 + 2

dm ) < 1
m̃ , m̃ := { m2

m+1 ,
3m
5 }

sup
t∈(0,T )

‖b(t)‖γ . C(T )
[
‖b0‖γ + ‖∇n0‖2 + ‖∇θ0‖3 + 1 + C̃(γ)

1
γ

]
. C(T )

[
‖b0‖∞ + ‖∇n0‖2 + ‖∇θ0‖3 + 1 + (C(γ)(γ − 1))

1
m̃

]
.

Finally, the assumptions of Lemma 4 are satisfied. That means we have

sup
t∈(0,T )

‖∇n(t)‖γγ . C(‖b0‖X , ‖n0‖W 1,∞
0

, ‖θ0‖W 1,κ , T ) . (4.8)

To prove boundedness of b an iteration procedure of Moser type may be applied,
cf. [21, Theor. 4.6]. However, the assertion

sup
t∈(0,T )

‖b(t)‖∞ < C(‖b0‖∞, ‖n0‖W 1,∞
0

, ‖θ0‖W 1,κ , T ) for all T < Tmax

is verified. ut
At this point the author likes to mention that in (4.2) the application of the

Gagliardo-Nirenberg inequality is not standard, since 1
s ∼ γ and hence s < 1.

Therefore, if a function f : Ω → R is measurable we define ‖f‖ss :=
∫
Ω
|f |s

even for all s > 0. The Gagliardo-Nirenberg preserves validity in such a case,
cf. [29, Lem. 3.2].

5 Proof of Theorem 2

Let (b0, n0, θ0) ∈ L∞(Ω) × W 1,∞
0 (Ω) × W 1,∞(Ω) and a sequence of smooth

initial data (b0,k, n0,k)k∈N ∈ C∞0 (Ω̄)2 is assumed to satisfy b0,k
∗
⇀ b0 in X

and n0,k
∗
⇀ n0 in W 1,∞

0 (Ω). Then for all k ∈ N there exists a unique
strong solution (bk, nk, θk, qk, pk) to (1.1) with initial data (b0,k, n0,k, θ0), cf. [21,
Theor. 4.4]. This solution either exists globally in time or up to a possible
clogging phenomenon, cf. [21, Theor. 4.5]. However, the time interval of ex-
istence corresponding to solution (bk, nk, θk, qk, pk) is denoted by (0, Tmax,k)
with Tmax,k ≤ ∞. Thereby θk satisfies

lim
t↗Tmax,k

‖θ−1
k (t)‖∞ = θ−1

clog or Tmax,k =∞ . (5.1)

We define Tmax := lim infk→∞ Tmax,k > 0. The case Tmax = 0 would contradict
the assumption (2.3e) on θk and θ0 > θclog + δ.

Now let us fix k ∈ N. Owing to the uniform boundedness principle and (2.6)
there exists some K > 0 such that ‖b0,k‖X+‖n0,k‖W 1,∞

0
< K. Then Theorem 1,

Lemma 1 and (4.8) yield the following estimates for all T < Tmax,k and all γ >
max

{
6,m+ 2

d , C(‖b0‖X , ‖n0‖W 1,∞ , ‖θ0‖W 1,∞ , T )
}

:

sup
t∈(0,T )

‖bk(t)‖∞ + sup
t∈(0,T )

‖nk(t)‖∞ < C(T ), sup
t∈(0,T )

‖∇nk(t)‖γ < C(γ, T ). (5.2)

Math. Model. Anal., 22(6):852–869, 2017.



866 R. Schulz

Note that the constants of the above estimates do not depend on k. Insert-
ing (5.2) into (4.7) and (4.5) yields

‖∇b
m+γ

2

k ‖L2(ΩT )≤C(γ, T ) , ‖∆nk‖L2(ΩT )≤C(T ) . (5.3)

Due to (2.3a) there holds

1

2α+ 2

d

dt

∫
Ω

θk|bk|2α+2 = 〈θk(∂tbk), |bk|2αbk〉H−1,H1
0

+

∫
Ω

|bk|2αbkqk∇bk

for α > 0. Thus, applying the test function |bk|2αbk to (2.3b) we obtain with
the self-diffusivity (2.2b) and a = 2α+ 2 the inequality

δ

a

d

dt
‖bak‖1 +

1

2
(a− 1)‖(|bk|

m
2 + 1)|bk|α∇bk‖22

≤ C
(

(a− 1)‖∇nk‖22 am ‖bk‖
a−m
a + (‖bk‖a + 1) ‖bk‖a−1

a

)
and with (5.2)

‖(|bk|
m
2 + 1)|bk|α∇bk‖2≤C(a, T ) . (5.4)

Also it is required to prove uniform boundedness of ∂tbk in L2(H−1)-norm:

‖θk∂tbk‖2L2(H−1) =

∫ T

0

(
sup

‖ϕ‖
H1

0
=1

|〈θk∂tbk, ϕ〉H−1,H1
0
|
)2

≤ C
∫ T

0

(
‖∇bk‖22 + ‖bk‖∞‖∇nk‖2 + ‖qk‖22‖bk‖2∞ + ‖bk‖22 + 1

)
≤C(T ). (5.5)

Similarly we obtain ‖∂tnk‖L2(ΩT )≤C(T ). Let us remark that ‖qk‖2≤ C‖∂tθk‖2
≤ C, cf. [18, Theor. 7.4.1]. Owing to (5.3)–(5.5) together with the embed-
ding L1(Ω) ↪→ H−2(Ω), the compactness lemma of Aubin-Lions implies strong
convergence of subsequences (bj)j and (nj)j in L2(ΩT ) to b and n, respectively.
In particular, there are subsequences again denoted by (bj)j and (nj)j converg-
ing almost everywhere in ΩT to b and n. The estimates (5.2)–(5.4) entail weak∗

convergence of subsequences (bj)j , (nj)j in L∞(0, T ;L∞(Ω)) as well as weak
convergence of (∇bj)j and (∆nj)j in L2(ΩT ). This also ensures non negativity
of b and n.

The boundedness of Rb and RI imply uniform boundedness of (∂tθk) in
L∞(0, T ;L∞(Ω)) as well as of (∇θk)k in L2(ΩT ) and hence strong convergence
of (θj)j to θ in L2(ΩT ). Therefore, this limit satisfies (2.3d) and for a. e. t ∈
(0, T ) the estimate

θclog < lim inf
j→∞

(
‖θ−1
j (t)‖∞

)−1 ≤ ‖θ(t)‖∞ ≤ lim sup
j→∞

‖θj(t)‖∞ ≤ θs .

Moreover, the assumptions (2.1a) on Rb and RI entail strong L∞-convergence
of (θj(t))j for a. e. t ∈ (0, T ). Thus the limit θ inherits a similar property
to (5.1) from the sequence (θj)j . Finally, the proof of Theorem 4.3 is complete.
ut
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Since pores may clog over time, in general we cannot expect global-in-time
solutions to our underlying problem. At least in the case of a rigid porous
medium, i.e. the porosity does not change in time: ∂tθ(t) = 0, we obtain a
bounded global-in-time weak solution. The same holds, if the reaction terms
are modified such that already sufficiently close to θclog the pores can not
contract further.

Conclusions

In this article, we considered a model derived in [21] which describes the
growth of a biofilm produced by chemotactical bacteria within a saturated
porous medium, as well as its interplay with fluid flow. Beside self-diffusivity
of the bacteria, in [21] high regularity assumptions are needed to obtain (in
case of no clogging) existence of a bounded global in time solution. In the
current paper we improved this result by adapting the main ideas of [25], ap-
plying entropy-type estimates and a semigroup approach to control the norms
supt∈(0,T )‖∇n(t)‖γ for all γ < ∞ in an appropriate way. Beside the under-
lying model, the main difference to [25] is the dependence of the coefficients
on θ and the extension to three dimensions. In particular, the θ-dependence
leads in Section 3 to a nonautonomous Cauchy problem. However, we are able
to prove the existence of a bounded weak solution up to a possible clogging
phenomenon, if (2.6) and m > 2

9 (d − 2) is satisfied. Comparing this result
with [26] or [31] suggest that in the three-dimensional case restriction m > 2

9
can be relaxed. Therefore, future work should comprise investigation also in
this direction. A drawback is the simplification that for d = 3 the diffusivity
parameter Dn does not depend on θ. This makes the model less applicable and
should be avoided in future work.
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