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Abstract. In this paper, we focus on the H2 optimal model reduction methods
of coupled systems and ordinary differential equation (ODE) systems. First, the
ε-embedding technique and a stable representation of an unstable differential alge-
braic equation (DAE) system are introduced. Next, some properties of manifolds
are reviewed and the H2 norm of ODE systems is discussed. Then, the H2 optimal
model reduction method of ODE systems on the Grassmann manifold is explored
and generalized to coupled systems. Finally, numerical examples demonstrate the
approximation accuracy of our proposed algorithms.
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1 Introduction

Lots of large-scale or complex dynamical systems are involved in many engineer-
ing application fields, such as electronic systems, control systems, mechanical
systems. Generally, the more detailed description is used in these fields, the
more complex dynamical systems are established, which imply some difficulties
in system control and simulation due to the large size of systems. Fortunately,
model reduction provides a way to deal with these difficulties. It approxi-
mates the large-scale system by a significantly lower-order system, which can
efficiently reduce the complexity of computation and analysis [3, 11].

Many model reduction methods have been proposed in the last few decades,
such as Krylov subspace model reduction methods [18,25], orthogonal polyno-
mial model reduction methods [13,14,21], the proper orthogonal decomposition
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(POD) [10, 17] and H2 optimal model reduction methods [6, 8]. For the last
method, it is worth mentioning that by seeking the reduced system such that
the error between the original system and the reduced system in the meaning
of the H2 norm is as small as possible, the model reduction error can be mea-
sured. Concerning the H2 optimal model reduction, there are many researchers
devoting to this field. Some norms for both continous-time and discrete-time
DAE systems were studied in [26]. [25] indicated that by picking enough initial
shifts to be mirror images of the poles of the unstable system, the iterative
rational Krylov algorithm (IRKA) converges and also captures the unstable
poles. Magruder et al. generalized the Meier-Luenberger interpolation condi-
tions for H2 optimal approximation of stable dynamical systems to unstable
systems without purely imaginary poles [18]. [9] extended the IRKA method
proposed in [8] to DAE systems. Moreover, Vuillemin et al. investigated the
optimal frequency-limited H2 model reduction methods for linear time invari-
ant systems [28,29,30]. In addition, Panzer et al. established H2 and H∞ error
bounds for model reduction of second order systems by Krylov subspace meth-
ods [20]. Since the transfer function of the reduced system is only related to
the subspaces spanned by the transformation matrices, the H2 model reduction
error is seen as the cost function defined on the Grassmann manifold, and the
H2 optimal model reduction problem is treated as a minimization problem on
the Grassmann manifold. Then some optimization techniques are employed to
solve the minimization problem [15,32].

Coupled systems often consist of ODE subsystems and DAE subsystems,
such as very large system integrated (VLSI) designs, micro-electro-mechanical
systems (MEMS), and the spatial discretization of some partial differential
equations (PDEs). As we know, ODE systems have been explored extensively,
while DAE systems relatively less. [5, 12] indicated that by embedding a small
perturbation in a DAE system, a corresponding ODE system can be obtained.
Then these existing model reduction methods for ODE systems can be em-
ployed. When the perturbation is small enough, the ODE system can approx-
imate the DAE system well. As to an unstable DAE system, [24] introduced
a means to transform the unstable system into a coupled system with stable
subsystems, and it is equipped with the same transfer function.

In this paper, based on the Grassmann manifold, we investigate H2 optimal
model reduction of the coupled system with unstable subsystems. First, the
ε-embedding technique and the stable representation of the unstable DAE sys-
tem are introduced. Next, we explore the H2 optimal model reduction of ODE
systems and it leads to the H2 optimal model reduction on the Grassmann
manifold. Then, the ε-embedding technique is applied to the DAE subsystems
such that all of the subsystems of the given coupled system are ODE subsys-
tems. In order to ensure the stability of subsystems and the closed-loop system,
the stable representations of unstable subsystems and the unstable closed-loop
system are generated. Finally, the algorithm is extended to the coupled system
and two model reduction algorithms are presented. One reduces the order of
the closed-loop system, while the other is adaptive to subsystems of the coupled
system in order to preserve the interconnected relations.

The reminder of this paper is organized as below. In Section 2, coupled
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systems and DAE systems are briefly reviewed. In Section 3, the ε-embedding
technique and the stable representation of the unstable DAE system are dis-
cussed. H2 optimal model reduction for ODE systems based on the Grassmann
manifold is investigated in Section 4 while two model reduction algorithms for
coupled systems are presented in Section 5. Two numerical examples result-
ing from the spatial descretization of PDEs are given in Section 6 to illustrate
the accuracy of proposed algorithms. Finally, some conclusions are drawn in
Section 7.

2 Preliminary results

The ith subsystem of the coupled system is described as followsEi
dxi(t)

dt
= Aixi(t) +Biui(t),

yi(t) = Cixi(t),

(2.1)

where Ei, Ai ∈ Rni×ni , Bi ∈ Rni×pi , Ci ∈ Rmi×ni , xi(t) ∈ Rni is the state
vector, ui(t) ∈ Rpi is the internal input vector, yi(t) ∈ Rmi is the internal
output vector, i = 1, 2, . . . , k. We call the system (2.1) is an ODE subsystem if
rank(Ei) = ni, and a DAE subsystem, otherwise. When the initial state vector
xi(0) = 0, the transfer function of the subsystem (2.1) is Hi(s) = Ci(sEi −
Ai)
−1Bi. The controllability Gramian Pi and the observability Gramian Qi

satisfy the following generalized Lyapunov equations

EiPiA
T
i +AiPiE

T
i +BiB

T
i = 0,

ET
i QiAi +AT

i QiEi + CT
i Ci = 0.

The subsystems are coupled by the following interconnected relations{
ui(t) = Ki1y1(t) + . . .+Kikyk(t) +Giu(t),

y(t) = R1y1(t) + . . .+Rkyk(t),
(2.2)

where Kil ∈ Rpi×ml , l = 1, 2, . . . , k, Gi ∈ Rpi×p, Ri ∈ Rm×mi , u(t) ∈
Rp is the external input vector, y(t) ∈ Rm is the external output vector.
(2.1) and (2.2) constitute a coupled system with k subsystems. Let K =
[Kil]k×k ∈ Rp0×m0 , G = [GT

1 . . . G
T
k ]T ∈ Rp0×p, R = [R1 . . . Rk] ∈ Rm×m0 ,

E = diag{E1, . . . , Ek} ∈ Rn×n, A = diag{A1, . . . , Ak} ∈ Rn×n, B = diag{B1,
. . . , Bk} ∈ Rn×p0 and C = diag{C1, . . . , Ck} ∈ Rm0×n, where n = n1+. . .+nk,
p0 = p1 + . . .+ pk, m0 = m1 + . . .+mk.

Let H(s) = C(sE − A)−1B. Obviously, we have H(s) = diag{H1(s), . . . ,
Hk(s)}. If Im0 −H(s)K is invertible, then the transfer function of the coupled
system [11] can be written as

R(Im0
−C(sE−A)−1BK)−1C(sE−A)−1BG = RC(sE− (A+BKC))−1BG,

which leads to the following closed-loop systemE0
dx0(t)

dt
= A0x0(t) +B0u(t),

y0(t) = C0x0(t),
(2.3)

Math. Model. Anal., 22(6):785–808, 2017.
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where E0 = E ∈ Rn×n, A0 = A + BKC ∈ Rn×n, B0 = BG ∈ Rn×p,
C0 = RC ∈ Rm×n, x0(t) ∈ Rn is the state vector, y0(t) ∈ Rm is the output
vector, and the transfer function can be given by H0(s) = C0(sE0 −A0)−1B0.
If a system has the same transfer function as the system (2.3), we call these
two systems are equivalent.

Whether the subsystems of the coupled system or the closed-loop system
can be written as the following formE

dx(t)

dt
= Ax(t) +Bu(t),

y(t) = Cx(t),
(2.4)

where E,A ∈ Rn×n, B ∈ Rn×p, C ∈ Rm×n. We consider the transfer func-
tion of the system (2.4) given by H(s) = C(sE − A)−1B. P and Q are the
controllability Gramian and the observability Gramian of (2.4).

We seek a transformation matrix V ∈ Rn×r such that V TV = Ir and
r � n. The reduced system can be constructed as Ẽ

dx̃(t)

dt
= Ãx̃(t) + B̃u(t),

ỹ(t) = C̃x̃(t),

(2.5)

where Ẽ = V TEV ∈ Rr×r, Ã = V TAV ∈ Rr×r, B̃ = V TB ∈ Rr×p, C̃ =
CV ∈ Rm×r. The transfer function of the system (2.5) can be given by H̃(s) =

C̃(sẼ− Ã)−1B̃. The controllability Gramian P̃ and the observability Gramian

Q̃ individually satisfy the following generalized Lyapunov equations

ẼP̃ ÃT + ÃP̃ ẼT + B̃B̃T = 0, (2.6)

ẼT Q̃Ã+ ÃT Q̃Ẽ + C̃T C̃ = 0. (2.7)

If (2.4) is a improper DAE system, the transfer function has a polynomial
part, which has to be exactly matched by that of the reduced system, or the
unbounded error will occur as s→∞ [9]. For simplicity, when the system (2.4)
represents a DAE system in the sequel, we always assume it is strictly proper.

In order to analyze the H2 error between the system (2.4) and the system
(2.5), we consider the following error system Ê

dx̂(t)

dt
= Âx̂(t) + B̂u(t),

ŷ(t) = Ĉx̂(t),

(2.8)

where

Ê =

[
E 0

0 Ẽ

]
, Â =

[
A 0

0 Ã

]
, B̂ =

[
B

B̃

]
,

Ĉ =
[
C −C̃

]
, x̂(t) =

[
x(t)
x̃(t)

]
, ŷ(t) = y(t)− ỹ(t).
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We can consider the transfer function of the error system (2.8) given by Ĥ(s)

= Ĉ(sÊ − Â)−1B̂. From the partitioning of the coefficient matrices, we have

Ĥ(s) = H(s) − H̃(s). For the further analysis, partition the controllability

Gramian P̂ and the observability Gramian Q̂ as

P̂ =

[
P X

XT P̃

]
, Q̂ =

[
Q Y

Y T Q̃

]
(2.9)

conformably with the partitioning of the matrix Â. Substituting (2.9) into the

generalized Lyapunov equations satisfied by P̂ and Q̂, it yields that

EXÃT +AXẼT +BB̃T = 0, (2.10)

ETY Ã+ATY Ẽ − CT C̃ = 0. (2.11)

In the next two sections the model reduction method for the system (2.4)
is investigated. Then, we generalize it to the coupled system in Section 5.

3 The ε-embedding technique and the stable representa-
tion of the DAE system

In this section, we present two measures for dealing with the DAE system (2.4).
One embeds a small perturbation into the system (2.4) to turn the DAE system
into an ODE system. The other is to transform the unstable DAE system into
a coupled system with stable subsystems. It has the same transfer function
and the same state space dimension as the DAE system.

3.1 On the ε-embedding technique of the DAE system

The DAE system is an important system description in many engineering fields,
such as circuits simulation, elastic multibody systems. However, model reduc-
tion methods for ODE systems are investigated relatively more. For some ex-
isting references dealing with DAE systems, one can refer to [9, 19, 23]. Apart
from these, [5] proposed the ε-embedding technique to transform a DAE system
into an ODE system by embedding a small perturbation. Then some model
reduction methods concerning ODE systems are adaptable to the embedding
system.

We consider the system (2.4) with rank(E) < n, and suppose rank(E) = l.
By the singular value decomposition (SVD) of E, it yields

E =
[
U1 U2

] [ Σ1

0

] [
V T
1

V T
2

]
,

where Σ1 ∈ Rl×l, U1, V1 ∈ Rn×l, U2, V2 ∈ Rn×(n−l), [ U1 U2 ] and [ V1 V2 ] are
two orthogonal matrices. We embed a small perturbation 1� ε > 0 in E as

Eε =
[
U1 U2

] [ Σ1

εIn−l

] [
V T
1

V T
2

]
,

Math. Model. Anal., 22(6):785–808, 2017.
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which is a nonsingular matrix. Since ‖Eε − E‖2 = ε, when ε is small enough,
Eε can approximate E well. For large-scale problems, it may be intractable
to perform the SVD on E. A remedy is that some practical applications often
lead to the sparsity of (2.4), such as electrical circuit simulations, multibody
dynamics, and semidiscretized partial differential equations. [22] investigated
efficient algorithms for the sparse SVD. Furthermore, we establish the following
system to approximate the DAE system (2.4):Eε

dx(t)

dt
= Ax(t) +Bu(t),

y(t) = Cx(t).
(3.1)

Except for Eε, all conditions are the same as the system (2.4) and the transfer
function of the system (3.1) is Hε(s) = C(sEε − A)−1B. Before deriving the
error between H(s) and Hε(s), we present the following lemma.

Lemma 1. If |s| < min{ 1
ε‖A−1‖2+‖A−1E‖2 ,

1
‖A−1E‖2 }, then

‖(sEε −A)−1‖2 ≤
‖(sE −A)−1‖2

1− ε|s|‖(sE −A)−1‖2
.

Proof. When ‖sA−1E‖2 < 1, i.e., |s| < 1
‖A−1E‖2 , it holds that

1− ε|s|‖(sE −A)−1‖2 = 1− ε|s|‖(I − sA−1E)−1A−1‖2

≥ 1− ε|s|‖(I − sA−1E)−1‖2‖A−1‖2 ≥ 1− ε|s|‖A−1‖2
1− |s|‖A−1E‖2

.

To ensure 1− ε|s|‖(sE −A)−1‖2 > 0, we just let

1− ε|s|‖A−1‖2
1− |s|‖A−1E‖2

> 0, and |s| < 1

‖A−1E‖2
.

That is

|s| < min
{ 1

ε‖A−1‖2 + ‖A−1E‖2
,

1

‖A−1E‖2

}
.

Since (sEε −A)−1 = (sE −A)−1
+∞∑
i=0

(s(E − Eε)(sE −A)−1)i, then

‖(sEε −A)−1‖2 ≤
+∞∑
i=0

εi|s|i‖(sE −A)−1‖i+1
2 ≤ ‖(sE −A)−1‖2

1− ε|s|‖(sE −A)−1‖2
.

Thus, the proof of Lemma 1 is accomplished. ut

According to Lemma 1 and the fact that (sE −A)−1 − (sEε −A)−1 = s(sE −
A)−1(Eε − E)(sEε −A)−1, we can obtain

‖H(s)−Hε(s)‖2 = ‖C((sE −A)−1 − (sEε −A)−1)B‖2
≤ ε|s|‖C‖2‖B‖2‖(sE −A)−1‖2‖(sEε −A)−1‖2

≤ ε|s|‖C‖2‖B‖2‖(sE −A)−1‖22
1− ε|s|‖(sE −A)−1‖2

,
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which implies that when the perturbation ε is sufficiently small, the system
(3.1) can well approximate the system (2.4) in the frequency domain.

For convenience, we perform the SVD of E to embed the perturbation in this
paper. There is another way called Weierstrass-Kronecker canonical form [16],
which is stated in the following remark.

Remark 1. Suppose the matrix pencil (E,A) is regular, i.e., there exists λ ∈ C
such that det(λE − A) 6= 0. Then the matrices E and A can be transformed
into the following block diagonal matrices

TlETr =

[
In̂1

N̂

]
, TlATr =

[
M̂

In̂2

]
,

where n̂1 + n̂2 = n, Tl, Tr ∈ Rn×n are nonsingular, N̂ is a nilpotent matrix and
M̂ is a Jordan block.

The embedding process is similar to the above, apart from applying Tl and
Tr to transform the system (2.4) before embedding the perturbation ε [12].

3.2 The stable representation of the unstable DAE system

Some practical applications often lead to unstable DAE systems, which can be
hardly operated for the unbounded H2 norm. Even though the IRKA method
is generalized to unstable systems, it also has few shortages. For example,
when the number of unstable poles of the original system becomes larger, the
number of shifts required to match these unstable poles becomes larger as well.
A remedy that a stable representation can be constructed by a state feedback
matrix is introduced in [4, 24], and here we briefly discuss it.

Let Γ be a given region of the complex plane, H(s) is Γ -stable if all its poles
lie in Γ . If rank([AT−sET CT ]T ) = n for arbitrary s ∈ Γ , (2.4) is Γ -detectable.
For the rational function matrix H(s), if there are Γ -stable rational function
matrices D1(s), D2(s), Ȟ1(s) and Ȟ2(s) such that D1(s)Ȟ1(s)+D2(s)Ȟ2(s) =
I, then the factorization H(s) = Ȟ1(s)(Ȟ2(s))−1 is called as a right coprime
factorization (RCF). For any rational transfer function matrix H(s) with a
Γ -stabilizable and Γ -detectable realization, the RCF can be obtained by the
following factors[

Ȟ1(s)
Ȟ2(s)

]
=

[
C
F

]
(sE −A−BF )−1B +

[
0
I

]
, (3.2)

where F ∈ Rp×n is a state feedback matrix such that all finite eigenvalues of
the matrix pencil (A + BF,E) lie in Γ . For the computation of the feedback
matrix F , [27] provided the GRCF-PD algorithm. When Γ stands for the open
left half plane, it yields a stable representation of the unstable DAE system.

According to (3.2), the extended transfer function

Ȟnew(s) =

[
Ȟ1(s)

Ȟ2(s)− I

]
Math. Model. Anal., 22(6):785–808, 2017.
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is stable and has the generalized state space realization
Eẋ(t) = (A+BF )x(t) +Bv(t),[
y1(t)

y2(t)

]
=

[
C

F

]
x(t).

(3.3)

To ensure the same transfer function, (3.3) couples with the following intercon-
nected relations

v(t) = −y2(t) + u(t) =
[

0 −I
] [ y1(t)

y2(t)

]
+ u(t),

y(t) = y1(t) =
[
I 0

] [ y1(t)

y2(t)

]
.

(3.4)

We know that the system (3.3) and the relations (3.4) make up a coupled
system, which has the same transfer function as the system (2.4). Furthermore,
the order of the system (3.3) is still n, so transforming the system (2.4) into a
coupled system does not enlarge the size of the state space.

Remark 2. The system (3.3) implies that the stable representation does not
change the coefficient matrix E, so if the system (2.4) is a DAE system, the
subsystem of the new coupled system is still a DAE subsystem.

What should be noticed is that when we transform an unstable subsystem
of the coupled system into a coupled system with stable subsystems, the in-
ternal input, the internal output and the interconnected relations accordingly
changed, so the corresponding modifications should be done.

Suppose the ith subsystem of the coupled system is unstable. We can
construct a state feedback matrix Fi. Let Ȟi1(s) = Ci(sEi − Ai −BiFi)

−1Bi,
and Ȟi2(s) = Fi(sEi −Ai −BiFi)

−1Bi + Ini . Then the subsystem is replaced
by a new coupled system (3.3) and (3.4) with the subscript i. Accordingly, the
original coupled relations (2.2) yield{

vi(t) = −y2i(t) + ui(t) = −y2i(t) +Ki1y1(t) + . . .+Kikyk(t) +Giu(t),

y(t) = R1y1(t) + . . .+Riyi1(t) + . . .+Rkyk(t).

The closed-loop transfer function of the new extended coupled system is given
by Hnew,0(s) = Rnew(I −Hnew(s)Knew)−1Hnew(s)G, where

Knew = Kdiag{I, . . . , I, [Imi
, 0], I, . . . , I} − diag{0, . . . , 0, [0, Ipi

], 0, . . . , 0},
Rnew = [ R1, . . . , Ri−1, Ri, 0, Ri+1, . . . , Rk ],

Hnew(s) = diag{H1(s), . . . ,Hi−1(s), Ȟnew,i(s), Hi+1(s), . . . ,Hk(s)}.

If the coupled system has more than one unstable subsystem, the above situ-
ation can be similarly generalized. When reduce the order of the ith unstable
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subsystem, we let Vi be the transformation matrix. Then the reduced subsys-
tem of (3.3) can be written as

V T
i EVi ˙̃xi(t) = V T

i (A+BF )Vix̃i(t) + V T
i Bṽi(t),[

ỹ1i(t)

ỹ2i(t)

]
=

[
C

F

]
Vix̃i(t)

(3.5)

and the interconnected relations is given by
ṽi(t) = −ỹ2i(t) + ũi(t) =

[
0 −I

] [ ỹ1i(t)

ỹ2i(t)

]
+ ũi(t),

ỹi(t) = ỹ1i(t) =
[
I 0

] [ ỹ1i(t)

ỹ2i(t)

]
.

(3.6)

Substituting (3.6) into (3.5), the reduced system of the ith subsystem can be
obtained as belowV T

i EiVi
dx̃i(t)

dt
= V T

i AiVix̃i(t) + V T
i Biũi(t),

ỹi(t) = CVix̃i(t),

which indicates that the structure of the coupled system can be preserved.
Taking the measures introduced in this section, we explore the H2 opti-

mal model reduction of ODE systems on the Grassmann manifold in the next
section.

4 H2 optimal model reduction of the ODE system on the
Grassmann manifold

For the system (2.4), when rank(E) = n, it is an ODE system. We firstly intro-
duce the Grassmann manifold and some properties. Then the H2 norm of the
error system is regarded as the cost function defined on the Grassmann man-
ifold. Finally, by some optimization techniques, the model reduction method
for minimizing the cost function is investigated.

4.1 The Grassmann manifold

In this subsection, we view the Grassmann manifold as the quotient manifold of
the Stiefel manifold, which is an embedded submanifold of the Euclidean space.
Then some properties of the quotient manifold and the embedded submanifold
are involved.

Let Rn×r stand for the set of all of n× r matrices, and it is a manifold [7].
A Stiefel manifold is a subset of Rn×r, which can be written as

St(r, n) := {V : V TV = Ir, V ∈ Rn×r}.

On the Stiefel manifold, we define an equivalence relation that V1, V2 ∈ St(r, n),
V1 is equivalent to V2, written as V1 ∼ V2, if there is an orthogonal matrix

Math. Model. Anal., 22(6):785–808, 2017.
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M ∈ Rr×r such that V1 = V2M . All of equivalent matrices make up an
equivalence class

[V ] := {VM : M ∈ Rr×ris an orthogonal matrix},

where V is a presentation of [V ]. The equivalence relation also defines a division
of St(r, n). A set of all of r-dimensional subspaces of Rn is a Grassmann
manifold, written as Gr(r, n), and an element of Gr(r, n) is written as V. For
every equivalence class, each of elements in it spans the same subspace. This
identifies Gr(r, n) with the quotient space

St(r, n)/Or := {V Or : V ∈ St(r, n)},

where Or is the set of r-by-r orthogonal matrices. Then we define the natural
projection

π : St(r, n)→ Gr(r, n) : V 7→ V = span(V ), π−1 : V 7→ [V ].

Let TV St(r, n) and TVGr(r, n) be the tangent space of St(r, n) at V and
the tangent space of Gr(r, n) at V. We endow every tangent space of St(r, n)
with the inner product

〈Z1, Z2〉V := 2tr(ZT
1 Z2), Z1, Z2 ∈ TV St(r, n).

Similarly, endow every tangent space of Gr(r, n) with the inner product

〈ξ, η〉V := 2tr(ξ̄TV η̄V ), ξ, η ∈ TVGr(r, n),

where ξ̄V , η̄V ∈ TV St(r, n) are the horizontal lifts of ξ and η at V such that
Dπ(V )[ξ̄V ] = ξ and Dπ(V )[η̄V ] = η, respectively. A manifold endowed with
a smoothly varying inner product in tangent spaces is called a Riemannian
manifold. Next, we introduce the definition of the gradient [2].

Definition 1. Let J be a smooth real-valued function defined on a Riemannian
manifoldM. A gradient of J at V, denoted by gradJ , is defined as the unique
element of TVM that satisfies

〈gradJ(V), ξ〉 = DJ(V)[ξ], ∀ξ ∈ TVM,

where 〈·, ·〉 is the inner product of TVM.

There are some properties of the gradient on St(r, n) andGr(r, n) mentioned
in the following theorem [2].

Theorem 1. Let Ĵ be a function defined on Rn×r and J̃ is the restriction of
Ĵ to St(r, n). Then

gradJ̃(Ṽ ) =
1

2
(I − Ṽ Ṽ T )gradĴ(Ṽ ) +

1

2
Ṽ skew(Ṽ T gradĴ(Ṽ )),

where Ṽ ∈ St(r, n) and skew(N) := (N−NT )/2. Moreover, let J be a function
defined on Gr(r, n) such that J̄ = J ◦ π. Then the horizontal lift of gradJ at
V ∈ St(r, n) satisfies

gradJV = gradJ̄(V ),

where Dπ(V )[gradJV ] = gradJ(V ).
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In order to correlate the tangent space with the Grassmann manifold, we
review a theorem about geodesics and horizontal lifts [1].

Theorem 2. Let t 7→ V(t) be a geodesic on Gr(r, n), with V(0) = V0, ξ ∈
TV0

Gr(r, n). V0 = π(V0) and ξ̄V0
is the horizontal lift of ξ at V0. Then

V(t) = span(V0V 0 cosΣ0t+ U0 sinΣ0t)

and V (t) := (V0V 0 cosΣ0t+ U0 sinΣ0t)V
T

0 lies in St(r, n), where U0Σ0V
T

0 is
the thin SVD of ξ̄V0 , that is, U0 ∈ Rn×r is an orthonormal matrix, V 0 ∈ Rr×r

is an orthogonal matrix, and Σ0 ∈ Rr×r is a diagonal matrix with nonnegative
elements.

From Theorem 1 and Theorem 2, we can compute the horizontal lift of the
gradient instead of the gradient on the Grassmann manifold. Specifically, we
can compute the corresponding partial derivative on Rn×r and project it onto
the tangent space of St(r, n).

When the system (2.4) is a DAE system, a corresponding ODE system can
be obtained by the ε-embedding technique. In the following subsection, we
explore the model reduction method of the ODE system.

4.2 Model reduction of the ODE system

In this subsection, we mainly investigate H2 optimal model reduction of the
ODE system on the Grassmann manifold, and some results are used to generate
the corresponding algorithm.

Lemma 2. Given the stable system (2.4), E is nonsingular. P and Q are the
controllability Gramian and the observability Gramian, respectively. Then the
H2 norm of H(s) can be written as

‖H(s)‖2H2
= tr(CPCT ) = tr(BTQB).

As seen from Lemma 2, the H2 norm of the error system (2.8) can be

written as ‖Ĥ(s)‖2H2
= tr(ĈP̂ ĈT ) = tr(B̂T Q̂B̂), which is a function regarding

the orthonormal matrix V . Let J(V ) := ‖Ĥ(s)‖2H2
. Then J(V ) is a cost

function defined on St(r, n). In addition, given an arbitrary orthogonal matrix
M ∈ Rr×r, it holds J(VM) = J(V ), so J(V ) is a cost function defined on
Gr(r, n), and J(V ) = J(V) = J ◦ π(V ).

For the system (2.4), when E = I, there is an existing model reduction
method [32] on the Riemannian manifold, which is stated in the following
theorem.

Theorem 3. Given the stable system (2.4) with E = I. P̃ and Q̃ are the con-
trollability Gramian and the observability Gramian of the reduced system (2.5).
X and Y satisfy (2.10) and (2.11), respectively. Then the partial derivative of
J(V ) at V is JV = 2R, where

R :=(−CTC +ATV Y T )X + (CTCV +ATV Q̃)P̃

+ (BBT +AVXT )Y + (BBTV +AV P̃ )Q̃.

Math. Model. Anal., 22(6):785–808, 2017.
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From Theorem 1, we know that gradJV = (I − V V T )R. In order to apply

Theorem 3, one can multiply the state equation of the system (2.8) by Ê−1

from the left. However, in many engineering fields, the size of the system is
very large, which leads to a larger error system. Then it may not be easy to
perform the computation. Therefore, for the numerical efficiency, we are going
to derive another expression for the ODE system.

Lemma 3. If P and Q satisfy

EPAT +APET + X = 0 and ETQA+ATQE + Y = 0,

then we can obtain tr(X TQ) = tr(YTP).

Proof. Since APTET + EPTAT + X T = 0, it yields

tr(X TQ) = −tr(APTETQ+ EPTATQ)

= −tr(PTETQA+ PTATQE) = tr(PTY) = tr(YTP).

Thus, the proof of Lemma 3 is accomplished. ut

Theorem 4. Given the stable ODE system (2.4). P̃ and Q̃ are the controlla-
bility Gramian and the observability Gramian of the reduced system (2.5). X
and Y satisfy (2.10) and (2.11), respectively. Then

gradJV = (I − V V T )R̂,

where
R̂ :=(−CTC +ATV Y TE + ETV Y TA)X

+ (CTCV +ATV Q̃V TEV + ETV Q̃V TAV )P̃

+ (BBT +AVXTET + EVXTAT )Y

+ (BBTV +AV P̃V TETV + EV P̃V TATV )Q̃.

Proof. Since J(V ) = tr(ĈP̂ ĈT ), from the partitioning of P̂ and Ĉ, we have

J(V ) = tr(CTC(P + V P̃V T − 2XV T )).

For an arbitrary tangent vector ξ ∈ TVGr(r, n), there is a horizontal lift ξ̄V ∈
TV St(r, n) such that ξ = Dπ(V )[ξ̄V ]. Then

DJ(V )[ξ̄V ] = DJ ◦ π(V )[Dπ(V )[ξ̄V ]] = DJ(V)[ξ].

Furthermore,

DJ(V)[ξ] = DJ(V )[ξ̄V ] = 2tr(ξ̄TV (CTCV P̃ − CTCX)

+
1

2
V TCTCV DP̃ [ξ̄V ]− V TCTCDX[ξ̄V ]). (4.1)
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In order to replace tr(V TCTCV DP̃ [ξ̄V ]) and −tr(V TCTCDX[ξ̄V ]), by differ-
entiating the both sides of (2.6) and (2.10), it yieds

ẼDP̃ [ξ̄V ]ÃT + ÃDP̃ [ξ̄V ]ẼT +M = 0, (4.2)

EDX[ξ̄V ]ÃT +ADX[ξ̄V ]ẼT +N = 0, (4.3)

where

M :=ξ̄TV EV P̃V
TATV + V TEξ̄V P̃ V

TATV + V TEV P̃ ξ̄TVA
TV

+ V TEV P̃V TAT ξ̄V + ξ̄TVAV P̃V
TETV + V TAξ̄V P̃ V

TETV

+ V TAV P̃ ξ̄TV E
TV + V TAV P̃V TET ξ̄V + ξ̄TVBB

TV + V TBBT ξ̄V ,

N :=EXξ̄TVA
TV + EXV TAT ξ̄V +AXξ̄TV E

TV +AXV TET ξ̄V +BBT ξ̄V .

Applying Lemma 3 to (4.2) and (2.7), we can obtain

tr(V TCTCV DP̃ [ξ̄V ])=tr(Q̃M)=2tr(ξ̄TV EV P̃V
TATV Q̃+ξ̄TVA

TV Q̃V TEV P̃

+ ξ̄TVAV P̃V
TETV Q̃+ ξ̄TV E

TV Q̃V TAV P̃ + ξ̄TVBB
TV Q̃). (4.4)

Similarly, apply Lemma 3 to (4.3) and (2.11), and it yields

− tr(V TCTCDX[ξ̄V ]) = tr(Y TN)

= tr(ξ̄TVA
TV Y TEX + ξ̄TVAVX

TETY

+ ξ̄TV E
TV Y TAX + ξ̄TV EVX

TATY + ξ̄TVBB
TY ). (4.5)

Substituting (4.4) and (4.5) to (4.1), we can get

DJ(V)[ξ] = 2tr(ξ̄TV R̂).

According to the definition of the gradient and Theorem 1, the horizontal lift
of gradJ at V is

gradJV = (I − V V T )R̂.

Then, the proof of Theorem 4 is accomplished. ut

Remark 3. When E = I, since ξ̄TV V = 0, R̂ is naturally reduced to R. Then
we generalize the existing H2 optimal model reduction to the case E 6= I. In
the next section, one can see that by the ε-embedding technique and the stable
representation, our proposed model reduction method adapts to DAE systems
and coupled systems.

Combining Theorem 2 and Theorem 4, the geodesic on Gr(r, n) with the
initial point V can be written as

V(t) = span(V V cosΣt+ U sinΣt),

and V (t) := (V V cosΣt+ U sinΣt)V
T

belongs to St(r, n), where −gradJV =
ŪΣ̄V̄ T is the thin SVD of −gradJV . From the above analysis, we present a
model reduction algorithm for the ODE system.

Math. Model. Anal., 22(6):785–808, 2017.
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Algorithm 1 H2 optimal model reduction of ODE systems on the Grassmann
manifold

Input: The ODE system E, A, B, C, the initial reduced system
Ẽ0, Ã0, B̃0, C̃0, and the iteration number n0.

Output: The reduced system Ẽ, Ã, B̃, C̃.
1: for i = 0, i = i+ 1, i < n0 do
2: Compute the matrices P̃i, Q̃i, Xi and Yi from (2.6), (2.7), (2.10) and

(2.11) with the subscript i.

3: According to Theorem 4, Compute R̂i.
4: Compute the horizontal lift of the gradient at Vi as gradJVi

= (I −
ViV

T
i )R̂i.

5: Let Hi := −gradJVi
be the search direction.

6: Perform the thin SVD as Hi = U iΣiV
T

i .

7: Minimize J(Vi(t)) over t ≥ 0 where Vi(t) = (ViV i cosΣit+U i sinΣit)V
T

i

and set ti = tmin and Vi+1 = Vi(ti).

8: Ẽi+1 = V T
i+1EVi+1, Ãi+1 = V T

i+1AVi+1, B̃i+1 = V T
i+1B, C̃i+1 = CVi+1.

9: end for
10: return Ẽ = Ẽn0

, Ã = Ãn0
, B̃ = B̃n0

, C̃ = C̃n0
.

In Algorithm 1, a step size ti is needed to minimize J(Vi(t)). Here we
present an inexact line-search method in the following remark [2].

Remark 4. A step size ti = αβj is termed as the Armijo step size if j is the
smallest nonnegative integer such that

J(Vi)− J(Vi(αβ
j)) ≥ −αβjγ〈gradJVi

, Hi〉,

where α > 0, β, γ ∈ (0, 1).

According to Algorithm 1, two model reduction algorithms for the coupled
system are proposed in Section 5. One reduces the order of the closed-loop
system, while the other constructs reduced subsystems to preserve the structure
of the coupled system.

5 H2 optimal model reduction of the coupled system on
the Grassmann manifold

In this section, we focus on the model reduction of the coupled system. Based
on Algorithm 1, two model reduction algorithms are presented.

Since the coupled system can be written as a closed-loop system, which has
the same form as the system (2.4), Algorithm 1 can be employed to reduce the
order of the closed-loop system. Regarding some DAE subsystems and unstable
subsystems, there are two measures introduced in Section 3 to deal with.

For convenience, we assume that the first q subsystems are DAE subsystems
with rank(Ej) = lj < nj for j = 1, 2, . . . , q and the last k − q subsystems are
ODE subsystems. In order to transform DAE subsystems into corresponding
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ODE subsystems, we first embed the perturbation εj into the jth subsystem.
It can be described as

Ej = Uj

[
Σj

0

]
V T
j

εj
=⇒ Eεj ,j = Uj

[
Σj

εjInj−lj

]
V T
j . (5.1)

We further assume that only the first obtained q subsystems are unstable. As
stated in Section 3.2, we can find stable representations of these subsystems,
and the matrices

Knew = Kdiag{[Im1
, 0], . . . , [Imq

, 0], I} − diag{[0, Ip1
], . . . , [0, Ipq

], 0},
Rnew = [R1, 0, . . . , Rq, 0, Rq+1, . . . , Rk]

(5.2)

and

Anew,j = Aj +BjFj , Cnew,j =

[
Cj

Fj

]
, j = 1, 2, . . . , q.

Let Bnew = B and

Enew = diag{Eε1,1, . . . , Eεq,q, Eq+1, . . . , Ek},
Anew = diag{Anew,1, . . . , Anew,q, Aq+1, . . . , Ak},
Cnew = diag{Cnew,1, . . . , Cnew,q, Cq+1, . . . , Ck}.

We construct the following closed-loop systemEnew
dx(t)

dt
= Anewx(t) +Bnewu(t),

y(t) = Cnewx(t),
(5.3)

where Enew = Enew, Anew = Anew + BnewKnewCnew, Bnew = BnewG, and
Cnew = RnewCnew. According to Section 3.1, Enew is a nonsingular matrix, and
the system (5.3) is an approximation of the closed-loop system (2.3). Next, we
present an algorithm to reduce the order of the system (5.3).

Algorithm 2 H2 optimal model reduction of the closed-loop system on the
Grassmann manifold

Input: The coefficient matrices of the coupled system (2.1) and (2.2), the
perturbation εj , the reduced order r.

Output: The coefficient matrices of the reduced closed-loop system.
1: Embed the perturbation εj into the first q DAE subsystems as (5.1).
2: Find stable representations of unstable subsystems.
3: Construct the new closed-loop system (5.3).
4: Apply Algorithm 1 to the system (5.3) and obtain the transformation ma-

trix Vc such that V T
c Vc = Ir.

5: return Ẽnew = V T
c EnewVc, Ãnew = V T

c AnewVc, B̃new = V T
c Bnew, C̃new =

CnewVc.

As one can see, even though the order of the coupled system is reduced,
the obtained reduced system is an ODE system. In the next, we present an
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algorithm to construct reduced subsystems so that the coupled structure can
be preserved.

Since the subsystems of the coupled system have the same form as the sys-
tem (2.4), the methods introduced in Section 3 and the model reduction method
proposed in Section 4 suit the subsystem (2.1). In order to apply Algorithm
1 to subsystems of coupled system, we firstly perform the ε-embedding tech-
nique on DAE subsystems as Section 3.1. Then regarding the stability, stable
representations of unstable subsystems are constructed. Finally, Algorithm 1
is employed to obtain the reduced subsystems. Specific procedures are shown
in the following Algorithm 3.

Algorithm 3 H2 optimal model reduction of subsystems on the Grassmann
manifold

Input: The coefficient matrices of the coupled system (2.1) and (2.2), the
perturbation εj , the reduced order r.

Output: The reduced subsystems.
1: if The DAE subsystem is involved in the coupled system then
2: Perform the ε-embedding technique.
3: end if
4: if The unstable subsystem is involved in the coupled system then
5: Find the stable representation of the subsystem.
6: end if
7: Apply Algorithm 1 to the subsystems, which need to be reduced.
8: return The coefficient matrices of the reduced subsystems.

In the following, we present a comparison between Algorithm 2 and Algo-
rithm 3. Since Algorithm 2 reduces the order of the closed-loop system, the
size of the closed-loop system is obviously larger than that of every subsystem.
It implies more computation may be needed. Moreover, the interconnected
relations may be lost, for the coupled system is transformed into a closed-loop
system before reduction. However, the H2 optimality of the reduced system
can be determined. By contrast, Algorithm 3 reduces the orders of subsys-
tems. It costs relatively less computation than Algorithm 2. From Subsection
3.2, the reduced coupled system resulting from Algorithm 3 can retain the
structure of the original coupled system, even though some subsystems are
unstable. For the H2 optimality, Algorithm 3 aims to form the H2 optimal
reduced subsystems, which can not generically ensure the H2 optimality of the
reduced coupled system. In addition, since to reduce the orders of subsystems
can be individually performed, the parallelization is also an alternative way for
Algorithm 3. In conclusion, when a reduced closed-loop system with the H2

optimality is required, Algorithm 2 is a candidate. When we need a reduced
coupled system, Algorithm 3 can be adopted.

6 Numerical examples

In this section, two numerical examples are employed to illustrate our proposed
algorithms. Both numerical experiments are operated in Matlab R2010b. We
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compare our proposed algorithms with rational Krylov subspace model reduc-
tion methods and the IRKA method. The Krylov subspaces corresponding to
transformation matrices are specified in the following examples. Some notations
in these two examples are firstly introduced. Original system: the original
coupled system. System-1 : the reduced closed-loop system by rational Krylov
subspace model reduction methods. System-2 : the reduced closed-loop sys-
tem by Algorithm 2. System-3 : the reduced coupled system with the reduced
subsystems by rational Krylov subspace model reduction methods. System-
4 : the reduced coupled system with the reduced subsystems by Algorithm 3.
System-5 : the reduced closed-loop system by the IRKA method. System-6 :
the reduced coupled system with the reduced subsystems by the IRKA method.

Example 1. The first model is an 1D heated beam with a PI-controller, which
is introduced in [31]. The PI-controller is described asE1

dx1(t)

dt
= A1x1(t) +B1u1(t),

y1(t) = C1x1(t),

where

E1 =

[
1 0
0 0

]
, A1 =

[
0 0
0 1

]
, B1 =

[
kI
−kP

]
, C1 =

[
1 1

]
.

The heat transfer along the beam is described as

∂T

∂t
(t, z) = κ

∂2T (t, z)

∂z2
,

∂T

∂z
(t, 0) = u2(t),

∂T

∂z
(t, 1) = 0.

We measure the temperature at z = 1. After a spatial discretization of the
PDE with n2 + 1 equidistant grid points, the following system is obtained.E2

dx2(t)

dt
= A2x2(t) +B2u2(t),

y2(t) = C2x2(t),

where E2 = In2
,

A2=κ(n2+1)2


−1 1
1 −2 1

. . .
. . .

. . .

1 −2 1
1 −1

 , B2=


κ(n2+1)

0
...
0
0

 , C2=


0
0
...
0
1


T

.

The interconnected relations are expressed by

u1(t) = u(t)− y2(t), u2(t) = y1(t), y(t) = y2(t).
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Let kI = kP = κ = 1 and n2 = 1000. Then the order of the coupled system
is 1002. We generate the stable representations of the second subsystem and
the closed-loop system. Let Enew,ε = diag{1, 1, · · · , 1, ε} replace Enew with
ε = 10−10 and the feedback matrices

Fnew =
[
− n2 − 1, n2 + 1, (n2 + 1)2, 0, . . . , 0

]
, F2 =

[
− n2 − 1, 0, . . . , 0

]
,

such that λI − A2 − B2F2 and λEnew,ε − Anew − BnewFnew are stable. Let
r be the reduced order of the new closed-loop system (5.3) and r2 be the re-
duced order of the second subsystem. The transformation matrices construct-
ing System-1 and System-3 are the bases of K r

2
(A−TnewE

T
new,ε;A

−T
new[CT

new F
T
new])

and Kr2(A−12 ;A−12 B2), respectively. In order to show the effectiveness of our
proposed algorithms, the relative H2 errors with different reduced orders com-
pared to rational Krylov subspace model reduction methods are listed in Ta-
ble 1. r is the order of the reduced closed-loop system, and the order of the
reduced subsystem is r2 satisfying r = r2 +2 such that the order of the reduced
coupled system is equal to that of the reduced closed-loop system.

Table 1. Relative H2 errors in Example 1.

r 4 6 8 10 12 14 16

System-1 (×10−4) 4167 68.66 22.48 8.4126 2.8867 0.9584 0.9476
System-2 (×10−4) 1381 66.83 20.00 4.8479 2.8003 0.7215 0.6306

r2 2 4 6 8 10 12 14

System-3 0.9865 0.9437 0.8808 0.8050 0.7637 0.7638 0.7628
System-4 0.7354 0.3117 0.1143 0.0603 0.0225 0.0183 0.0125

Table 1 shows that System-2 and System-4 with different reduced orders
have lower relative H2 errors than System-1 and System-3, respectively. Table 2
lists the corresponding computational time of obtaining the reduced closed-loop
systems and the reduced subsystems.

Table 2. Computational time (s) of obtaining reduced systems in Example 1.

r 4 6 8 10 12 14 16

System-1 0.8786 1.4019 1.8909 2.4258 3.0266 3.9049 4.5801
System-2 20.8192 17.1708 10.4067 22.4707 27.7424 33.8536 27.3245

r2 2 4 6 8 10 12 14

System-3 0.7654 1.6088 2.6207 3.6675 4.9553 6.0995 7.2991
System-4 3.0097 4.8621 4.6398 10.7537 9.6225 9.2564 14.5050

Table 2 implies that rational Krylov subspace model reduction methods
spend less time than our proposed algorithms in obtaining reduced systems.
Algorithm 3 costs less time than Algorithm 2 to generate the reduced system.
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Although rational Krylov subspace model reduction methods need less time
to generate reduced systems, the reduced systems resulting from our proposed
algorithms can better approximate the original system in the sense of the H2

norm.

Example 2. We consider a delay differential system [24] as
dx(t)

dt
= −x(t− 1) + u(t),

y(t) = x(t).

It can be interpreted as an interconnection of the subsystem
dx1(t)

dt
= 0 · x1(t) + [ 1 − 1 ]u1(t),

y1(t) = x1(t)

and the pure unit delay u2(t) = u2(t− 1). The interconnected relations areu1(t) =

[
0

1

]
u2(t) +

[
1

0

]
u(t),

u2(t) = y1(t), y(t) = y1(t).

The delay can be achieved by the following PDE with boundary conditions:

∂f

∂t
(t, z) =

∂f

∂z
(t, z),

f(t, 0) = u2(t), f(t, 1) = y2(t).

Through a spatial discretization of this equation with n2 equidistant grid points,
the pure unit delay can be approximated by

dx2(t)

dt
= A2x2(t) +B2u2(t),

y2(t) = C2x2(t),

where

A2 = n2


−1 1

−1
. . .

. . . 1
−1

 , B2 =


0
0
...
n2

 , C2 =


1
0
...
0


T

.

Let n2 = 1000, and a coupled system of the order n = 1001 is obtained. In order
to find a stable representation of the first subsystem, we choose F1 = [0, 2]T .
The transformation matrices constructing System-1 and System-3 are the bases
of Kr(A−Tnew;A−TnewC

T
new) and Kr2(A−12 ;A−12 B2) respectively. In order to show the

effectiveness of our proposed algorithms, the relative H2 errors with different
reduced orders compared to rational Krylov subspace model reduction methods
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are listed in Table 3. r is the order of the reduced closed-loop system, and the
order of the reduced subsystem is r2 satisfying r = r2 + 1.

Table 3. Relative H2 errors in Example 2.

r 2 4 6 8 10 12 14

System-1 0.3032 0.0192 0.0072 0.0037 0.0026 0.0026 0.0022
System-2 0.0789 0.0188 0.0071 0.0035 0.0020 0.0013 8.297×10−4

System-5 0.0782 0.0151 0.0057 0.0028 0.0015 8.69×10−4 5.154×10−4

r2 1 3 5 7 9 11 13

System-3 0.9867 0.9481 0.9048 0.8586 0.8105 0.7612 0.7113
System-4 0.9797 0.9004 0.8215 0.7615 0.6703 0.5925 0.5264
System-6 – – 0.9424 0.7876 0.6432 0.5128 0.3990

Table 3 shows that System-2 and System-4 with different reduced orders
entirely have lower relative H2 errors than System-1 and System-3, respectively.
Table 4 presents the computational time of obtaining the reduced closed-loop
systems with the order r and the reduced subsystems with the order r2.

Table 4. Computational time (s) of obtaining reduced systems in Example 2.

r 2 4 6 8 10 12 14

System-1 0.6234 1.4657 2.4116 3.4448 4.5206 5.6688 6.8196
System-2 6.2947 8.9342 10.9433 13.3053 13.4730 14.9436 15.7148
System-5 27.3285 24.5133 23.9021 25.0187 24.3174 23.8584 25.6909

r2 1 3 5 7 9 11 13

System-3 0.2629 0.9408 1.9271 2.7280 3.7189 4.7935 6.0180
System-4 2.7510 7.2980 7.5772 12.2098 12.5839 13.4629 13.7329
System-6 – – 8.7395 8.9385 8.9861 8.9291 9.2615

From Table 4, rational Krylov subspace model reduction methods cost least
time to form the reduced systems. Compared with the IRKA method, Al-
gorithm 2 spends less time in reducing the closed-loop system. Next, we
present the bode frequency responses of the original system, System-1, System-
2, System-3 and System-4. The order of the reduced closed-loop system is 44,
while that of the reduced subsystem is 43.

According to Figures 1 and 2, the reduced systems can approximate the
original system well in the frequency domain except that System-1 exhibits little
derivation. Finally, we reduce the order of the second subsystem to r2 = 42,
and present the transient responses of the subsystem and the reduced systems
in [0, 1.5] with the input u(t) = e−t sin(πt+ 1). The initial condition x2(0) is
chosen as

x2(0) = [ 1 1 . . . 1︸ ︷︷ ︸
900

0 0 . . . 0︸ ︷︷ ︸
100

],
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Figure 2. Phase in Example 2

and the initial conditions of reduced subsystems are V T
21x2(0) and V T

22x2(0),
where V21 and V22 are the transformation matrices corresponding to these two
reduced subsystems.

Figures 3 and 4 show that System-4 can provide a better approximation
than System-3 in this case. Combining with the relative H2 errors, computa-
tional time, frequency responses and transient responses, we conclude that our
proposed algorithms are feasible.

Conclusions

In this paper, the H2 optimal model reduction methods for coupled systems
with unstable subsystems are investigated. H2 optimal model reduction of
ODE systems on the Grassmann manifold is mainly explored. By introducing
the ε-embedding technique and the stable representation, an unstable DAE sys-
tem can be changed into a coupled system with stable ODE subsystems. Then

Math. Model. Anal., 22(6):785–808, 2017.
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Figure 4. Relative errors in Example 2

based on the form of the subsystems and the closed-loop system, the model re-
duction method is generalized to coupled systems and two corresponding model
reduction algorithms are established. Finally, numerical examples demonstrate
the approximation results.
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