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Abstract. In the paper, a weighted theorem on the approximation of a wide class
of analytic functions by shifts ((s + ik“h;a), k € N, 0 < o < 1, and h > 0, of the
periodic zeta-function ((s;a) with multiplicative periodic sequence a, is obtained.
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1 Introduction

Let s = o + it be a complex variable, and a = {a,, : m € N} be a periodic
sequence of complex numbers with minimal period ¢ € N. The periodic zeta-
function ((s; a) is defined, for o > 1, by the Dirichlet series

((ssa) =Y 2.
2w

Moreover, the function {(s; a) is meromorphically continued to the whole com-
plex plane. Really, let (s, «) denote the Hurwitz zeta-function with parameter
a, 0 < a < 1, which, for ¢ > 1, is given by the series

> 1
((s,a) = Z mtay

m=0

and has the meromorphic continuation to the whole complex plane with unique
simple pole at the point s = 1 with residue 1. Since, in virtue of periodicity of
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the sequence a,

q
C(s;a) = is Z amC (s, m) , o>1, (1.1)
¢ = q

we see that the function ((s;a) is meromorphic in the whole complex plane
with unique simple pole at the point s = 1 with residue

If = 0, then the function ((s;a) is entire. If a,,, = 1, for all m € N, then
¢(s;a) becomes the Riemann zeta-function ((s),

C(s) = Z%, o>1.
m=1
Therefore, the investigation of the function ((s;a) is a modern problem of
analytic number theory.

In [24], S.M. Voronin discovered the universality of the Riemann zeta-
function. The Voronin theorem, roughly speaking, asserts that a wide class of
analytic functions in a certain region can be approximated by shifts ((s + i7),
7 € R. Later, it turned out that some other zeta and L-functions, including the
function ((s;a), are also universal in the Voronin sense. The first universality
results for ((s;a) were obtained in [1], [2], [21] and [22]. The universality of
¢(s;a) with multiplicative sequence a was considered in [16], [23], [18] and [17].
We remind the paper [6], where a new type of universality for the function
((s;a) was introduced. Joint universality theorems for periodic zeta-functions
were proved in [5], [10], [11], [12], [13], [14] and [15].

In [8], a weighted universality theorem for the Riemann zeta-function was
obtained. Generalizations of a theorem of such a type were given in [9] and [4].
The weighted universality for the function ((s;a) was began to study in [18].
We remind the main result of [18]. Let w(¢) be a positive function of bounded
variation on [Ty, 00|, Ty > 0, such that the variation V.’ on [a, b] satisfies the
inequality V2 < ew(a), ¢ > 0, for any [a,b] C [Tp, 00). Define

U = U(T, ) :/Tw(t)dt

and suppose that limyp_,o, U(T, @) = 4o0o0. Let K be the class of compact
subsets of the strip D = {s eC: % <o < 1} with connected complements,
and let Ho(K), K € K, be the class of continuous non-vanishing functions
on K which are analytic in the interior of K. Moreover, let I4 denote the
indicator function of the set A. We remind that the sequence a = {a,,} is
called multiplicative if a,,, = ama, for all coprimes m,n € N. Now we state
an universality theorem from [18].

Math. Model. Anal., 22(6):750-762, 2017.
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Theorem 1. Suppose that the weight function w(t) satisfies all above condi-
tions, the sequence a is multiplicative and

— |y
Z i <c<1
1=1 P?

for all primes p. Let K € K and f(s) € Ho(K). Then, for every e > 0,

T
lijgrlinf l/ w(r)I _ (r)ydr > 0.
—00 T, {Tssgg \C(s+zr;a)ff(s)|<5}

In [17], a discrete version of Theorem 1 was obtained. In discrete univer-
sality theorems, 7 in shifts ((s + i7; a) takes values from a certain discrete set.
In [17], an arithmetic progression {kh : k € N}, h > 0, was used. Let w(u) be a
non-increasing positive function having a continuous derivative such that, for
h >0, w(u) < w(hu) and (w'(u))? < w(u). Define

N
V=V(N,w) =Y w(k)

k=1

and suppose that limy_, V(N,w) = 400 as N — oco. Moreover, let

L(P,h,7) = {(logp:p eP), %}

where P is the set of all prime numbers. Then the following weighted discrete
universality theorem is true.

Theorem 2. Suppose that the function w(u) satisfies all above hypotheses, the
sequence a is the same as in Theorem 1, and the set L(P, h,7) is linearly
independent over the field of rational numbers Q. Let K € K and f(s) €
Hy(K). Then, for every e > 0,

N

N |
lim inf v Zw(k)[

N —oc0
k=1

k) > 0.
{k:sup \C(s+ikh;u)ff(s)|<e}( )
sEK

It is not difficult to see that the function w(u) = < satisfies the hypotheses of
Theorem 2. Since e™ is transcendental number, the set L(P, h, 7) with rational
h is linearly independent over Q.

The aim of this paper is to prove an analogue of Theorem 2 for the discrete
set {k*h : k € N} with fixed 0 < oo < 1.

Theorem 3. Suppose that the function w(u) has a continuous derivative w'(u)
foru > 1 such that

N
/ wlw ()| du < V,
1

and a is the same as in Theorem 2. Let K € K and f(s) € Ho(K). Then, for
every € > 0 and h > 0,

N
1
liminf — k)I k .
}\I]Ti};lo VZU)( ) {lglgN:sulp%|((s+il0‘h;a)ff(s)\<e}( )>O
sE

k=1
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Differently from Theorem 2, we do not require the linear independence over
Q of the set L(P, h, ).

2 The main lemma

Let H(D) denote the space of analytic functions on D endowed with the topol-
ogy of uniform convergence on compacta, and let B(X) stand for the Borel
o-field of the space X. For the proof of Theorem 3, we will apply the weak
convergence of probability measures on (H (D), B(H(D)). We start with a limit
theorem for probability measures on ({2, 5(£2)), where

= HVpa
p

and v, = {s € C : [s] = 1} for all p € P. By the Tikhonov theorem, the
torus {2 with the product topology and pointwise multiplication is a compact
topological Abelian group. Thus, on (2, B({2)), the probability Haar measure
mpy can be defined, and this leads to the probability space (§2,B(£2), mg).
Denote by w(p) the projection of w € {2 to the circle ,, p € P. For A € B({2),
define

1 N
Qv A) = - D wlk)I4(k),
k=1

where, for brevity, A = {1 <IN (p_“ah 'p € IP) € A}.

For the investigation of Qn ., we will apply the notion of sequences uni-
formly distributed modulo 1. We remind that a sequence {zy : k € N} C R is
called uniformly distributed modulo 1 if, for every interval I = [a,b) C [0, 1),

1
nlgfgo ﬁkz_:lfl({ffk}) =b—a,

where {z;} denotes the fractional part of x. For us, the Weyl criterion, see,
for example, [7], which states that a sequence {z} is uniformly distributed
modulo 1 if and only if, for all m € Z \ {0},

n

.1 ;
lim — E e2miTem —
n—oo n
k=1

will be useful.

Lemma 1. Suppose that the function w(t) has a continuous derivative such

that le ulw' (u)|[du < U fort>1 and o, 0 < ao < 1, is a fized number. Then
QnN,w converges weakly to the Haar measure my as N — 00.

Proof. 'We consider the Fourier transform gy .,(k), k = (kp : kp € Z, p € P)
of QN,w» i.e.,

o (k) = /Q ] () d @,

Math. Model. Anal., 22(6):750-762, 2017.
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where only a finite number of integers k, are distinct from zero. By the defini-
tion of @, we find that

gNw

N
Z H —ik®hk,
p

k

N
VZ exp{ zkath logp} (2.1)

p

< \

where only a finite number of integers k, are distinct from zero. Clearly, by
(2.1),

gNw(0) = 1. (2.2)

Now suppose that k& # 0. Since the set {logp : p € P} is linearly independent
over Q, we have that

kalogp # 0.
P

It is known, [7, Exercise 3.10], that the sequence {ak® : k € N} with 0 < a < 1
and a # 0 is uniformly distributed modulo 1. Therefore,

de Zexp{zk th 1ogp}o u)

k<u

as u — 0o. Hence, using (2.1) and summing by parts, we find that

INw(k) = ——F— — = R(u)w'(u)du

as N — oo, since
N
Nw(N) = V—|—/ wlw' (u)|du < V.
1
This together with (2.2) gives

L, if k=0,

Since the right-hand side of (2.3) is the Fourier transform of the Haar measure
myy, by a continuity theorem for probability measures on compact groups, we
obtain that @y, converges weakly to mg as N — oo.



A Weighted Discrete Universality Theorem . .. 755

3 A limit theorem

We remind that H(D) is the space of analytic functions on D = {s € C: 1 <
o < 1}, and, on the probability space (£2, B(£2), my), define the H(D)-valued
random element ((s,w;a) by the formula

L > amw(m)
C(S7w7 a) - TnZ:1 ms )

where

wm) =[] «'(»), meN,

pHm

and p' || m denotes that p' | m but p'T! { m. Note that the latter series, for
almost all w € {2, is uniformly convergent on compact subsets of the strip D.
Moreover, for almost all w € 2, the equality

L awt
TN (1 2252
p =1

holds. Denote by P the distribution of the random element ((s,w;a), i.e.,
Pr(A) =mp(we 2:((s,w;a) € A), AeB(H(D)).
Let, for A € B(H(D)),

N
1
Py (A) = v Z w(k)I{1<l<N:C(s+ilah;u)eA}(k)'
k=1

Theorem 4. Suppose that the function w(t) and the sequence a satisfy hypothe-
ses of Theorem 3. Then Py, converges weakly to P as N — oo. Moreover,
the support of the measure P¢ is the set S = {g € H(D) : g(s) # 0 or g(s) = 0}.

We divide the proof of Theorem 4 into few lemmas. The first of them is a
weighted limit theorem for absolutely convergent Dirichlet series. Let 6 > % be
a fixed number, and, for m,n € N,

U (m) :eXp{_ (’:Z)e}

Define two series

Cn(s;a) = Z %"S(Tn) and Cn(s,w;a) = Z W7
m=1 m=1

which are absolutely convergent [16] for o > 1. Consider the function w,, :

2
2 — H(D) defined by the formula
Up (W) = (u(s,w; a).

Math. Model. Anal., 22(6):750-762, 2017.
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Since the series for (,(s,w;a) is absolutely convergent for o > %, the function
Uy, is continuous one. Let R, = myu, L where

Rn(A>:mHu;1(A):mH(u;1A)v AEB(H(D))’
and let, for A € B(H(D)),

1

N
PT,n,w(A> = Zw(k>l{1<l<N:§n(s+ilah;a)€A}(k)-
k=1

<l

Lemma 2. Suppose that the function w(t) and the sequence a are the same as
in Theorem 3. Then Py, converges weakly to R, as N — oo.

Proof. The lemma is derived from Lemma 1 in the same way as Lemma 2
in [17].

The next lemma deals with the approximation of {(s;a) by (,(s;a). Denote
by p the metric in H(D), see, for example, [18].

Lemma 3. Suppose that the function w(t) and the sequence a satisfy the hy-
potheses of Theorem 3. Then the equality

N
1
lim limsup — w(k s+ ik%h;a), G (s +ik%h;a)) =0
Jim_Timsup - ,; (k)(c( ), G ))
18 true.
Proof. For the same 6 as above and n € N, define

=51 (5

where I'(s) is the Euler gamma-function. Then, for § < o < 1, the representa-
tion [16]

1 0—o+ico dz
Gsa) =gz | stzoh)—
= ((s;a) + Res ((s+z;a) l"iz) (3.1)

holds. Using equality (1.1) and the estimate
r 1
/ Ko +ita)fdi<T, §<o<l,
1
we find that, for % <o<1l,and T € R,

T
/ (o + it +im;a)>dt < T(1+ |7)) (3.2)
1
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and, by the Cauchy integral formula,

T
/ (o + it +ima)2dt < T+ |7)). (3.3)
1
It is not difficult to see that, for 2 < k < N,
o
E+1D*—k* > ———.
( + ) IN1—«

Therefore, the Gallagher lemma, see [20, Lemma 1.4], together with estimates
(3.2) and (3.3) yields, for 1 <o <1 and 7 € R,

N N%h
> (o + ik + i) < NH/ |C(o + it + ity a)2dt
1

k=1
N°h N®h 1/2
+ (/ |C(J+it+i7;a)|2dt/ |C’(a+it+i7;a)2dt>
1 1

= N(1+|7]).

Hence, for the same o and T,

N
Zw(kﬂ(j(s +ik*h + iT;a)?
k=1

N
< w(N) |§(s+ik“h+i7;u)|2+/ IC(o + E%h +iT; ) |2 |w (u)| du
1

-

N
< Nw(N)YQ+ )+ (1 + \T|)/1 ulw'(u)|du < V(1 + |7]). (3.4)

Now let K be a compact subset of the strip D. Then equality (3.1), the Cauchy
integral formula and (3.4) show that

N
1
— > w(k)sup [C(s+ik%h;a) — (s + ik%h; a)|
Vv =1 seK

< / |ln (o1 +at)[(1+ |t]) dt + o(1)

as N — oo with some o7 < 0. This, the definitions of ,,(s) and the metric p
prove the lemma.

Proof of Theorem 4. On a certain probability space (Q, A, 1), define the random
variable 6y by the formula

u(eN:kah):@, k=1,...,N.

Let
XN,n,w - XN,n,w(s) = Cn(s + Z@N, a)a

Math. Model. Anal., 22(6):750-762, 2017.
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and let X,, be the H(D)-valued random element having the distribution R,,,
where R,, is the probability measure from Lemma 2. Thus, denoting by D, the

convergence in distribution, we may to rewrite the assertion of Lemma 2 in the
form

XNomw —2— X (3.5)
N—oc0
Now we will consider the family of probability measures {R,, : n € N},
and we will prove that this family is tight, i.e., for every € > 0, there exists a
compact set K = K(g) C H(D) such that
R,(K)>1-¢

for all n € N. The series for ¢, (s;a) and (/,(s;a) are absolutely convergent for
o> %, thus

: 1 r . 2 = |am|2U72L(m) > ‘am‘
hmsupf (o +it;a)|*dt = Z ————— < Z
1

20
m
T— o0 m=1 m=1

and

e > lam |20 (m) 1
limsupf/ ¢! (o +it;a))> dt = Z |am|v;;(m) log™ m
1

n 20
m
T—o00 me1

> \am\glong ,
m=1

Hence, using the Gallagher lemma, we find as above that, for o > %,

N N%h
> [enlo +ik*hia)|* < NH‘/ |Cn (0 + ity )2 d it
k=1 1
1/2

N%h N%h
+ (/ |Cn (o + it; a)|2dt/ c;(a+it;a)2dt> < N.
1 1

Therefore, by properties of the weight function w(u), we obtain that, for o > %,

=

1
sup lim sup — Z w(k)|Gu(o +it;a)] < C < oo. (3.6)
neN N—oo Vk:l

Now let {K;: | € N} C D be a sequence of compact subsets which defines the
metric p, see [18]. Then, using (3.6) and the Cauchy integral formula, we find
that

] =

w(k) sup |Gy (o +it;a)] < C) < 0.

sup lim sup —
p PV sup

neN N—oco =1
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We fix ¢ > 0 and define M; = M;(e) = 2'Cje~!. Then, by the definition of
XN,TL,’LLM

lim supp <Sup | XN n,w(8)] > Ml>
T—o00 seK;

N—o00
sEK]

fhmsup—Zw (k) I{

k
k:sup |Cn (s+ik>h;a)|>M,; }

Z

< sup lim sup
neN N-soo Ml

Z ) sup |Gu(s + ik%hsa)| <

1 seK) 2l
From this and (3.5), we deduce that, for all n, [ € N,
€
1 <és;1}1?l | X0 (s)] > Ml) < o (3.7

Theset H. = {g € H(D) : sup,cg, |9(s)| < M;, | € N} is compact in the space
H(D), and, in view of (3.7),

— 1
u(Xn(s)EHE)>1—5Z? >1—e.
=1

Hence, by the definition of X,,, for all n € N|
Rn(HE) 2 1- g,

e., the family {R,, : n € N} is tight. Therefore, by the Prokhorov theo-
rem [3], it is relatively compact. Thus, every subsequence of {R,} have a
subsequence {R,, } weakly convergent to a certain probability measure P on
(H(D),B(H(D))) as r — oo. In other words,

Xn, 2,p (3.8)

An application of Lemma 3 shows that, for ¢ > 0,
N
lim limsup — Z W(k) L (k. p(¢(stikohia) Cn (stikoh,a))ze} (K)

n—=0 N_so0

k 1
1 N
< lim limsup —— > w(k)p(¢(s + ik“h; a), Gu(s + ik“h,a)) = 0. (3.9)
n—oo N —o00 Ek:l

Now, in view of relations (3.5), (3.8) and (3.9), we can apply Theorem 4.2 of [3]
which shows that
C(s+ibn;a) —2.p
N—o00

This means that Py ,, converges weakly to P as N — oo. Moreover, this shows
that the measure P is independent of the subsequence {R,, }. This remark
together with relative compactness of {R,,} implies the relation

XHL>P.

n—oo

Math. Model. Anal., 22(6):750-762, 2017.
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Consequently, by the definition of X,,, we have that R,, converges weakly to P
as n — 00, i.e., Py as N — oo converges weakly to the limit measure of R,,
as n — oo. However, it is known [16] that

%meas {r€[0,T]:¢(s+im;a) € A}, A€ B(H(D)),

with multiplicative a, as T" — oo, also converges weakly to the limit measure
P of R, P coincides with P, and the support of F; is the set S. Therefore,
Py, also converges weakly to Py as N — 0.

4 Proof of universality

A proof of Theorem 3 is standard based on Theorem 4 and the Mergelyan
theorem on the approximation of analytic functions by polynomials [19].

Proof of Theorem 4. By the Mergelyan theorem, there exists a polynomial p(s)
such that

sup ’f(s) — el
seK

< % (4.1)

<&

5 ("
Then the set G. is an open neighbourhood of the function e*) which, by
Theorem 4, is an element of the support of P:. Thus,

Define the set

G. = {g € H(D) : sup ’g(s) — P
seK

P(Ge) > 0. (4.2)

Moreover, by Theorem 4 and the equivalent of weak convergence of probability
measures in terms of open sets, we have that

lim inf PN,w(Ge) 2 Pc(Gg).
N— 00

This, (4.2) and the definitions of Py ,, and G. show that

<53 (k) > 0. (4.3)

N
o1
1}\1[11)1({15 V ; w(k)l{k:supseK|C(s+ik”h;a)76p(")

However, in view of (4.1),

{k : sup ‘C(s + ik%h; a) — P
seEK

<<
2

C {k: ssup [C(s +ik%hsa) — f(s)| < E}.

sEK

Therefore, the theorem follows from (4.3).
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