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Abstract. This paper establishes the existence of renormalized and entropy solu-
tions for a system of nonlinear reaction-diffusion equations which describes the tumor
growth along with acidification and interaction. Under the assumptions of L' data
and no growth conditions with zero Dirichlet boundary conditions, we prove the exis-
tence of renormalized and entropy solutions for the considered mathematical model.
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1 Introduction

Acid-mediated tumor invasion model confines a mechanism linking altered glu-
cose metabolism with the ability of tumor cells to form invasive cancers. Glu-
cose metabolism and increased glucose uptake observed in the majority of clini-
cal cancers which are critical for development of the invasive phenotype. Tumor
cells are resistance to acid induced toxicity which survive and proliferate in low
pH micro environments, invade the damaged adjacent normal tissues. First,
acidification of the tumor micro environment is shown by Gatenby et al. [15]
and Martin et al. [17] to increase invasiveness and metastasis of cancer cells
using mathematical model. Acidification induced by the result of glycolysis
both in the presence of oxygen through Warburg effect and intermittent hy-
poxia which produce toxicity in the surrounding normal tissue provides the
empty space for tumor cell proliferation and invasion. Gatenby and Gawl-
inski [14] used the acid-mediated invasion hypothesis in a reaction-diffusion
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framework which plays an important role in tumor progression. The mathe-
matical representation of a reaction-diffusion system at the tissue scale in which
many mathematical models have been developed to explore the relationships
between tumor invasion, tissue acidity and cellular metabolism and energy
requirements, see, for example, Bertuzzi et al. [6], Bianchini and Fasano [7],
Ganesan and Lingeshwaran [13], McGillen et al. [19], Smallbone et al. [26], Tao
et al. [27] and Venkatasubramanian et al. [28].

Acidification factor plays a major role in the development of tumor growth
models. Therefore, in this work, we consider a PDE model for acid-mediated
tumor growth extended from [14] with nonlinear acidification term to capture
a wider range of tumor behaviors. Here, we also have included the interacting
phenomena, that is, as tumor cell density increases with time, metabolism
which produces H* ions leads to destruction of normal cells surrounding the
tumor and thus a reduction in normal cell density. Thus, the nonlinear reaction-
diffusion mathematical model is given by

% —div(oq (u2)d1(u1, Vuq)) = r1(p1(ur) — uspq (ur))
—m(u1,us) + f(z,t) in Qr,
uz_y . (1.1)
Wahv(oz(m)dz(uz, Vuz))=r2(p2(uz) —upo(usz))+g(x, t) in Qr,
% — odiv(ds(ug, Vug)) = raps(uz) — aguz + h(z, ) in Qr

with initial and boundary conditions

ui(2,0) = u;0(x), 1=1,2,3 in (2,
ui(z,t) =0, 1=1,2,3 on Xrp,

where Qr = 2 x (0,T), Xr = 992 x (0,T), 2 is an open bounded domain
in RY with boundary 92 (no smoothness is assumed on the boundary 912).
The mathematical model consists of three unknown variables: normal cell den-
sity wi(z,t), tumor cell density wus(x,t) and acid concentration us(x,t). The
homogeneous Dirichlet boundary condition means that the model (1.1) is self-
contained and has no population on the boundary 0f2. The density dependent
diffusion coefficients for the normal cells and tumor cells are given by o1 (u2) and
o2 (uy) respectively. Further, the excess HT ions diffuse chemically with con-
stant diffusion rate with 3. The normal cells and tumor cells obey the logistic
growth p1(u1) = ui(1 — ), pa(uz) = uz(l — &) with growth rates r1 and ry
and carrying capacities K1 and K. The competition relationship between the
normal cells and tumor cells with the rates a; and as are given by pq(uy) = %
and po(uz) = “¢22. The interaction of healthy cells with the excess H T ions
is given by m(u1,us3) = ajujus which leads to a death rate proportional to
the concentration of HT ions and denote the constant of proportionality by
. Acidification caused at a rate r3 proportional to the tumor cell density
and an uptake term with constant proportionality as is included to measure
the mechanisms for increasing extracellular pH. Moreover, f(x,t),g(z,t) and
h(z,t) denote the source terms of the respective equations. Further, we have
assumed that all the coefficients are positive and o;(-) € C3(R), i = 1,2.
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The notion of renormalized solution is introduced by DiPerna and Lions
for Boltzmann equations in [11]. Further, the same framework has extended
for elliptic equations, parabolic equations and conservation laws, for example,
see [5,8,9,10,18,22,23] and also see the references therein. Furthermore, a
new class of study, equivalence between renormalized and entropy solutions
studied for parabolic equations by many researchers, for example, see [1,3,12].
Moreover, in the literature, considerable amount of works are available for the
existence and uniqueness of biological models using various mathematical tech-
niques, for example, see, [2,4, 24, 25] and the references therein. As far as,
acid-mediated cancer invasion model is concerned, only few papers available in
the literature. Local and global existence of solutions of the model governed
by acid-mediated tumor invasion established in [20]. Acid-mediated invasion
model for tumor-stromal interactions under no flux boundary condition is con-
cerned in [16] and the global existence and uniqueness proved using contraction
mapping principle. A mathematical model focusing on the effect of heat shock
proteins on the tumor cell migration is proposed and the local existence of a
unique positive solution is obtained in [21]. On the otherhand, existence of
renormalized and entropy solutions for the system of parabolic equations con-
cerned, only few papers available in the literature, see, [3,4,24,25]. Therefore,
in contrast to the above mentioned papers, in this work, the main novel point
is to establish the existence of renormalized and entropy solutions of the model
governed by the acid-mediated tumor growth under no growth conditions and
integrable data.

The paper is organized as follows. In Section 2, we state the main theorem,
that is, existence of renormalized solution of the parabolic system (1.1). Then,
we introduce the regularized system of (1.1) and establish the existence of
weak solutions of the regularized system. Further, we prove the existence of
renormalized solution of (1.1) using the lemmas established in that section.
Finally, in Section 3, we prove that renormalized solution of (1.1) is also an
entropy solution.

2 Renormalized solutions for cancer invasion system

In this section, first we define the renormalized solution for the given parabolic
system (1.1). After stating the main result of the work, we introduce regu-
larized system for (1.1) and then we establish the existence of weak solutions
of the regularized problem using the Faedo-Galerkin approximation method.
Furthermore, we state and prove the certain lemmas which are useful to prove
the existence of renormalized solutions of (1.1).

DEFINITION 1. A renormalized solution of (1.1) is a set of functions (uy,uz, u3)
satisfying the following conditions: wu(z,t), us(z,t) and wus(x,t) are all non-
negative for a.e. (z,t) € Qr. Fori=1,2,3

u; € L=(0,T; LY (2)) N L*(0,T; Hy(2)),  Ti(ui) € L*(0,T; Hy (£2))

for any k > 0, / di(u;, Vu;)Vu;dedt — 0 as n — oo.
(n<|ui|<n+1)

Math. Model. Anal., 22(5):695-716, 2017.
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For all S(u;) € C*°(R) with supp S’ is compact,

3S(U1)

8t — diV(O’l (uz)S’(ul)ch (ul, Vul)) + g1 (ul)dl (Ul, Vul)S”(ul)Vm
= r1p1(u1)S’ (ur) —riugp (ur)S" (ur) —m(uy, uz) S (u1)+ £S5 (u1) in D' (Qr),

858(71:2) — div(oa(u1) S (uz)da (ug, Vug)) 4 oo (uy)da(ug, Vug)S" (ug) Vg
= rapa(ug)S’ (ug) — raurpa(uz)S’ (ug) + ¢S’ (u2) in D'(Qr),
855?3) _ J3diV(S’(u3)d3 (U3, Vu3)) + o3ds (U3, VU?,)SH(US)Vug

= r3p2(u2)S’ (us) — asusS’ (us) + hS'(u3z) in D'(Qr)
and the initial conditions
S(Ul(l‘,O)) = S(uzyo(x)) in Q

Here, D(Qr) denotes the set of all infinitely differentiable functions on Qr
with compact support and the distributions on Q1 are denoted by D'(Qr). We
assume the following hypotheses to establish the existence of weak-renormalized
solutions of the system (1.1), as in [8,9]:

(H1) d;i(n,¢)¢ > 7il¢|?, for every ¢ € RY and v; > 0, i = 1,2,3 is given real
number.

For any k > 0, there exists C, > 0 such that |d1(n, )| < Cr(1+ |{]).

(H2)
(H3) (di(s,¢) —d;i(s5,¢"))(C =) >0for ¢,¢' eRN, i =1,2,3.
( ) Ui70($)7 S Ll(Q), 1= 1,2,3.

(

H5) fagah € LI(QT)

Further, we introduce the truncation function at the height &,

k, if z>k,
Te(z)=4¢ =z, if |z| <k, ,
—k, if z<-—k,

oy [ 222 it 2] <k,
Tk(z>—/0 Tk(s)ds—{ klz| = k?/2, i |z| > k.

Moreover, throughout this work, we use a generic constant C' instead of different
constants.

Theorem 1. Under the hypotheses (H1) — (H5), there exists at least one
renormalized solution of the system (1.1) in the sense of Definition 1.

For € > 0, let us introduce the following approximations of the data:

(H6) us, € L*(92), and ufy — uijpo, @ = 1,2,3 a.e. in 2 and strongly in
L1(02) as ¢ tends to zero.
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(H7) f¢,6°,h° € L?(Qr) and f° — f, ¢ — g, h° — h ae. in Qr and
strongly in L'(Qr) as ¢ tends to zero.

Consider the following approximation problem of the system (1.1) for € > 0:

ouj
8151 iv(o1(ug)di(u, Vui)) = ripi(u]) — riugpi(ui)

( ,U§)+f€ in QT?
6’”6 : € € € (. € €, ,,E(,E £ s 2.1
8t2 —div(o2(ug)da(us, Vu3))=raps(uz)—rauips(uz)+g° in Qr, @1)
ou§ . .
8ut3 (d3(u3, Vu3)) = r3p5(u3) — azui + h® in Qr

with initial and boundary conditions

u§(7,0) = uf o(v), i=1,2,3 in £,

ui(z,t) =0, i=1,2,3 on Xrp,
where pf (us) = ps(uZ) /(1 + py(uf)), 15 (uF) = () /(1 + ep(u), for i = 1,2
and 7°(uj, u3) = 7r(u1, ug)/(1 + eﬂ(ui,ug)).
Lemma 1. Under the hypotheses (H1— H3) and (H6— HT) the approzimation
system (2.1) admits unique weak solution

u € L(0, T3 HY(2)) 1 L(0,T; L2(2)) 1 C((0, T], LA(92)),

with agf € L%(0,T; H1(02)) such that for any ¢; € L*(0,T; H3(£2)),i=1,2,3,

T
/ (O, 61t + / o1 (45)d (5, VoS Vbrdadt = 1 / i (uS) by dadt
0 T

T

—7"1/ uéui(u‘i)qﬁldxdt—/ ¢ (uf, uf)prdedt + feprdadt,
Qr Qr Qr

T
/((‘%u;(bg}dt—i—/ oo (uf)da(us, Vus)Veodrdt
0 Qr

zrg/ p‘;(ug)(bzda:dt—rz/ uiug(ug)(bzda:dt—i-/ 9° podadt,
T Qr

T

T
/ (Opusg, ¢3)dt + o3 ds(u3, Vu3)Vezdzdt
0 Qr

:rg/ p‘;(ug)qbgdxdtfag/ u§¢3dxdt+/ h® psdadt
T T

T

hold.

Proof. To use the Faedo-Galerkin approximation method, let us consider an
appropriate spectral problem, see [4], in which the corresponding eigenfunctions
e;(r) form an orthogonal basis in HE(£2) and orthonormal basis in L?(£2). Our
aim is to identify the finite dimensional approximation solutions for the system
(2.1) as sequences {us .}, i = 1,2,3 defined forn > 1,¢ >0 and x € 2 by

t) = Zci’n,l(ﬁ)el(aﬁ)7 i=1,2,3
=1

Math. Model. Anal., 22(5):695-716, 2017.
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with the initial conditions

n
u€7n(x70) *uz()n ch’nl 6l

=1

Further, it should be remarked that the above form of solutions should sat-
isfy the required boundary conditions. Next, we have to determine the set of
coefficients {c¢; »1}}1,% = 1,2,3 such that, for m =1,2,...,n

8tu1 nemd:r+/901 (u3,)d1 (U], VUi, ) Ve dr= 1"1/p1(u1 n)emdx
—7"1/Qu2)nu1(u17n)emdx—/ﬂ7r (ug ,,,u3 n)emdx—i—/ ffemde,
/Qatugynemdx+/Qog(uin)dg(ugyn,VuQ’n)Vemdx
:1"2/ pg(ugvn)emdxfrg/ ujnpg(ugyn)emdx+/ g°endr,
2 2 2

/atugmemdx—&—ag/ d3(u3 ,,, Vus ,)Vendz
Q o

:rg/ 05 (u n)emdx—a;;/ ug nemdx—i—/ hfepde.
Q ' 2 7 Q

Now (2.2) can be rewritten in the following form:

(2.2)

&) = / 01 (15, )1 (4 1y, VS ) Ve + 14 / P )emds
(9] (9]

ug,nui(uin)emdx—/(lws(uin,ug,n)emdx—k/-Qfsemdx

G (t {ernibic {eamitizs {esmitiz) s

—rqy

. a\

o2(ui ,)da(us ,,, Vs, )Verndr + 12 [ pa(us,)emde
2 7

m(t)
—7'2/ uf 15 (us,, ) emde +/ g e do
o ’ o}
= ng (t7 {Clﬂl,l}?:l’ {CQ,NJ}?:l) )

&) = —0 / d5(u V1§ ) Vemdz + 73 / P55 )emda
0 (9]

_ag/“?nemdﬂf+ heemdr =: G5* (t, {cz,ni}isrs {esnii%1) -
[0 [0

(2.3)
Let € (0,T) and set U = [0, x]. Choose R > 0 large enough so that the ball
Br C RY contains {c¢;,(0)}, = 1,2,3 and set V = Bg. The components
GI',i=1,2,3 can be bounded on U x V as follows:

o §_j 2nalt)er(a))

(/’dl(chnl ey chnl )Vey( ))‘de>2

|G (t, {crmitiess {ezmatirs {esmatio) | <

L=(2)



Renormalized and Entropy Solutions of Tumor Growth Model 701

2 : (r1+1) 2 :
</Q|Vem| dx) + E meas((2) (/Q|em| dx)
n 2 % %
+ 2(/9 ;ch,l(t)el(x) da:) (/Q |em|2dx> —&—/Qfsemdx

< C(R,n),
where the constant C(R,n) > 0 depends only on R and n. Similarly it is easy
to obtain that

|Gy" (t, {Cl,n,l}ln:h {CQ,n,l}?:l)
IG5 (t, {canitizrs {esmatizr)

where the constant C(R,n) > 0 depends only on R, n.

According to the standard ODE theory, one can show that the absolutely
continuous functions {¢; n 1}, ¢ = 1,2,3 satisfy (2.3) and the initial condi-
tions for ¢ € [0, k] a.e. where £’ > 0. Moreover, we have

c1n,1(t) = c1,n,1(0)

t
+ / G (7, {1 mm (T} et {C2mm (7)Yt (€ ()} )
t
Cmi(t) = c,0(0) + / G (7, {1 mm (T}t {Comm (7)) ) di,
0

t
eami(t) = Cani(0) + / G (7, {eamm (1)}, (€3 mm (7)) di.
0

This proves that the sequences are well defined and approximate solutions to
the system (2.3) on [0, x'). Set

¢i,n(xat) = Zbi,n,l(t)el(x)a 1= 13 2737
=1

where the coefficients b; 5, 1,7 = 1, 2, 3 are absolutely continuous functions. Then
from (2.2) the approximate solutions satisfy the weak formulation

/8tuin¢1,ndx+/al(u;n)dl(uin,Vuin)ngSlyndx
o) I?)

=1 [ o) onnde 1 [ i )60

— [ 70 5 e + [ 61

7] ’ ’ 7}

/atu;n(ﬁg,ndx—i—/ ag(uin)dQ(u;n,Vug_’n)nggyndx (2.4)
10 I?)
= raf palus )onndo—rs [ (0, )0m et [ g0
/8tu§7n¢3,ndx+03/ ds3(u3 ,,, Vus ,,) Vo3 ndx
0 0

:rg/ pg(ug)n)¢37ndx—a3/ ug’ngbg’ndx—f—/ hf¢3 pdx.
Q I?) 12,

Math. Model. Anal., 22(5):695-716, 2017.
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Take ¢; n = u;,,,i = 1,2, 3 respectively in (2.4) and use Gronwall’s lemma with
Young’s mequahty to get

H(?tu < C7

e il o1 <

sl e 0,7 I

il Loe (0,T;12(£2)) i,nllL2(0,7; Hl(Q)) =
where the constant C' > 0 and T is an arbitrary time in the existence interval
[0,k") of Galerkin solutions. Similar approach developed in [2,4] is used to
prove the global existence of solutions. Therefore, as n — oo, for i = 1,2,3 we

have,

S — uf weakly-* in L>(0,T; L*(12)),
uf, — wuf weakly in L*(0,T; Hy(£2)),
di(us ., Vus,) — n; weakly in L*(Qr),
8tuf7n — Gy weakly in L2(0,T; H~1(£2)).

Using similar type of arguments as in [4] we can show that d;(u$, Vus)=n;, i =
1,2,3. Since the solutions u§,u§,u§€L?(0,T; HE(£2)) N L>°(0,T; L?(£2)) and
from the above a priori estimates we conclude that u§, u§, u§€C([0, T|; L?(£2)).
O

Lemma 2. Under the hypotheses (H6), (H7) the functions Tg(u$), 8557:5),
i = 1,2,3, are bounded in L*(0,T; H}(£2)) and L*(Qr) + L?*(0,T; H~1(02))
respectively.

Proof. Taking Ty (u5) as a test function in the first equation of (2.1) and
integrating over Q; = 2 x (0,t), we get

/uisTk(uf)dzder/ o1 (ui)dy (us, Vui) VT (uf)deds

t

=r1/ pf(u‘i)Tk(ui)dxds—rl/ usug (ug) Ty (uf)dzds

t

—/ 7 (uf, ug) Ty (uf)dads + fT (uf)dads, (2.5)
t Q1

/QTk(u‘i)(t)dx—Afk(ui’o)dx+71/ 01(u§)|VTk(u§)|2dxds

t

Srl/ pi(ui)Tk(ui)dxds—rl/ us s (ug)Tx (ug)dzds

t t

7/ 7w (uf, u5) Ty (uf)dads + | T, (uf)dxds. (2.6)
t Qt

Similarly, from the second and third equations of (2.1), we get
/ T (us)(t)dz — / Tk(ug’o)dx + 'yg/ o2 (us) | VT (u)|*dzds (2.7)
9] n Qt

§r2/ pg(uS)Tk(ug)dxds—rg/ uiug(ug)Tk(ug)dxds—i—/ 9Ty (u)dxds,

Q1 t
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/Tk(ug)(t)dx—/ Tk(ug7o)d$+03’yg/ |V T (u5)*dxds
2 n Q¢

§r3/ pg(ug)Tk(ug)dxds—ag/ ugTg (u§)deds+ [ AT, (u§)dads. (2.8)
¢ Qt Qt

Add (2.5)—(2.8) and use Young’s inequality, the properties of the functions
f5,95,h%,u5 o ()i = 1,2, 3, the continuity of o1 (uf),i = 1,2 and the bounded-
ness of approximate solutions with the definition of the functions T} (u§),i =
1,2,3 we have

/ |V (us)|*deds < C (2.9)

T

for any C > 0 and 7 = 1,2,3. From (2.9), we conclude that Ty (u$), i =1,2,3
is bounded in L2(0,T; Hi(£2)). Multiplying first equation of (2.1) by S'(uf),
we get

OOV — iv(S' (w5 (s, V) — 02 () (s, Vi) () Vo

+ 17 (uD) S (ui) —ryusp (ug) " (u) =7 (g, u3) " (u) +/°5" (ug). (2.10)

For any S € C*°(R) with supp S’ compact and from the definition of T (u$),
we can rewrite (2.10) in the following way,

a%f):&wywamw@mauﬁ%V&w®D

—o1(u3)dy (Th(ui), VT3 (u7)) 8" (u)) VT (ui) + 1195 (Th (u7))S" (uf)
—rrugps (Ti(ui)) S (uf) — 7 (Te (ug), T (u3))S" (u) + f°5" (u]). (2.11)

From (2.11), we conclude that 220 is hounded in L!(Q7)+L2(0, T; H~1(R2)).

ot
Similar arguments for 6%?” , @ = 2,3, proves the desired result. This completes

the proof of the lemma. 0O

Lemma 3. The solution triple (u5,u§, u3) of the approzimation system (2.1)
18 non-negative.

Proof. For i = 1,2,3, consider u; © = sup(—u5,0) and multiply (2.1) by
—Ty(u; ©) respectively and integrating over {2, we get

d ~ _ _ _ _

—/ T (uq E)da:—i—vl/ o1(uy 9| VT (ug E)|2d3v§r1/ p1(ug )T (uy ©)de

dt Jo Q Q

+7”1/UEEui(UfE)Tk(ufs)df—/Ws(uf67u§€)Tk(ufE)dx+/ f* Ty (uy®)dz,
o) 2 Ie;

d

— Tk(ugs)der'yg/ Ug(ul_e)|VTk(u2_E)|2dx

Math. Model. Anal., 22(5):695-716, 2017.
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<72 [ ()T Yo s [
(9]

Tz o+ [ g T,
(9] (9]

d
G | Bt )aw e [ (9707 Pda

Srg/ pg(uz_E)Tk(ugs)da:—ozg/ u;ETk(ugg)dx—F/ h* Ty (usy ©)da.
Q Q

From the boundedness of solutions (u§, u§, u§), continuity of oq (u$),4 = 1,2 and
the non-negativity of f€, g%, h®, uf o, = 1,2, 3 together with Young’s 1nequahty,
we get

) ()de <0, i =1,2,3.

dt
This proves the required result. O

Tk(u_a
0

DEFINITION 2. We define the Lipschitz continuous function in the following
form

0 if |z] < m,
O,(2) =Tni1(2) = Ta(z) =< (Jz] = n)sgn(z) ifn<|z| <n+1,
sgn(z) if |z >n+ 1.

Obviously the function ©,(z) satisfies ||y (2)|| gy < 1, for any n > 1 and
O,(z) = 0, for any n > 1 and also 6,(z) — 0, for any z when n — co.

Lemma 4. The Lipschitz continuous function ©,(u;),i = 1,2,3, for some
n >0 and € > 0 satisfies

lim lim/ / (uf, Vui)Vuidzds =0 and
n<|u \<n+1

n—oo e—0
On(u;) = 0 strongly in L*(0,T; H3(82)) as n — oo and fori=1,2,3.

Proof. Treating ©,,(u) as a test function and multiplying the first equation
of (2.1) by O, (u5) and integrating over @ x (0,t), we have

/én(ui)dx—/ én(uio)dm—i-/ o1 (ug)dy(u5, Vui) VO, (u])dzds
n 9] Q

= 7"1/ 05 (u3)O, (uf)dads — 7“1/ us s (ug)On (ug)dads

t t
7/ 7 (uf, u5)Opn (ul)dxds + | O, (uf)dads
t Qt
for almost ¢ in (0,T"). Since O, (u5) > 0 for all x € {2, we obtain

/ al(ug)dl(u‘i,Vui)V@n(u‘i)dxdsSrl/ 05 (u]) O (uf)dads

t t

—7’1/ uéué(uf)@n(uﬁ)dxds—/ mE (uf, u5)Op (u])dads

t t

0 (ul)dxds+/ 6,1 o (x))dz (2.12)
Q1
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forall t in (0,7) and ¢ < ﬁ For any subsequences u$ (still denoted by u5),

Lemma 2 and (2.12) confirm that,

u; — u; a.e. in Qp, i =
Ty (uf) — Ti(w;)  weakly in L2(0,T; HY(£2)), i =1,2,3, (2.13)
O, (5) — On(us) weakly in L2(0,T5 HI(02)), i = 1,2,3,

7

1,2,3,

as € — 0 for any £ > 0 and n > 1. Using (H2), we can show that for i =1,2,3
di (Ti(uf), VT (u5)) is bounded in L?(Qr). Therefore, for i =1,2,3,

di (T (u5), VT (u5)) — mip. weakly in L?(Qr) as e — 0 (2.14)

for ;1. € L*(Q). From (2.5)—(2.8) and Lemma 3, we have

Z/T’f t)dz </ (r1p7 (ui) —riusp] (ui) =7 (ui, ug)+f°) Tj(ui)dads
4 [ randlud) — ui(us) + ) Tiu5)dads
3 ~
+ / (r3p5(us) — agu§ + h°) T (u3)dads + Z/ Tk(uf)o)(x)dw.
t i=1 Q

From the boundedness of the solution triple (uf,u§,u5), Lemma 2 and use
Young’s inequality, we get

3
Z/QTk(uf)dx < Ce + k(Ifllz2@r) + 9722 @r)

3

+ 102 @ + 2 lufollz2(e),
i=1

where C}, is a constant independent of . Taking lim inf as € tends to 0 in the
above estimate and using the results (2.13) and Lemma 2, we have

3
Z/ Ti(ui)dz < Cr+ k(| £l (@ + gl L@ IRl @m + D ltiollie)-
i=1
From the definition of T (u;),i = 1,2, 3, we deduce that
3 2
Z k:/ lu;(z,t)|de < Cf + ?meas(ﬂ)
— Q
3
K1 @r) + 9oy + 1l Lr@e) + Y Iusolli)  (215)
i=1

for almost all t € (0,T) and (2.15) shows that u € L>(0,T; L*(£2)).

Math. Model. Anal., 22(5):695-716, 2017.
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Now (2.12) along with (2.13), proves that

@ o1(us)dy (us, Vui) VO, (uf)dads < rl/ p1(u1)Op (u1)dads
€ Qt t

—7"1/ uzug(ul)@n(ul)dxds—/ m(uy,u3)Op(ug)dzds

t

fOn(u1)dads + On(uy o(z))dz. (2.16)
Q1 Qt

Using (H1), VO, (u®) = X(n<|us|<n+1) VU, the continuity of o1(u3) and the
convergence results in (2.13), we have

71/|V@n(u1)|2dxd5§r1/pl(ul)@n(ul)dxds—rl/ ug o (u1)Op (uq)dazds

t t t

—/ 7(u1, u3)Op (uy)dazds+ [ fO,(ur)dzds+ | O, (uro(x))dz. (2.17)
t Qt Qt

Since O,,(u1) — 0 as n — oo, we have O,,(u;) — 0 weakly in L2(0,T; H}(£2)).
This leads to

/ r1p1(u1)Op (ur)dzds — 0, / riugpiz(u1)Oy (ur)dzds — 0,

t t

/ m(uy, u3)Op (ur)dads — 0, fOn(u1)dads — 0,
t Qt

as n — o0. Also, O,(u19) — 0 ae. in 2 as n — oo and [|O,(ui)|| <
lu1,0ll 21 () implies O (u1,0)dz tends to 0 as n — oo, which follows from
2

the Lebesgue convergence theorem. Hence passing the lim-inf in (2.16) and
(2.17), we get

lim lim/ / dy (uf, Vui)Vuideds = 0,
n—00e—0 (n<|u§|<n+1)
On(uy) — 0 strongly in L?(0,T; Hy(£2)) as n — oo.

Similarly, we can show that, for i =1,2,3

lim lim/ / (us, Vui)Vuidzds = 0,

n—o00e—0 (n<\u5|<n+1)

O, (u;) — 0 strongly in L?*(0,T; H}(£2)) as n — oo.
O

DEFINITION 3. For i=1,2,3, the time regularization for the function Ty (u;) is
defined as

t

(T (uy))s = 5/ e

— 00

u;(z, s), ifs > 0,

(s=DT, (u;(x, s))ds, where u(xs){ (2), ifs < 0
Ui,0lT), IS .



Renormalized and Entropy Solutions of Tumor Growth Model 707

Let us consider the unique solution (T} (u;))s € L*>®(Qr) N L2(0,T; HE(£2)) of
the monotone problem

B ey + B((Telw))s = T =0 i Qe
(Ti(a(,0)))s = Telwso(#) m

for 6 > 0 and & > 0. From (2.18) and Lemma 2, we have %(Tk(ui))g €
L2(0,T; Hj (£2)).

Remark 1. For i = 1,2,3, we have (Ti(u;))s — Tr(u;) a.e. in Qr, weak-* in
L*°(Qr) and strongly in L?(0,T; H}(§2)) as § — oo and also

[(Te(wi)s |l oo (@) < max(|Th(wi)llLoe (@r)s 1Tk (wi0)l| Lo () < ks
for any § > 0 and k > 0.

Lemma 5. Let k > 0 be fized and S be an increasing C*°(R) function such
that S(z) = z for |z| < k and supp S" be compact. Then

n—00 e—0 ot

nmnm/T/é”WﬂgM@ywn@m@mmaza

Proof. The proof is as similar as of Lemma 1 in [9]. O

Lemma 6. Fori=1,2,3, and n; , which is defined in (2.14), the subsequence
of uf (still denoted by us ) satisfies, fori=1,2,3,

e—0

T T
M/ / di(Tr (ug), VI (us)) VT (uf )dadsdt < / / 03k VT (u;)drdsde.
0 + 0 t
Proof. Let us introduce S, to be a sequence of increasing C'°(R) functions
such that

Sp(z) =z, for|z| <m, (2.19)
supp S;, C [-(n+1),(n+1)], [} e < 1.

Multiply the first equation of (2.1) by S7, (u5) to get

8571 i : € € € £ £ £ € £ £
O5n0) — dio(), (o (5 0, V) — oy w5 ) (o, W) ) 9
7 ()4, () s (), )~ (a0, ) + £ ). (220

By similar procedure, we obtain that, for i = 1,2,3

0
aSn(Uf) € LY(Qr) + L*(0, T; H~1(£2)).
For fixed k > 0, 0 > 0 and € > 0, set

WE = Tho(us) — (Ti(wi))s, i=1,2,3. (2.21)

Math. Model. Anal., 22(5):695-716, 2017.
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Multiplying (2.20) by ¥5 and integrating over Q; x (0,T), we get

/ 8Sa(t )y'/(;dacdsdt / Sy (ul)o1(u3)dy (uf, Vui) V&5 dzdsdt
Q Q

/ S (ug)o (uf)dy (u3, Vui) Vui¥s dzdsdt
—i—rl/ S (ug)p %dxdsdt—rl/s (uf)usps (u3)¥sdedsdt
—/ S;L(ui)ﬁg(u‘i,ug)ilfdxdsdt—i-/ 12S) (uf)¥s dzdsdt, (2.22)
Q Q

where Q = Q% (0,T). From (2.21) for fixed 6 > 0, ¥§ — Ty (u;)—(Tk(ui))s, @ =
1,2,3 weakly in L?(0,T; H}(£2)) as ¢ — 0. By Remark 1, we conclude that
15| oo (2) < 2K, for any € > 0 and 6 > 0. Therefore, the boundedness of ¥
shows that for fixed 0 > 0, ¥§5 — Ty (u;) — (Tk(ui))s, ¢ =1,2,3 a.e. in Q7 and
L>(Qr) weak-* as ¢ — 0.

By the definition of S, we have supp S, C [-(n+1),(n +1)]U [n,n + 1]
for any n > 1. As a consequence

\ / SZ(U?)Ul(US)dl(UiVUi)VUiWdedsdt‘ < TSI () L)
Q

< sl @n 1% 1= @n) | i (uf, V) Vi dads,
(zt)m< us| <n+1)

forany n > 1, e < %_H and 0 > 0. From |¥§|| 1 (q,) < 2k and (2.19), it can
be easily obtained that

lim lim
d—o0 €—0

/ S (u3)o1 (uf)dy (ul,Vul)Vui%da:dsdt’
< C lim dy (u§, Vui)Vuidzds,
=20 (@ i< u|<nt1)
for any n > 1, where the constant C' depends only on T and k. Hence, by

Lemma 4, we achieve that

lim lim lim
n—o00 §—oo €—0

/ S;{(ui)al(ug)dl(ui,Vui)Vuindzdsdt‘ =0. (2.23)
Q

For some n > 1, we have

118y, (u) pl (W) W5 = 1Sy, (ug)pf (Tna (u9)) 5

a.e. in Qr, since supp S, C [—(n + 1), (n + 1)]. Definition of p§(u$) and the
result (2.13) lead to S), (u®)p5 (Th41(us)) = S, (w)p1(Tht1(u1)) ae. in Qr and
in L*°(Qr) weak-* as ¢ — 0. This proves

lim [ryS) (uf)p5 (u])¥5dedsdt= /7"1 Sy (u1)p1(ur)(Te(ur) — (T (ur))s)dazdsdt,
Q Q

e—0
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for any § > 0. Using Remark 1, we set

lim lim [ 7S] (u])p](uf)¥sdzdsdt = 0.

§—00e—0 Q

Similarly, we can show that

lim lim [ 7S] (u])uspur (u])¥5dedsdt = 0,

d—o0 e—0 Q

lim lim [ S/ (u])w(uf,u3)¥;dedsdt = 0.

d—o00 e—=0 Q

Since fS/(u1) € LY(Qr), (2.13) and Remark 1 lead to,

d—00e—0

lim lim/ 128! (ug)¥sdzdsdt = 0. (2.24)
Q

Consequently from Lemma 5 and the definition of ¥§, we have

lim lim 05 (ui)

i ) Tlpgdxdsdt >0 forany n>k. (2.25)

From (2.23)—(2.24) along with (2.22) and (2.25), we get

lim lim lim [ S} (u§)di(us, Vu§) V& dzdsdt < 0. (2.26)

n—o00 j—oo e—=0 Q

Using the definition of S,, and (2.26) to get

Tim [ di(us, Vu§) VT (u§)dzdsdt

e—0 Q

< lim lim lim [ S} (u§)dy(us, Vu5)V(Tk(us))sdzdsdt  for k < n.

n—o00 j—oo €—0 Q

‘We know that

Sy (ul)da (u, Vui) = Sy, (ui)dy (Toga (u), VT (ui)), fore <

n+1’

From (2.14), we have S), (u5)d1 (Th11(u5), V(Thi1(u5)) — SI(uf)n1 nt1 weakly
in L?(Qr) as € — 0. This helps us to prove that

Tim [ di(Ty(u§), VTi(u5)) VT (u5)dzdsdt

e—0 Q

< lim S! (w1)m 1 VTk(up)dzdsdt

T nooo
Q

= / M ,n+1VTk(u1)dzdsdt for any n < 1. (2.27)
Q

For any k < n, we have
dy (Tr1 (u]), Vg1 (ul))(jus <oy = da(Tr(ul), VI (1)) xfjus i<k} a-e. in Q.

Math. Model. Anal., 22(5):695-716, 2017.
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Above equation with (2.13) and (2.14), implies that
Mt Ly (jus | <k} = Mok (jus <k} &€ in Qr — {|u1| =k} for k<n as £ —0.

Therefore (2.27) becomes

Tim [ di(Tx(u5), VTik(u5)) VT (u5)dzdsdt = / Mk VT (u1)dedsdt.
Q

e—0 Q

Similarly, we get

Tim di(Tk(uf),VTk(uf))VTk(uf)dxdsdt:/ Ni ke VT (u;)dzdsde.
Q

e—0 Q

O

Lemma 7. For any k>0 andi=1,2,3, we have

E Q[dz‘(Tk(Uf)y VT (ug)) — di(Th(ui), VT (us))]

X [VTi(u$) — VT (u;)]dedsdt = 0.

Proof. From the monotone character (H3), for any k > 0, we have

T | 0T (0), VT (45) = (i), 9 )
X [V (uf) — VT (u;)|dzdsdt > 0.

By (H2) one can remark that |d; (T, (u;), VI (ui))| < Cr(1+|VTE(u;)|) a.e. in
Q1. Then by Lemma 4, (2.13) and (2.14), we have

Tim [ [di(Ti(u5), VTi(u7)) = di(Th(us), VT (us))]
€ Q
X [VT(ui) — VT (u;)]dedsdt = 0 for any & > 0.
O

Lemma 8. For fizedk >0 andi=1,2,3, we have n; , = d; (T (u;), VI (u;))
a.e. in Qr and

di(Ty (u7), VT3 (7)) VT (u7) = di(Ty(ui), VT (ui)) VT (i)
weakly in LY (Qr).

Proof. For any k > 0 and 0 < € < %, Lemma 6, (2.13) implies that, for
i=1,2,3,

i ([ (T (), VT3 () VT (st = / eV T (1) dardlsdt.
E—r Q Q
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Minty’s type of arguments, in view of (2.13), shows that d; (T (u;), VTk(u;)) =
i, for any k& > 0. This proves the first result of Lemma.
For any k > 0, T" < T, Lemma 7 shows that,

[di(Tk (u5), VT (u7)) = di(Th(ui), VI3 (i) [V (ui) — VT ()] — 0
strongly in L'(£2 x (0,7")), as € — 0. By (2.13), the first result of the present
Lemma implies that

di(Tk (uf), VT (Ul)) — dl (Tk (ui), V1T, (ul)) Weakly in Ll(QT)7

di (T (us), VT (ug)) — di(Ti(u;), VT (u;)) weakly in L'(Qr).
Hence d;(Ty (u5), VTk(u$)) — di(Tk(u;), VTk(u;)) weakly in L(2 x (0,T")) for
any T/ < T as ¢ — 0. According to the definition of d;(n, (), the assumptions

hold true for all time T. Hence d;(Tj(us), VIi(u5)) — di(Tk(ui), VIk(u;))
weakly in L!'(Qr) holds. O

Lemma 9. For anyn >0 and i =1,2,3,

/ d;(u;, Vu;)Vu;dedt -0 as n — oo.
{(z,t)eQr;n<|u;|<n+1}

Proof.
lim d;(u$, Vui)Vuidedt = lim [ d;(u, Vui )V (Thpr () =Ty (uf ) )dedt
20 (@ t)eQrin<|us|<n+1} e=0JQr
T T

= / di (u;, Vu;)Vuydzdt for any n > 0.
{(z,t)eQr;n<|u;|<n+1}

Using Lemma 4 together with the above inequality, we get

/ di(u;, Vu;)Vu;dedt — 0 as n — oo.
{(z,t)€Qrin<|u;|<n+1}

O

Now, we prove the main theorem of the work. We have used the Lemma 2 and
Aubin type of lemma to prove the Theorem 1.

Proof. From the system (2.1), we have

35@(?) — div(S'(uf) o1 (u5)dy (us, Vu3)) + o1 (ug)dy (us, Vui)S" (uj) Vus
= r1pf(u5) S (u5) = rruspd (uf)S' (uf) — 7 (uf, u5) S (uf) + f°5 (u),
35{;:3) — div(S' (u§) oo (uf ) da (us, Vus)) + oo (us)de (ug, Vus)S” (u§) Vus

= 12p5(u3) ' (u3) — rauips(u3)S'(u3) + g°5" (u3),
95(u3)

ot

= r3p3(u3) S’ (u5) — agu S’ (u5) + bS5 (u3).

o3div(S’ (u)ds(u3, Vu§)) + o3ds(u§, Vu3)S" (u5)Vus

Math. Model. Anal., 22(5):695-716, 2017.
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Use (2.13), (2.14), (H5) — (H7), Lemma 8 and (2.12) with boundedness of S
to get

855:1) — div(S’(u1) o1 (u2)dy (ug, Vur)) + o1 (uz)dy (uy, Vur)S” (u1) Vuy
= 7101 (1) 8" (ur) =z (u2) ' (un) = w(ur, ug) S’ () + 5" (un),
855(,:2) — div(S (ug) o2 (w1 )da (un, Vug)) + oo (uy )da(ug, Vg )S” (ug) Vg

= r2p2(u2) S (u2) — raun pia(u2) S (uz) + 95" (u2),
853(?3) — 03div (S’ (u3)ds(us, Vus)) + osds(uz, Vus)S” (us) Vus

= r3p2(uz)S’ (us) — azusS’ (us) + hS' (us).

as ¢ tends to 0. By Lemma 2 and Aubin type of lemma one can easily find that
S(uf (x,0)) = S(uf o(x)) converges to S(uj0) strongly in H=15(£2), where s <

inf(2, 2 ). Then (H4),(H6) and smoothness of S prove the strong convergence

in L?(2). Hence, we conclude that S(u;(z,0)) = S(u;o(x)). From the above
results, we conclude the existence of renormalized solutions of system (1.1). O

3 Entropy solutions for cancer invasion system

In this section, we have established the second main result of the paper, that
is, the renormalized solution is also an entropy solution.

DEFINITION 4. An entropy solution (1.1) is a triple (u1,uq, us) satisfying the
following conditions: for i = 1,2,3, u; € L*(0,T; L'(£2)) N C([0,T], L*(12)).
For any k > 0 and for all ¢; € C*(Q7) with ¢; =0 in Y,

. . T

/QTk(Ul —¢1)(T)dx — /QTk(Ul — ¢1)(0)dz +/o (d1e, Ti(ur — ¢p1))dt
+/ 01(u2)d1(u1, Vul)VTk(ul - gbl)da:dt
= / (r1p1(ur) — riugpn (wr) — w(ur, uz) 4+ f)Ti(ur — ¢r)dadt,

T
[ Ttz = 02)(@)e — [ Tuu = 02)O)ds + [ (620, Tuluz - ou))a
%) 2 0

+/ Ug(ul)dg(UQ, VUQ)VTk(Ug - qbg)dl‘dt

= / (’I"Q[)Q(UQ) — rgul,ug(uQ) + g)Tk(ul — ¢1)dmdt,

T

B B T
/ Ty (us — bg)(T)da — / T (s — ) (0)dz + / (30, Tolus — ¢3))dt
0 2 0

+/ O'3d3(U3, VU3)VTk(U3 — d)g)dl‘dt
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= / (r3pa(uz) — azuz + h)Ti(us — ¢3)drdt

T

hold.

Theorem 2. Under the hypotheses (H1) — (H5), the renormalized solution of
system (1.1) is also an entropy solution in the sense of Definition 4.

Proof. Fori=1,2,3, we use Tj(ui — ¢;) as the test functions respectively in

the equations (2.1) and for k& > 0, ¢; € C1(Q) with ¢; = 0 in X7. Multiply
(2.1) by Ty (u$ — ¢;) respectively and integrating over Qr, to get

T
/ (ufy, T (uf — @1))dt —|—/ o1(u3)dy (us, Vui) VT (u] — ¢1)dzdt
0 T

=/ (ra5 () — g (uS) — 7°(uS, uS) + %) Tol(u§ — 1) ded,

T
[t w5 = daat 4 [ oraCu)dalus, Vs V(5 — 6o
0

T

/ (rap§ () — rou S (us) + ¢°) Te(us§ — do)ddt,
T T

n/w;nwawwa+@ ds(u, Vus) VT (u§ — ¢3)dadt
0 Qr

_ / (raps(u5) — gt + h°) Ti (us, — a)drdt.
T

Choose L =k + [[¢1][ oo () and uy = (uf — ¢1)r — d1s, we get

dy (ug, Vui ) VT (u] — ¢1)dzdt
Qr

:/ dy (T (S ), VT () T () (T () — 1),
T ’ B B
l/mnnwvwmw:/nm?¢MﬂM—/nmﬁwmwn
0 (9] 0
T
+/<%JMRW@—%MM
0
From the above equations, we get
B _ T
/ﬂw?wMﬂw—/ﬂM?wmwmﬁ/MMHMM®ﬂMW
0 2 0
+ / g1 (ug)d1 (TL (u‘i ), VTL (ui ))VTk (TL (’U,i) — ¢1)d$dt
:/'wmwm—n@mwﬁ—fwm@+fﬂuﬁ—@MMt
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Since T}, is Lipschitz continuous, using (2.13), we have
/ Ty, (u§ — ¢1)(T)da — / Ty (uy — ¢1)(T)da,
Q Q
/ Tr(u — ¢1)(0)dz — / Tr(uy — ¢1)(0)dz, as € — 0.
Q Q

Using the strong convergence of f¢, (2.13), (2.14) and the Lemma 8 as ¢ — 0,
we get

) ) T
[ Butwr = é0(@)do — [ Tt = o0)Ods+ [ (o Tu(Tuwn) — o)
%) o 0
+/ o1 (uz)dy(ur, Vur) VT (ur — ¢1)dadt
= /Q (r1p1(ur) — riugp (ur) — m(ur, uz) + f) T (w1 — ¢1)dadt.

Similarly, we get

~ B T
/QTk(UQ — QSQ)(T)dI — L Tk(u2 — ¢2)(0)d$ +A <¢2t7Tk(U2 — (,252)>dt
+ / O'Q(Ul)dQ(UQ, VUQ)ka(UQ — ¢2)d$dt

= / (r2p2(uz) — rouspa(uz) + g) T (uz — ¢2)dadt,

B _ T
/ T (us — ¢3)(T)da — / Ty (us — ¢3)(0)dz +/ (3t Tr,(uz — p3))dt
0 o 0
+ g3 / d3 (’U,g7 V’LL3)VTk (’LL3 - ¢3)dxdt
Qr
- /Q (rapa(uz) — gz + h) Ti(us — o)dadt,

for all k > 0 and for i = 1,2,3, ¢; € C*(Qr) with ¢; = 0 in Y. This completes
the proof of existence of entropy solutions of the system (1.1). O
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