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1 Introduction

In this paper, we consider the following nonlocal second order nonlinear hyper-
bolic problem:

utt =
(

1 +

∫ 1

0

|ux|2dx
)
uxx + f(x, t), (x, t) ∈ I × (0, T ],

u(0, t) = 0, u(1, t) = 0, 0 ≤ t ≤ T,
u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ I,

(1.1)

where I = [0, 1]. u0(x), u1(x) and f(x, t) are given functions. In this model
u(x, t) stands for the vertical displacement of point x at instant t. This kind
of equations often arise in nonlinear vibration. For more details on physical
motivation we refer the interested reader to [1, 5, 7, 8] and the reference cited
herein. For finite element approximation of this kind of equation one can
read [6, 9, 10].
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The goal of this paper is to develop an efficient numerical method for prob-
lem (1.1). Noticing that the coefficient in (1.1) depends on the derivative of u.
When finite difference method and standard Galerkin finite element method
are used to solve this model, one have to calculate the derivative of the numer-
ical solution to determine the coefficient. This would generate an inaccurate
coefficient, which then reduces the accuracy of the numerical approximation for
u. In order to overcome this problem we resort to mixed finite element meth-
ods, which can simultaneously approximate the unknown function u(x, t) and
its derivative ux(x, t). As we know the finite element spaces in classic mixed
finite element methods have to satisfy the inf-sup conditions, which restricts
the choosing of finite element spaces.

In this paper we utilize the H1-Galerkin mixed finite element method to
numerically solve (1.1). To our best knowledge the H1-Galerkin mixed finite
element of this kind of problem is not reported in the literatures. The H1-
Galerkin mixed finite element method was proposed in [11] for parabolic prob-
lems, which can be viewed as a non-symmetric version of least square method.
Compared with standard mixed finite element method H1-Galerkin mixed fi-
nite element method does not require the finite element spaces to satisfy the
inf-sup conditions, which makes the choosing of finite element spaces more flex-
ible. It has been proved that the H1-Galerkin mixed finite element method has
the same rate of convergence as standard mixed finite element method. For
more references with respect to H1-Galerkin mixed finite element method one
can refer to [2, 3, 4, 11,12,13,15].

By introducing a new variable q = ux we split problem (1.1) into a first
order system. Then we construct a semi-discrete H1-Galerkin mixed finite
element approximate scheme. A priori error estimates for unknown function
u in L2 and H1 norm, and q in L2 norm are derived respectively. In order to
carry out numerical experiment we also construct a fully discrete scheme, where
the backward Euler method is used to discretize the time variable. Finally a
numerical example is given to verify the theoretical findings.

The rest of this paper is organized as follows: In Section 2 a semi-discrete
H1-Galerkin mixed finite element approximate scheme is constructed. Optimal
a priori error estimates are deduced in Section 3. In Section 4 a fully discrete
scheme based on the backward Euler method is developed and a numerical
example is presented to illustrate our theoretical results.

Throughout the paper, we use the standard notation Wm,q(I) for Sobolev
space on I with a norm ‖ · ‖m,q and a semi-norm | · |m,q. For q = 2, we denote
Hm(Ω) = Wm,2(Ω), ‖ · ‖m=‖ · ‖m,2 and for m = 0, we denote ‖ · ‖=‖ · ‖0.
The inner products in L2(I) are indicated by (·, ·).

For the spaces involving time we introduce the following notations. Let X
be a Banach space and ϕ(t) : [0, T ] 7−→ X, we set

‖ϕ‖L2(0,T ;X) =
(∫ T

0

‖ϕ(s)‖2Xds
) 1

2

, ‖ϕ‖L∞(0,T ;X) = ess sup
0≤t≤T

‖ϕ‖X.

In addition, C denotes a generic constant independent of the spatial mesh
parameter h.
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2 Semi-discrete H1-Galerkin mixed finite element scheme

In this section we first derive the variational formulation for problem (1.1), and
then construct a semi-discrete H1-Galerkin mixed finite element scheme.

In order to define a H1-Galerkin mixed finite element procedure for problem
(1.1), we decompose (1.1) into a first order system. Let q = ux, then (1.1)
reduces to {

q = ux,

utt = (1 + ω(q))qx + f.
(2.1)

Here ω(q) :=
∫ 1

0
q2dx. Let H1

0 (I) = {v ∈ H1(I); v(0) = v(1) = 0}. Multiplying
the equation (2.1) by vx with v ∈ H1

0 (I), and integrating on interval I gives

(ux, vx) = (q, vx), v ∈ H1
0 (I). (2.2)

In a similar way we deduce

(utt, wx) = ((1 + ω(q))qx, wx) + (f, wx), w ∈ H1(I). (2.3)

By Green formula and utt(0, t) = utt(1, t) = 0, we obtain

(utt, wx) = −(qtt, w).

Then (2.3) becomes

(qtt, w) + ((1 + ω(q))qx, wx) + (f, wx) = 0, w ∈ H1(I). (2.4)

Collecting (2.2) and (2.4), we arrive at the weak formulation for problem (1.1):
find (u, q) ∈ H1

0 (I)×H1(I) satisfying{
(ux, vx) = (q, vx), v ∈ H1

0 (I),

(qtt, w) + ((1 + ω(q))qx, wx) + (f, wx) = 0, w ∈ H1(I).
(2.5)

Let Vh ⊂ H1
0 (I),Wh ⊂ H1(I) be the finite element spaces consisting of

piecewise polynomials of order k and r, respectively, and satisfying the following
approximation properties:

inf
ψh∈Vh

{‖ψ−ψh‖0,p+h‖ψ−ψh‖1,p}≤Chk+1‖ψ‖k+1,p, ψ ∈ H1
0 (I) ∩W k+1,p(I),

inf
wh∈Wh

{‖w − wh‖0,p + h‖w − wh‖1,p} ≤ Chr+1‖w‖r+1,p, w ∈W r+1,p(I),

where 1 ≤ p ≤ ∞. k, r are positive integers.
Then the semi-discrete H1-Galerkin mixed finite element approximation of

(1.1) can be characterized as finding (uh, qh) ∈ Vh ×Wh such that{
(uhx, vhx) = (qh, vhx), vh ∈ Vh,
(qhtt, wh) + ((1 + ω(qh))qhx, whx) + (f, whx) = 0, wh ∈Wh,

(2.6)

with given initial value qh(0), qht(0) and ω(qh) =
∫ 1

0
q2hdx.

Math. Model. Anal., 22(5):643–653, 2017.
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3 Error Analysis

To derive the error estimate we decompose the errors as

u− uh = u− ũh + ũh − uh = ρu + ξu,

q − qh = q − q̃h + q̃h − qh = ρq + ξq,

where ũh ∈ Vh and q̃h ∈Wh are elliptic projections defined by

(ux − ũhx, vhx) = 0, ∀vh ∈ Vh, (3.1)

(qx − q̃hx, whx) + α(q − q̃h, wh) = 0, ∀wh ∈Wh. (3.2)

Here α is chosen to guarantee the H1-coercivity of the bilinear form in the
second equation. Moreover, it is easy to check that the bilinear form is bounded.
According to [14], we have the following estimates with j = 0, 1 and t ∈ [0, T ]

‖ ρu ‖j + ‖ ∂ρu
∂t
‖j≤ Chk+1−j(‖ u ‖k+1 + ‖ ut ‖k+1),

‖ ρq ‖j + ‖ ∂ρq
∂t
‖j + ‖ ∂

2ρq
∂t2

‖j≤ Chr+1−j(‖ q ‖r+1 + ‖ qt ‖r+1 + ‖ qtt ‖r+1).

Using (2.5), (2.6) and (3.1)–(3.2), we can deduce the following error equations:

(
∂ξu
∂x

, vhx) = (ρq, vhx) + (ξq, vhx), (3.3)

(
∂2ξq
∂t2

, wh) + (
∂ξq
∂x

,whx) = −(
∂2ρq
∂t2

, wh) + (αρq, wh)

− (ω(q)qx − ω(qh)qhx, whx). (3.4)

Theorem 1. Suppose that qh(0) = q̃h(0), qht(0) = q̃ht(0). Then there exists a
positive constant C independent of h such that

‖ u− uh ‖ +h ‖ u− uh ‖1 + ‖ q − qh ‖≤ Chmin{k+1, r+1}.

Proof. Choosing vh = ξu in (3.3) yields

(
∂ξu
∂x

,
∂ξu
∂x

) = (ρq,
∂ξu
∂x

) + (ξq,
∂ξu
∂x

),

which implies

‖∂ξu
∂x
‖ ≤ ‖ρq‖+ ‖ξq‖. (3.5)

Setting wh =
∂ξq
∂t in (3.4) gives

(
∂2ξq
∂t2

,
∂ξq
∂t

) + (
∂ξq
∂x

,
∂2ξq
∂x∂t

) = −(
∂2ρq
∂t2

,
∂ξq
∂t

) + (αρq,
∂ξq
∂t

)

− (ω(q)qx − ω(qh)qhx,
∂2ξq
∂x∂t

).
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Then we conclude

1

2

d

dt
(‖∂ξq
∂t
‖2 + ‖∂ξq

∂x
‖2) = −(

∂2ρq
∂t2

,
∂ξq
∂t

) + (αρq,
∂ξq
∂t

)

− (ω(q)qx − ω(qh)qhx,
∂2ξq
∂x∂t

).

Note that

ω(q)qx − ω(qh)qhx = ω(q)(qx − q̃hx) + (ω(q)− ω(qh))q̃hx + ω(qh)(q̃hx − qhx)

= ω(q)
∂ρq
∂x

+ (ω(q)− ω(qh))q̃hx + ω(qh)
∂ξq
∂x

.

Then we have

1

2

d

dt
(‖∂ξq
∂t
‖2 + ‖∂ξq

∂x
‖2) = −(

∂2ρq
∂t2

,
∂ξq
∂t

) + (αρq,
∂ξq
∂t

)− (ω(q)
∂ρq
∂x

,
∂2ξq
∂x∂t

)

− ((ω(q)− ω(qh))q̃hx,
∂2ξq
∂x∂t

)− (ω(qh)
∂ξq
∂x

,
∂2ξq
∂x∂t

). (3.6)

By the definition of elliptic projection q̃h we derive

(ω(q)
∂ρq
∂x

,
∂2ξq
∂x∂t

) = −(αω(q)ρq,
∂ξq
∂t

),

((ω(q)− ω(qh))q̃hx,
∂2ξq
∂x∂t

) =
d

dt
((ω(q)− ω(qh))q̃hx,

∂ξq
∂x

)

− (
d

dt
[(ω(q)− ω(qh))q̃hx],

∂ξq
∂x

)

(ω(qh)
∂ξq
∂x

,
∂2ξq
∂x∂t

) =
1

2

d

dt
(ω(qh)

∂ξq
∂x

,
∂ξq
∂x

)− 1

2
(
d

dt
ω(qh)

∂ξq
∂x

,
∂ξq
∂x

).

Inserting above terms into (3.6) leads to

1

2

d

dt
(‖∂ξq
∂t
‖2 + ‖∂ξq

∂x
‖2 + (ω(qh)

∂ξq
∂x

,
∂ξq
∂x

)) = −(
∂2ρq
∂t2

,
∂ξq
∂t

)

+ (α(1 + ω(q))ρq,
∂ξq
∂t

)− d

dt
((ω(q)− ω(qh))q̃hx,

∂ξq
∂x

)

+ (
d

dt
[(ω(q)− ω(qh))q̃hx],

∂ξq
∂x

) +
1

2
(
d

dt
ω(qh)

∂ξq
∂x

,
∂ξq
∂x

).

Integrating above equation from 0 to t and using ξq(0) = 0,
∂ξq
∂t (0) = 0 we

arrive at

1

2

(
‖∂ξq
∂t
‖2 + ‖∂ξq

∂x
‖2 + (ω(qh)

∂ξq
∂x

,
∂ξq
∂x

)
)

= −
∫ t

0

(
∂2ρq
∂t2

,
∂ξq
∂t

)ds

+

∫ t

0

(α(1 + ω(q))ρq,
∂ξq
∂t

)ds− ((ω(q)− ω(qh))q̃hx,
∂ξq
∂x

)

+
1

2

∫ t

0

(
d

dt
ω(qh)

∂ξq
∂x

,
∂ξq
∂x

)ds+

∫ t

0

(
d

dt
[(ω(q)− ω(qh))q̃hx],

∂ξq
∂x

)ds.

Math. Model. Anal., 22(5):643–653, 2017.
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In the following we will derive the estimates of the terms on the right hand
side. By Cauchy-Schwarz inequality we deduce∫ t

0

(
∂2ρq
∂t2

,
∂ξq
∂t

)ds ≤ 1

2

∫ t

0

‖∂
2ρq
∂t2
‖2ds+

1

2

∫ t

0

‖∂ξq
∂t
‖2ds (3.7)∫ t

0

(α(1 + ω(q))ρq,
∂ξq
∂t

)ds ≤ C
∫ t

0

‖ρq‖2ds+ C

∫ t

0

‖∂ξq
∂t
‖2ds. (3.8)

Using ε-inequality and Cauchy-Schwarz inequality we obtain

|((ω(q)− ω(qh))q̃hx,
∂ξq
∂x

)| ≤ |ω(q)− ω(qh)|‖q̃hx‖‖
∂ξq
∂x
‖

≤ C‖∂ξq
∂x
‖‖q − qh‖‖q + qh‖

≤ C‖∂ξq
∂x
‖(‖ρq‖+ ‖ξq‖)(‖q‖+ ‖q̃h‖+ ‖ξq(t)‖)

≤ ε‖∂ξq
∂x
‖2 + C(‖ξq(t)‖L∞(0,t;L2(I)))(‖ρq‖2 +

∫ t

0

‖∂ξq
∂t
‖2ds). (3.9)

Here the boundness of ‖q̃h‖ and ‖q̃hx‖ as well as inequality ‖ξq‖ ≤
∫ t
0
‖∂ξq∂t ‖ds

were used. C(‖ξq(t)‖L∞(0,t;L2(I))) is a constant depending on ‖ξq(t)‖. Utilizing
Hölder inequality we obtain∫ t

0

(
d

dt
ω(qh)

∂ξq
∂x

,
∂ξq
∂x

)ds = 2

∫ t

0

∫
I

qhqhtdx‖
∂ξq
∂x
‖2ds

≤ 2

∫ t

0

‖qh‖ ‖qht‖ ‖
∂ξq
∂x
‖2ds

≤ C(‖ξq‖L∞(0,t;L2(I)), ‖
∂ξq
∂t
‖L∞(0,t;L2(I)))

∫ t

0

‖∂ξq
∂x
‖2ds. (3.10)

For the last term we have∫ t

0

(
d

dt
[(ω(q)− ω(qh))q̃hx],

∂ξq
∂x

)ds =

∫ t

0

((ω(q)− ω(qh))
∂q̃hx
∂t

,
∂ξq
∂x

)ds

+

∫ t

0

(
d

dt
[ω(q)− ω(qh)]q̃hx,

∂ξq
∂x

)ds.

Using the boundness of ‖q̃h‖ and ‖q̃hxt‖ we derive∣∣∣∣∫ t

0

((ω(q)− ω(qh))
∂q̃hx
∂t

,
∂ξq
∂x

)ds

∣∣∣∣ ≤ ∫ t

0

‖q̃hxt‖|ω(q)− ω(qh)|‖∂ξq
∂x
‖ds

≤ C
∫ t

0

‖∂ξq
∂x
‖‖q − qh‖‖q + qh‖ds

≤ C
∫ t

0

‖∂ξq
∂x
‖(‖ρq‖+ ‖ξq‖)(‖q‖+ ‖q̃h‖+ ‖ξq(t)‖)ds

≤ C(‖ξq‖L∞(0,t;L2(I)))

∫ t

0

(‖∂ξq
∂x
‖2 + ‖ρq‖2 + ‖∂ξq

∂t
‖2)ds.
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By Hölder inequality we deduce

| d
dt

[(ω(q)−ω(qh))]| ≤ C(‖ρq‖+‖ξq‖) + C(‖ξq‖L∞(0,t;L2(I)))(‖
∂ρq
∂t
‖+ ‖∂ξq

∂t
‖).

Then we have∫ t

0

(
d

dt
[(ω(q)−ω(qh))]q̃hx,

∂ξq
∂x

)ds≤C(‖ξq‖L∞(0,t;L2(I)))

∫ t

0

(‖∂ρq
∂t
‖2+‖∂ξq

∂t
‖2

+ ‖∂ξq
∂x
‖2)ds+ C

∫ t

0

(‖∂ξq
∂x
‖2 + ‖∂ξq

∂t
‖2 + ‖ρq‖2)ds. (3.11)

Using (3.7)–(3.11) we derive

1

2

(
‖∂ξq
∂t
‖2 + ‖∂ξq

∂x
‖2
)
≤ C(‖ξq‖L∞(0,t;L2(I)))(‖ρq‖2

+

∫ t

0

(‖∂ξq
∂t
‖2 + ‖∂ρq

∂t
‖2 + ‖∂ξq

∂x
‖2)ds)

+ C(‖ξq‖L∞(0,t;L2(I)), ‖
∂ξq
∂t
‖L∞(0,t;L2(I)))

∫ t

0

‖∂ξq
∂x
‖2ds

+ C

∫ t

0

(‖ρq‖2 + ‖∂
2ρq
∂t2
‖2 + ‖∂ξq

∂t
‖2 + ‖∂ξq

∂x
‖2)ds+ ε‖∂ξq

∂x
‖2.

In order to prove the theorem result, we need to make the following induction
hypothesis: there exists a constant 0 < h0 < 1 such that the following estimate
holds for 0 < h ≤ h0 :

max{‖ξq‖L∞(0,t;L2(I)), ‖
∂ξq
∂t
‖L∞(0,t;L2(I))} < 1, 0 ≤ t ≤ T.

Then using above inequality and setting ε small enough we derive

‖∂ξq
∂t
‖2 + ‖∂ξq

∂x
‖2 ≤ C

∫ t

0

(‖ρq‖2 + ‖∂ρq
∂t
‖2 + ‖∂

2ρq
∂t2
‖2)ds+ C‖ρq‖2

+C

∫ t

0

(‖∂ξq
∂x
‖2 + ‖∂ξq

∂t
‖2)ds.

By Gronwall’s Lemma we obtain

‖∂ξq
∂t
‖2 + ‖∂ξq

∂x
‖2 ≤ C

∫ t

0

(‖ρq‖2 + ‖∂ρq
∂t
‖2 + ‖∂

2ρq
∂t2
‖2)ds+ C‖ρq‖2.

Using the estimates of elliptic projection we further deduce

‖∂ξq
∂t
‖+ ‖∂ξq

∂x
‖ ≤ Chr+1. (3.12)

Here C > 0 is independent of h.
Now we are in position to prove the induction hypothesis. We suppose that

there exists a constant 0 < h∗ ≤ h0 such that

max{‖ξ∗q‖L∞(0,t;L2(I)), ‖
∂ξ∗q
∂t
‖L∞(0,t;L2(I))} ≥ 1, 0 ≤ t ≤ T.

Math. Model. Anal., 22(5):643–653, 2017.
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We define t∗ by

t∗ = inf{t ∈ [0, T ]|max{‖ξ∗q‖L∞(0,t;L2(I)), ‖
∂ξ∗q
∂t
‖L∞(0,t;L2(I))} ≥ 1}.

Then we have

max{‖ξ∗q‖L∞(0,t∗;L2(I)), ‖
∂ξ∗q
∂t
‖L∞(0,t∗;L2(I))} = 1, (3.13)

max{‖ξ∗q‖L∞(0,t;L2(I)), ‖
∂ξ∗q
∂t
‖L∞(0,t;L2(I)) ≤ 1}, 0 < t ≤ t∗.

By the argument similar to (3.12) we can prove

‖
∂ξ∗q
∂t
‖+ ‖

∂ξ∗q
∂x
‖ ≤ C1hr+1, 0 < t ≤ t∗.

Furthermore, using above estimate we can derive

‖ξ∗q‖ ≤ C
∫ t

0

‖
∂ξ∗q
∂t
‖ds ≤ C2hr+1.

Choose h0 such that

max{C1hr+1
0 , C2hr+1

0 } ≤ 1/2.

Then we have

max{‖ξ∗q‖L∞(0,t∗;L2(I)), ‖
∂ξ∗q
∂t
‖L∞(0,t∗;L2(I))} ≤

1

2
.

This contradicts with (3.13). Thus the induction hypothesis holds.
Substituting (3.12) into (3.5) leads to

‖∂ξu
∂x
‖2 ≤ C‖ρq‖2 + C

∫ t

0

‖∂ξq
∂t
‖2ds ≤ Chr+1. (3.14)

Note that

‖ξq‖ ≤ C
∫ t

0

‖∂ξq
∂t
‖ds, ‖ξu‖ ≤ ‖ξu‖1 ≤ C‖

∂ξu
∂x
‖.

Then we can derive the theorem result by combining (3.12), (3.14) and the
estimates of ρu, ρq, and using the triangle inequality. ut

4 Numerical example

The goal of this section is to carry out a numerical example to illustrate the
theoretical findings presented in Section 3.

Let T = 1 and the exact solution u is chosen as

u(x, t) = sin(πx) sin3(t), (x, t) ∈ [0, 1]× [0, 1].
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The corresponding right hand term f and initial values u0(x), u1(x) can be
calculated by the governing equations.

Let 0 = t0 < t1 < · · · < tN−1 < tN = T be a time grid with τ = tn −
tn−1, n = 1, 2, · · · , N . We set:

∂̄2t ψ
n =

ψn+1 − 2ψn + ψn−1

τ2
, ψn,

1
4 =

ψn+1 + 2ψn + ψn−1

4
.

For the discretization of time derivative we adopt the second order backward
Euler scheme. Then for given initial value Q0, Q1, the fully discrete H1-
Galerkin mixed finite element approximation of (1.1) is defined by{

(Unx , vhx) = (Qn, vhx), vh ∈ Vh,

(∂̄2tQ
n, wh) + ((1 + ω(Qn))Q

n, 14
x , whx) + (fn,

1
4 , whx) = 0, wh ∈Wh.

In the numerical experiment the unknown function u(x, t) and its derivative
q(x, t) are approximated by piecewise linear polynomials, i.e., k = r = 1.

The errors for u−U and q−Q at different time are displayed in Tables 1, 2,
and 3. The order of convergence at t = 0.4, 0.6 are shown in Figure 1. We can
observe that the orders of convergence are in agreement with our theoretical
findings presented in Section 3. The surface of U and Q are presented in
Figure 2.

Table 1. The errors of ‖ un − Un
h ‖ at different time.

Time
h = ∆t t = 0.2 t = 0.4 t = 0.6 t = 0.8 t = 1.0

1/10 0.0014 0.0028 0.0036 7.0089e-004 0.0088
1/20 3.5322e-004 6.9799e-004 8.9011e-004 1.6026e-004 0.0022
1/30 1.5709e-004 3.1037e-004 3.9546e-004 7.0033e-005 9.7655e-004
1/40 1.5709e-004 3.1037e-004 3.9546e-004 7.0033e-005 9.7655e-004
1/50 5.6573e-005 1.1176e-004 1.4234e-004 2.4993e-005 3.5139e-004

Table 2. The errors of ‖ un − Un
h ‖1 at different time.

Time
h = ∆t t = 0.2 t = 0.4 t = 0.6 t = 0.8 t = 1.0

1/10 0.0141 0.0278 0.0357 0.0070 0.0885
1/20 0.0071 0.0140 0.0178 0.0032 0.0440
1/30 0.0047 0.0093 0.0119 0.0021 0.0293
1/40 0.0035 0.0070 0.0089 0.0016 0.0220
1/50 0.0028 0.0056 0.0071 0.0012 0.0176

Math. Model. Anal., 22(5):643–653, 2017.



652 F. Chen and Z. Zhou

Table 3. The errors of ‖ qn −Qn
h ‖ at different time.

Time
h = ∆t t = 0.2 t = 0.4 t = 0.6 t = 0.8 t = 1.0

1/10 0.0047 0.0085 0.0087 0.0050 0.0427
1/20 0.0011 0.002 0.0021 0.0012 0.0101
1/30 4.9371e-004 8.8399e-004 9.0643e-004 5.4739e-004 0.0044
1/40 2.7549e-004 4.9325e-004 5.0559e-004 3.0609e-004 0.0025
1/50 1.7546e-004 3.1414e-004 3.2195e-004 1.9514e-004 0.0016
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Figure 1. The convergence rates for u and q: a) at t = 0.4, b) t = 0.6
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