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Abstract. In this study, a reduced-order extrapolation spectral-finite difference
(ROESFD) scheme based on the proper orthogonal decomposition (POD) method is
set up for the two-dimensional (2D) second-order hyperbolic equations. First, the
classical spectral-finite difference (CSFD) method for the 2D second-order hyper-
bolic equations and its stability, convergence, and flaw are introduced. Then, a new
ROESFD scheme that has very few degrees of freedom but holds sufficiently high
accuracy is set up by the POD method and its implementation is offered. Finally,
three numerical examples are offered to explain the validity of the theoretical conclu-
sion. This implies that the ROESFD scheme is viable and efficient for searching the
numerical solutions of the 2D second-order hyperbolic equations.
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1 Introduction

For convenience and without loss of universality, let Ω = (a, b) × (c, d) ⊂
R2 and consider the following two-dimensional (2D) second-order hyperbolic
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equations:
utt −∆u = f(x, y, t), (x, y, t) ∈ Ω × [0, T ],

u(x, y, t) = 0, (x, y, t) ∈ ∂Ω × [0, T ],

u(x, y, 0) = f1(x, y), ut(x, y, 0) = f2(x, y), (x, y) ∈ Ω,
(1.1)

where utt = ∂2u
∂t2 , ∆u = ∂2u

∂x2 + ∂2u
∂y2 , f(x, y, t), f1(x, y) and f2(x, y) are the given

functions, T is the total time.
In recent years, there have been many numerical solution researches for

the hyperbolic equations (1.1), also called the wave equations, because they
hold very important physical background and have many applications in fluid
mechanics problems such as aviation, weather, ocean and so on [18, 24, 28,
30]. As we all know, the numerical methods for PDEs have mainly finite
difference (FD) scheme, finite element (FE) method, finite volume element
(FVE) method, and spectral method. The FD, FE, and FVE methods build on
local argument, while the spectral method is fit to global cases. By comparison,
the spectral method can provide superior accuracy (see [5, 25]). The spectral
method is one of the weighted residual numerical methods for PDEs, which can
be classified as Galerkin type (spectral method) and collocation type (pseudo-
spectral method) (see [5,10,25,29]). In this study, we will pay our attention to
Galerkin type, also called spectral-Galerkin method.

Although it is viable in theory to find the numerical solution of PDEs by dint
of the classical spectral-finite difference (CSFD) method (see [5, 10, 25, 29]), it
still includes many unknowns (degrees of freedom) for a large engineering prob-
lem. Due to the truncated error accumulation, the CSFD numerical solutions
are frequently appear not to converge in the calculation process. Therefore,
for the real engineering problems, under guaranteeing numerical solutions with
sufficiently high accuracy, it is very significant how to reduce the degrees of
freedom in the CSFD scheme.

The proper orthogonal decomposition (POD) method (see [26]) is a result-
ful way to reduce the freedom degrees for numerical computation and alleviate
the truncation error in calculation process. The reduce-order methods based
on the POD technique can not only save calculation time and improve compu-
tation efficiency, but also guarantee the accuracy for numerical solutions. In
recent years, the POD method has been used to reduce the orders in the some
numerical computations (see [2, 3, 4, 6, 7, 22, 23]). Especially, the reduced-order
numerical methods based on the POD method, such as the reduced-order FD
schemes, the reduced-order FE methods, reduced-order FVE methods, and the
reduced-order spectral methods, have been intensively applied in the numeri-
cal calculation for PDEs (see [8, 9, 14, 20, 21, 27]), which can be regard as the
historical breakthrough for solving PDEs. But, most reduced-order methods
as stated above were set up by the POD basis obtained from the classical
numerical solutions in the entire time span, before recalculating the approx-
imate solutions on the same time span, which are the meaningless repeating
calculations. Since 2013, several reduced-order extrapolating algorithms based
on the POD method for PDEs have been proposed successively in Luo’s pa-
pers [1, 11, 12, 13, 15,16, 17, 19] to escape the meaningless repeating calculation
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in the reduce order procedure as mentioned above.

However, based on what we know, there is yet not any report about the
reduced-order extrapolating spectral-FD (ROESFD) scheme based on the POD
method, especially, no article about the ROESFD scheme for the 2D second-
order hyperbolic equations has been published. Therefore, in this article, we
intend to set up the ROESFD scheme based on the POD method and the
spectral-Galerkin method for the 2D second-order hyperbolic equations.

Though reference [1] is the first paper that combines the spectral method
with the reduced-order extrapolating scheme based on the POD method for
the parabolic equation, it is different from our current method. The major
difference consists in that reference [1] adopts the spectral-collocation method
whereas our current approach uses spectral-Galerkin method so that both tech-
niques are thoroughly different. Moreover, although reference [1] presented a
numerical example to explain its feasibility, there are not visual and vivid fig-
ures to contrast the reduced-order spectral approach with the classical spectral
scheme. And, reference [1] studied the parabolic equation that only includes
the first-order partial derivative about time. In this work, we will set up the
ROESFD scheme based on the POD method for the 2D second-order hyper-
bolic equations with the second-order partial derivative about time, provide
some numerical examples, and display the numerical results of the POD-based
ROESFD solutions in graphs.

The new ROESFD scheme based on the POD method only uses the CSFD
numerical solutions on a small period of time to compose the POD basis. There-
fore, it not only includes the merit of the CSFD method with superior accuracy,
but also has not repeated computation like references [1,11,12,13,15,16,17,19].
Thus, the ROESFD scheme based on the POD method is a significant devel-
opment and improvement over the former reduced-order methods based on the
POD method as mentioned above.

The subsequent contents of this article is organized as follows. In Section 2,
we build the CSFD scheme for the 2D hyperbolic equations and offer its con-
vergence and stability analysis. In Section 3, by formulating POD basis, we
develop the ROESFD scheme based on the POD method that contains very
fewer degrees of freedom but has efficiently precision and offer the error analysis
of ROESFD solutions and the implementations for the ROESFD scheme. In
Section 4, we supply three familiar numerical examples to validate the feasibil-
ity and availability of the ROESFD scheme. In last Section 5, some conclusions
and discussion are supplied.

2 The CSFD scheme for the 2D second-order hyperbolic
equations

2.1 The spectral-Galerkin method

When solving the time-dependent PDEs numerically by spectral-FD method,
we use the FD in time and the spectral differentiation in space. The main idea
of the CSFD algorithm is to look for an approximate solution that satisfies
the desirable accuracy at a set of nodes. In this paper, we shall use the most
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familiar example of a set of points as the space nodes, the so-called Chebyshev-
type points.

It is well know that the fundamental of the weighted residual method is to
get an approximation solution for u by a sum

u(x) ≈ uN (x) =
N∑
k=0

ûkφk(x), (2.1)

where φk’s are the basis functions and the expansion coefficients ûk’s are un-
determined.

For convenience, in the following, we set a = c = −1 and b = d = 1 (in
fact, using transforms x′ = 2(x− a)/(b− a)− 1 and y′ = 2(y − c)/(d− c)− 1,
we can ensure [a, b] ↔ [−1, 1] and [c, d] ↔ [−1, 1], respectively). We use
the Galerkin type, i.e., spectral-Galerkin method, and chose the Chebyshev
polynomials as basis functions. By taking these polynomials in equation (2.1),
we achieve the approximation solutions of u as follows:

u(x) ≈ uN (x) =
N∑
k=0

ûkTk(x),

where Tk’s are the Chebyshev polynomials, which are orthogonal with respect
to the Chebyshev weight function ρ(x) = 1√

1−x2
over [−1, 1], namely,∫ 1

−1
Tn(x)Tm(x)ρ(x)dx = γnδm,n,

where γn = ‖Tn(x)‖2ρ. The three-term recurrence relation for the Chebyshev
polynomials is as follows:

Tn+1(x) = 2xTn(x)− Tn−1(x), n > 1,

where T0(x) = 1 and T1(x) = x. Set the Chebyshev-Gauss-Lobatto (CGL)
points {xj}Nj=0 as the space nodes for the spectral method,

θj = jπ/N, xj = cos(θj) = cos(jπ/N), 0 6 j 6 N.

We find that
Tn(x) = cosnθ, θ = arccosx, n > 0.

This distinct expression enables us to derive many important properties. One
explicit consequence is the recurrence relation:

2Tn(x) =
1

n+ 1
T
′

n+1(x)− 1

n− 1
T
′

n−1(x), n > 2.

Another can also derive from the above formula that

T
′

n(x) = 2n
n−1∑

k=0, k+n odd

1

ck
Tk(x), 1 6 n 6 N

and

T
′′

n (x) =
n−2∑

k=0, k+n even

1

ck
n(n2 − k2)Tk(x), 2 6 n 6 N,

where c0 = cN = 2 and ck = 1 (k = 1, 2, . . . , N − 1).



A Reduced-Order Extrapolation Spectral-Finite Difference Scheme 573

2.2 Establishment of the CSFD scheme

Let ∆t be the time step, {xm} and {yl} be the space nodes in x and y directions,
respectively, with

xm = cos
mπ

N
, yl = cos

lπ

N
, 0 6 m, l 6 N.

Given u ∈ C[−1, 1], ukm,l (0 6 m, l 6 N) denote the Chebyshev approximate
values of function u at points (xm, yl, k∆t). Thanks to the forward discrete
Chebyshev transform:

ûn =
2

cnN

N∑
j=0

1

cj
u(xj) cos

njπ

N
, 0 6 n 6 N

and the backward discrete Chebyshev transform:

u(xj) =
N∑
n=0

ûnTn(xj) =
N∑
n=0

ûn cos
njπ

N
, 0 6 j 6 N,

we have these representations:

u(xm, yl, k∆t) ≈ ukm,l =
N∑
p=0

N∑
q=0

ûkp,qTp(xm)Tq(yl), 0 6 m, l 6 N,

namely,

ukm,l =

N∑
n=0

Y kn Tn(xm), 0 6 m 6 N,

Y kn =
2

cnN

N∑
m=0

1

cm
u(xm, yl, k∆t) cos

nmπ

N
, 0 6 n 6 N

and

ukm,l =
N∑
n=0

Xk
nTn(yl), 0 6 l 6 N,

Xk
n =

2

cnN

N∑
l=0

1

cm
u(xm, yl, k∆t) cos

nlπ

N
, 0 6 n 6 N,

where xm = cos θm and yl = cos θl.
The second derivative on the Chebyshev grid is given by

∂2ukm,l
∂x2

=
N∑
n=0

Y kn T
′′

n (xm) =
N∑
n=0

Y kn

n−2∑
k=0, k+n even

1

ck
n(n2 − k2)Tk(xm).

In the same way, we come to the conclusion

∂2ukm,l
∂y2

=
N∑
n=0

Xk
nT
′′

n (ym) =
N∑
n=0

Xk
n

n−2∑
k=0, k+n even

1

ck
n(n2 − k2)Tk(yl).
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For the derivative of time, we use the central finite difference scheme,
namely,

∂2ukm,l
∂t2

=
uk+1
m,l − 2ukm,l + uk−1m,l

∆t2
.

Put ukn = ukm,l, f
k
n = fkm,l = f(xm, yl, k∆t), f2n = f2m,l

= f2(xm, yl) (1 6
n = m+1+l(N+1) 6M = (N+1)(N+1), 0 6 m 6 N, 0 6 l 6 N, 0 6 k 6 K).
Then, the solutions to PDEs (1.1) at the nodes can be donated by the set
{ukn}Kk=1 (1 6 n 6 M). Let uk = (uk1 , u

k
2 , . . . , u

k
M )T , F k = (fk1 , f

k
2 , . . . , f

k
M )T ,

and F2 = (f21 , f22 , . . . , f2M ). Then, we can set up the following matrix rela-
tionship.

∂2

∂x2


uk(x0, yl)

uk(x1, yl)

...

uk(xN , yl)

 =


T
′′

0 (x0) T
′′

1 (x0) · · · T
′′

N (x0)

T
′′

0 (x1) T
′′

1 (x1) · · · T
′′

N (x1)

...
...

. . .
...

T
′′

0 (xN ) T
′′

1 (xN ) · · · T
′′

N (xN )




Y k0 (l)

Y k1 (l)

...

Y kN (l)

 ,

{T
′′

i (xj)}Ni,j=0 = TTx K
T ,


Y k0 (l)

Y k1 (l)

...

Y kN (l)

 = J


uk(x0, yl)

uk(x1, yl)

...

uN (x0, yl)

 ,

∂2

∂y2


uk(xm, y0)

uk(xm, y1)

...

uk(xm, yN )

 =


T
′′

0 (y0) T
′′

1 (y0) · · · T
′′

N (y0)

T
′′

0 (y1) T
′′

1 (y1) · · · T
′′

N (y1)

...
...

. . .
...

T
′′

0 (yN ) T
′′

1 (yN ) · · · T
′′

N (yN )




Xk

0 (m)

Xk
1 (m)

...

Xk
N (m)

 ,

{T
′′

i (yj)}Ni,j=0 = TTy K
T ,


Xk

0 (l)

Xk
1 (l)

...

Xk
N (l)

 = J


uk(xm, y0)

uk(xm, y1)

...

uN (xm, yN )

 ,

where,

Ty = Tx

=



cos (1−1)(1−1)π
N cos (1−1)(2−1)π

N · · · cos (1−1)(N+1−1)π
N

cos (2−1)(1−1)π
N cos (2−1)(2−1)π

N · · · cos (2−1)(N+1−1)π
N

...
...

. . .
...

cos (N+1−1)(1−1)π
N cos (N+1−1)(2−1)π

N · · · cos (N+1−1)(N+1−1)π
N


,
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K = [K0,K1,K2,K3, ...,KN−2,O,O](N+1)×(N+1),

K0 =
(
0, 0, 23/2, 0, 43/2, ..., 0, N3/2

)T
,

K1 =
(
0, 0, 0, 33 − 3, 0, ..., (N − 1)3 − (N − 1), 0

)T
,

K2 =
(
0, 0, 0, 0, 43 − 4 ∗ 22, ..., 0, N3 −N ∗ 22

)T
,

K3 =
(
0, 0, 0, 0, 0, ..., (N − 1)3 − (N − 1) ∗ 32, 0

)T
,

...

KN−2 =
(
0, 0, 0, 0, 0, ..., 0, N3 −N ∗ (N − 2)2

)T
,

J =
2

N
[J0,J1,J2,J3, ...,JN ](N+1)×(N+1),

J0 = 0.5 (0.5, 1, 1, ..., 1, 0.5)
T
,

J1 =

(
0.5, cos

1π

N
, cos

2π

N
, ..., cos

(N − 1)π

N
,−0.5

)T
,

J2 =

(
0.5, cos

2π

N
, cos

4π

N
, ..., cos

2(N − 1)π

N
, 0.5

)T
,

...

JN−1 =

(
0.5 cos

0 ∗ (N − 1)π

N
, cos

1 ∗ (N − 1)π

N
, cos

2 ∗ (N − 1)π

N
,

..., cos
(N − 1) ∗ (N − 1)π

N
, 0.5 cos

N ∗ (N − 1)π

N

)T
,

JN = 0.5

(
0.5 cos

0 ∗Nπ
N

, cos
1 ∗Nπ
N

, cos
2 ∗Nπ
N

, ...,

cos
(N − 1) ∗Nπ

N
, 0.5 cos

N ∗Nπ
N

)T
.

Further, we can establish the spectral-FD recurrence scheme for PDEs (1.1)
as follows

uk+1 = 2uk − uk−1 +∆t2Auk +∆t2Buk +∆t2F k,

k = 1, 2, . . . ,K − 1,

u0m,l = f1(xm, yl), m = 1, 2, · · · , N − 1, l = 1, 2, . . . , N − 1,

u1 = 0.5∆t2Au0 + 0.5∆t2Bu0 + u0 + 0.5∆t2F 0 +∆tF2,

uk0,l = ukN,l = 0, l = 0, 1, . . . , N, k = 0, 1, . . . ,K,

ukm,0 = ukm,N = 0, m = 0, 1, . . . , N, k = 0, 1, . . . ,K,

(2.2)

where B and A are M ×M matrix, which are separately given as follows:

A = diag(X), X = T Tx ·KT · J ,

B = [D(i, j)](N+1)×(N+1), D(i, j) = diag{Y (i, j), Y (i, j), ..., Y (i, j)}N×N

and Y (i, j) denote the i row and j column elements of matrix Y = T Ty ·KT ·J .

Math. Model. Anal., 22(5):569–586, 2017.
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2.3 Analysis of error and stability condition

By using the Taylor’s expansion, we have

uk+1
m,l = ukm,l +∆t

∂um,l
∂t

+
∆t2

2!

∂2um,l
∂t2

+
∆t3

3!

∂3um,l
∂t3

+O(∆t4),

uk−1m,l = ukm,l −∆t
∂um,l
∂t

+
∆t2

2!

∂2um,l
∂t2

− ∆t3

3!

∂3um,l
∂t3

+O(∆t4).

Therefore, we obtain

uk+1
m,l − 2ukm,l + uk−1m,l

∆t2
−
∂2ukm,l
∂t2

= O(∆t2).

We introduce an important theorem on the Chebyshev interpolation error es-
timates (see [25, Chapter III]).

Theorem 1. For any u ∈ Bq−1/2,−1/2(I) := {u : ∂lxu ∈ L2
ω−1/2+l,−1/2+l(I), 0 6

l 6 q} with m > 1, we have

‖∂kx(IcN )u− u‖ωk−1/2,k−1/2 = O(Nk−q), 0 6 k 6 q 6 N + 1.

Thus, the error estimates for the CSFD scheme (2.2) are as follows

‖ukm,l − u(xm, yl, k∆t)‖2 = O(∆t2, N2−q), 0 6 2 6 q 6 N + 1.

The stability condition of the CSFD scheme (2.2) for the 2D second-order
hyperbolic equations (1.1) is ∆t2 6 6.6N−2, which has been given at Chapter
10 in the reference [29].

3 The ROESFD scheme based on the POD method for
the 2D second-order hyperbolic equations

3.1 Formulation of the POD basis

Step 1. Choose snapshots (samples).
Put ukn = ukm,l (1 6 n = m + 1 + l(N + 1) 6 M = (N + 1)(N + 1), 0 6

m 6 N, 0 6 l 6 N, 0 6 k 6 K). Then, we can denote the CSFD solutions to
PDEs (1.1) by the set {ukn}Kk=1 (1 6 n 6M) as mentioned above. By choosing
the first L (L � K) sequences of solutions {ukn}Lk=1 (1 6 n 6 M,L � M) as
snapshots, we formulate an M × L snapshot matrix

P =


u11 u21 . . . uL1

u12 u22 . . . uL2

...
...

. . .
...

u1M u1M . . . uLM

 .

Step 2. Singular value decomposition.
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By singular value decomposition, the snapshot matrix P is denoted by

P = U

[
Sw×w Ow×(L−w)

O(M−w)×w O(M−w)×(L−w)

]
V T ,

where Sw×w =diag{σ1, σ2, · · · , σw}, w =rank(P ), σi (i = 1, 2, . . . , w) are the
singular values of P sorted in descending order σ1 > σ2 > . . . > σw > 0,
U = (ϕ1,ϕ2, . . . ,ϕM ) is an M ×M orthogonal matrix, ϕi (i = 1, 2, . . . ,M)
are the eigenvectors of PP T arranged according to the order of σi, V =
(ψ1,ψ2, . . . ,ψL) is an L × L orthogonal matrix, and ψi (i = 1, 2, . . . , L) are
the eigenvectors of P TP , whose arrangement is the same as ϕi.

Because the number M of the mesh points is much larger than that L of
the snapshots extracted, the degree M for matrix PP T is much larger than
the that L for matrix P TP , but their positive eigenvalues λi (i = 1, 2, . . . , w)
are uniform and λi = σ2

i . So, first, we solve the eigenvalues λi (i = 1, 2, . . . , w)
for matrix P TP and the relative eigenvectors ψi (i = 1, 2, . . . , w), and then,
by the relationship

ϕi =
1

σi
Pψi, i = 1, 2, . . . , w,

we achieve the eigenvectors ϕi (1 6 i 6 w 6 L) with relating to the nonzero
eigenvalues for matrix PP T . Thus, we may get matrices U and V .

Set Φ = (ϕ1,ϕ2, . . . ,ϕd) and

Pd = U

[
Sd×d Od×(L−d)

O(M−d)×d O(M−d)×(L−d)

]
V T ,

where Sd×d =diag{σ1, σ2, · · · , σd} (d 6 w). Thus, we have Pd = ΦΦTP .
Step 3. Formulate the POD basis.

Define the norm of matrix P as ‖P ‖2,2 = supu∈RL
‖Pu‖2
‖u‖2 , where ‖u‖2 is

the l2 norm for vector u. By the relationship between the matrix norm and its
spectral radius, we have

‖P − Pd‖2,2 = ‖P −ΦΦTP ‖2,2 =
√
λd+1.

If we donate L column vectors of P by uk = (uk1 , u
k
2 , . . . , u

k
M )T (k = 1, 2, . . . , L),

we have

‖uk − ukd‖2 = ‖(P − Pd)εk‖2
6 ‖P − Pd‖2,2‖εk‖2 =

√
λd+1, k = 1, 2, . . . , L, (3.1)

where εk’s denote the unit vector with k-th component being 1,

ukd = Pdεk = ΦΦTPεk = ΦΦTuk =
d∑
j=1

(ϕj ,uk)ϕj ,

and (ϕj ,u
k)’s are the inner product of ϕj and uk (k = 1, 2, . . . , L). Thus,

ukd (k = 1, 2, . . . , L) represent the projection of uk (k = 1, 2, . . . , L) onto

Math. Model. Anal., 22(5):569–586, 2017.
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span{ϕ1,ϕ2, . . . ,ϕd}. Apparently, the inequalities (3.1) show that ukd (k =
1, 2, . . . , L) are the ideal approximations of uk (k = 1, 2, . . . , L), whose errors
are no more than

√
λd+1. Therefore, Φ is exactly an optimal orthogonal POD

basis of P .

3.2 Establishment of the ROESFD scheme

In the Section 3.1, with the POD basis Φ, from the first L (L 6 M) solution
vectors uk for the CSFD scheme (2.2), we have obtained that the first L (L 6
M) optimal approximate solutions ukd = ΦΦTuk =: Φαk (k = 1, 2, . . . , L),
where αk = (αk1 , α

k
2 , . . . , α

k
d)T are the vectors associated with k. Thus, if the

solution vectors uk for the CSFD recurrence scheme (2.2) are approximated
by ukd = Φαk (k = 1, 2, . . . , L, L + 1, . . . ,K), i.e., uk replaced with ukd =
Φαk (k = 1, 2, . . . , L, L+ 1, . . . ,K), we can obtain the ROESFD scheme based
on the POD basis as follows:

ukd = ΦΦTuk =: Φαk, k = 1, 2, . . . , L,

Φαk+1 = 2Φαk −Φαk−1 +∆t2AΦαk +∆t2BΦαk +∆t2F k,

k = L,L+ 1, . . . ,K − 1.

(3.2)

Due to the matrix Φ consisting of the orthogonal vectors, the system of equa-
tions (3.2) multiplied by ΦT yields
αk = ΦTuk, k = 1, 2, . . . , L,

αk+1 = 2αk −αk−1 +∆t2ΦTAΦαk +∆t2ΦTBΦαk +∆t2ΦTF k,

k = L,L+ 1, . . . ,K − 1.

(3.3)

After we have gained αk (k = 1, 2, . . . , L, L + 1, . . . ,K) from the system
of the equations (3.3), we immediately achieve the solution vectors to the
ROESFD scheme as follows

ukd = Φαk, k = 1, 2, . . . , L, L+ 1, . . . ,K. (3.4)

Further, we can achieve the ROESFD solution components for the 2D
second-order hyperbolic equations (1.1) as follows

ukd,m,l = ukdn, 0 6 m 6 N, 0 6 l 6 N,

where m and l satisfy 1 6 n = m + 1 + l(N + 1) 6 M = (N + 1)(N + 1) and
ukd = (ukd0, u

k
d1, . . . , u

k
dn, . . . , u

k
dM )T are the solution vectors for the system of

the equations (3.3)–(3.4).

Remark 1. It is clearly seen that the CSFD scheme (2.2) contains M (M =
(N + 1)(N + 1)) unknowns at each time level, whereas the system of equations
(3.3) only contains d (d < L � M) unknowns at the same time level. Thus,
we can easily realize the advantage of the ROESFD scheme (3.3) based on the
POD technique for the 2D second-order hyperbolic equations.
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3.3 Error analysis of the ROESFD solutions

We will give the following discrete Gronwall lemma (see [30]) before analyzing
the error.

Lemma 1. If {an}, {bn}, and {cn} are three positive sequences, and {cn} is

monotone, that satisfy a0 + b0 6 c0 and an + bn 6 cn + γ
∑n−1
i=0 ai (γ > 0),

then an + bn 6 cn exp(nγ) (n > 0).

Let ek = uk − ukd. As k = 1, 2, . . . , L, from the inequalities (3.1), we have

‖ek‖2 = ‖uk − ukd‖ = ‖(P −ΦΦTP )εk‖2 6
√
λd+1.

As k = L,L+ 1, . . . ,K, by replacing Φαk of scheme (3.3) with Φαk = ukd, we
have

uk+1
d = 2ukd − uk−1d +∆t2Aukd +∆t2Bukd +∆t2F k. (3.5)

By subtracting (3.5) from (2.2) and summing from L to k (k = L,L +
1, . . . ,K − 1), we achieve

ek+1 = ek + eL − eL−1 + [∆t2A+∆t2B]
k∑

j=L

ej , k = L,L+ 1, . . . ,K − 1.

Further, we have

‖ek+1‖2 6 ‖ek‖2 + ‖eL‖2 + ‖eL−1‖2 + (∆t2‖A‖2 +∆t2‖B‖2)

k∑
j=L

‖ej‖2

6 ‖eL‖2 + ‖eL−1‖2 + γ
k∑

j=L

‖ej‖2

6 2
√
λd+1 + γ

k∑
j=L

‖ej‖2,

where γ = 1 +∆t2‖A‖2 +∆t2‖B‖2. From Lemma 1, we have

‖ek+1‖2 6 2
√
λd+1 exp[γ(k − L)], k = L,L+ 1, . . . ,K − 1.

Because the absolute values of the components of each vector are no more
than the vector norm, the errors between the CSFD solutions and the ROESFD
solution components have the following estimates:

|ukm,l − ukd,m,l| 6 E(k)
√
λd+1, 0 6 m 6 N, 0 6 l 6 N, 0 6 k 6 K,

where E(k) = 1 (1 6 k 6 L) and E(k) = 2 exp[(1+∆t2‖A‖2+∆t2‖B‖2)(k−L)]
(L+ 1 6 k 6 K).

Moreover, the errors between the exact solution u and the solution ROESFD
components ukdm,l for the hyperbolic equations (1.1) have the following esti-
mates

|u(xm, yl, k∆t)− ukd,m,l| = O
(
E(k)

√
λd+1, N

2−q, (∆t)2
)
,

where 0 6 m 6 N, 0 6 l 6 N, 0 6 k 6 K.

Math. Model. Anal., 22(5):569–586, 2017.



580 Z. Luo and S. Jin

Remark 2. The error analysis procedure show that the error factor
√
λd+1

is caused for the reduced-order of the CSFD scheme and E(k) = 2 exp[(1 +
∆t2‖A‖2 + ∆t2‖B‖2)(k − L)] (k = L + 1, L + 2, ...,K) are produced for the
extrapolating iteration, which could be used as the suggestions of the POD
basis choice and update, respectively. The more concrete expressions are as
follows.

(1) In order to ensure the approximate ROESFD solutions with the desirable
accuracy, it is necessary to choose d that satisfies√

λd+1 6 max{N2−q, (∆t)2}.

(2) If 2
√
λd+1 exp[(1+∆t2‖A‖2+∆t2‖B‖2)(k−L)] > 10 max{N2−q, (∆t)2}

(L + 1 6 k 6 K), refreshing the POD basis is imperative. If we take λd+1

such that 2
√
λd+1 exp[(1 + ∆t2‖A‖2 + ∆t2‖B‖2)(k − L)] = O{N2−q, (∆t)2}

(L+1 6 k 6 K), then the ROESFD scheme (3.3) is convergent, hence we don’t
have to refresh the POD basis.

3.4 The implementations of the ROESFD scheme

The following implementation of the ROESFD scheme (3.3) is helpful for un-
derstanding the ideas of POD method, which is listed the five steps.

Step 1. For the given f1, f2, and f(x, y, t), choose the number of the basis
function N , take the spatial nodes as xm = cos(mπ/N) (0 6 m 6 N) and
yl = cos(lπ/N) (0 6 l 6 N), and the time step ∆t that satisfy the stability
condition ∆t 6 6.6N−2. Write the CSFD scheme as vector form (2.2) and find
the first L solution vectors uk = (uk1 , u

k
2 , . . . , u

k
n, . . . , u

k
M )T (M = (N + 1)2),

where ukn = ukm,l (0 6 m 6 N, 0 6 l 6 N, 0 6 k 6 L).

Step 2. Formulate the snapshot matrix P = (u1,u2, . . . ,uL)M×L and com-
pute the eigenvalue of matrix P TP according to decreasing order

λ1 > λ2 > . . . > λw > 0, w = rank(P )

and the homologous eigenvectors ψi (i = 1, 2, . . . , w).

Step 3. By the error limitation
√
λd+1 6 max{N2−q, ∆t2}, determine the

number of POD basis d and formulate the POD basis Φ = (φ1,φ2, . . . ,φd),
where φi = Pψi/

√
λi (i = 1, 2, . . . , d).

Step 4. Solving the ROESFD scheme (3.3) obtains the ROESFD solution
vectors ukd = (ukd1, u

k
d2, . . . , u

k
dM )T (k = 1, 2, . . . , L, L + 1, . . . ,M), further,

achieves the components ukd,m,l = ukdn.

Step 5. In the previous step, if 2
√
λd+1 exp[(1+∆t2‖A‖2+∆t2‖B‖2)(k−L)] 6

max{N2−q, (∆t)2}, (L + 1 6 k 6 K), then, ukd (k = 1, 2, . . . ,K) are just
the ROESFD solution vectors that meet the desirable precision. Else, i.e.,
if 2
√
λd+1 exp[(1 + ∆t2‖A‖2 + ∆t2‖B‖2)(k − L)] > 10 max{N2−q, ∆t2}, set

P = (uz+1
d ,uz+2

d , . . . ,uz+Ld ) (z = k − 1 − L) as the new snapshot matrix,
return to Step 2.
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4 Some numerical examples

Here, we supply three familiar numerical examples to validate the feasibility
and availability of the ROESFD algorithm based on the POD method for the
2D second-order hyperbolic equations (1.1).

Example 1. In the hyperbolic equations (1.1), we took f(x, y, t) = 0, f1(x) =
sinπx sinπy, f2(x) = 0, the number of the basis functions N = 90. And, the
time step was taken as ∆t = 0.0005, which satisfied the stability condition
∆t 6 6.6N−2.

Using the CSFD scheme (2.2), we got the CSFD solution at T = 0.2, which
was depicted graphically in Figure 1(a). We took the first 20 CSFD solutions as
snapshots. According to the Step 2 and Step 3 in Section 3.4, if we use the first
six eigenvectors of the matrix PP T as the POD basis, the theoretical precision
requirement can be satisfied. Finally, we computed the ROESFD solution at
T = 0.2 by mean of the ROESFD scheme (3.3) with six POD bases, which was
depicted graphically in Figure 1(b).
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Figure 1. The solutions at T = 0.2: (a) CSFD solution, (b) ROESFD solution, (c) the
relative error chart.

Figure 1 (c) shows the relative error chart between the CSFD solution and
the ROESFD solution at T = 0.2, which is accordant with theoretical result.
Compared the CSFD scheme, we could clearly realize the advantages of the
ROESDF scheme based on the POD technique.
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First, the CSFD solution graph (Figure 1(a)) and the ROESFD solution
(Figure 1(b)) were basically identical. Because the ROESFD scheme (3.3)
based on the POD technique only included six unknowns whereas the CSFD
scheme (2.2) contained 10000 degrees of freedom, the ROESFD scheme can
significantly lessen the degrees of freedom so that moderate the accumulation
of the truncated error. Therefore, we could clearly see that the ROESFD
solution was more smooth and steady than the CSFD solution. Second, the
ROESFD scheme based on the POD technique could save more computing
time than the CSFD scheme because the operation time of the CSFD scheme
is 48.07s whereas that of the ROESFD scheme is 4.11s in the same computer.

Figure 2. The CSFD solutions at T = 0, 0.1, 0.15, 0.2.

Example 2. In the hyperbolic equations (1.1), we took f(x, y, t) = 0, f1(x) =

e−40((x−0.4)
2+y2), f2(x) = 0, the number of the basis function N = 90. And

the time step was laso taken as ∆t = 0.0005 in order to satisfy the stability
condition ∆t 6 6.6N−2.

Using the CSFD scheme (2.2), we got the CSFD solutions at T = 0, 0.1,
0.15, 0.2, which were depicted graphically in Figure 2. We took the CSFD
solution in the first 20 steps as snapshots. According to the Step 2 and Step
3 in Section 3.4, we achieved

√
λ6 6 25 × 10−8, which showed that as long

as we took the first five eigenvectors of matrix PP T as the POD basis, the
theoretical precision could be satisfied. Finally, we computed the ROESFD
solutions at T = 0, 0.1, 0.15, 0.2 by mean of the ROESFD scheme (3.3) with
ten POD bases, which were depicted graphically in Figure 3.

From the charts above, we could also obtain the same conclusions as the
Example 1 that the CSFD solution graph (Figure 2) and the ROESFD solu-
tion one (Figure 3) were basically identical and the ROESFD solution chart
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Figure 3. The ROESFD solutions at T = 0, 0.1, 0.15, 0.2.

Figure 4. The exact, CSFD, ROESFD solution at T = 0.2 in the first line, the error
between exact and CSFD solution, exact and ROESFD solution, CSFD and ROESFD

solution at T = 0.2.

was more smooth and steady compared with the CSFD solution one. By com-
putation, we found that the max relative error of the solutions for two different
spectral-FE schemes at T = 0.2 does not exceed 0.0286 × 10−4. Moreover,
the ROESFD scheme could save more computing time than the CSFD one be-
cause the operation time of the CSFD scheme, also including 10000 unknowns,
is 50.59s at the MATLAB software, whereas that of the ROESFD scheme is

Math. Model. Anal., 22(5):569–586, 2017.
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5.14s in the same computer.

Example 3. In the hyperbolic equations (1.1), we took f(x, y, t) = 0, f1(x) =
0, f2(x) =

√
2π sinπx sinπy. Thus, the analytical solution of the equation

was u(x, y, t) = sin(
√

2πt) sinπx sinπy. We still took the number of the basis
function N = 99 and the time step was also taken as ∆t = 0.0005.l

Using the same approaches as the examples above, the images of the exact
solution, the CSFD solution, and the ROESFD solution at T = 0.2 were,
respectively, depicted in the Charts (a), (b), and (c) in Figure 4. In order to
illustrate the correctness of the CSFD method and the ROESFD method, we
provided the error images between the exact solution and the CSFD one, the
exact solution and the ROESFD one, and the CSFD solution and the ROESFD
one in Charts (d), (e), and (f) in Figure 4, respectively.

From the Figure 4, we could see that the exact solution graph, the CSFD
solution graph, and the ROESFD solution one were basically identical and
its error is extreme small. Moreover, the ROESFD scheme could save more
computing time than the CSFD one.

Conclusions and discussion

In this study, we have set up the CSFD scheme and the ROESFD scheme
based on the POD technique for the 2D second-order hyperbolic equations,
analyzed the errors and stability conditions of these two algorithms, and pro-
vided the implementation for the ROESFD scheme. The numerical examples
have confirmed the correctness of our theoretical analysis and illustrated that
the ROESFD scheme based on the POD technique has advantages with less-
ening calculation load, saving computing time, alleviating the truncation error
accumulation, and improving computation efficiency compared with the CSFD
scheme when deals with the 2D second-order hyperbolic equations.

Although we restrict our scheme for the 2D second-order hyperbolic equa-
tions on the domain Ω = [a, b]× [c, d], our technique can extend to the bigger
or more general domains, even extend to the more complicated engineering
problems. Therefore, our technique has important applied prospect.
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