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Abstract. We study general cordial Volterra integral equations of the second kind
and certain singular fractional integro-differential equation in spaces of analytic func-
tions. We characterize properties of the cordial Volterra integral operator in these
spaces, including compactness and describe its spectrum. This enables us to obtain
conditions under which these equations have a unique analytic solution. We also
consider approximate solution of these equations and prove exponential convergence
of approximate solutions to the exact solution.
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1 Introduction

Cordial Volterra integral equations of the second kind have been considered
recently in a number of papers, e.g. [3], [6], [7]. These equations are usually in
the form

µu(t) =

∫ t

0

1

t
ϕ
(s
t

)
a(t, s)u(s)ds+ f(t), 0 ≤ t ≤ T (1.1)

or in a slightly more general form

µu(t) =

∫ 1

0

ϕ(x)b(t, x)u(tx)dx+ f(t), 0 ≤ t ≤ T. (1.2)

Here ϕ ∈ L1(0, 1) is called the core of the corresponding cordial integral oper-
ator, a, b and f are given smooth enough functions. We discuss under which
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conditions these equations admit solutions, which are analytic in some open re-
gion around [0, T ]. We also discuss equations which can contain in addition to
the one cordial integral operators, other cordial or ordinary Volterra integral
operators. We show that certain singular fractional differential or integro-
differential equations can be reduced to cordial integral equations and prove
existence of analytic solutions of these equations. We also present a numerial
scheme for these equations, which has exponential rate of convergence. Cor-
dial integral equations of the form (1.1), with just one integral operator, are
discussed in [3, 6, 7] and singular fractional differential equations without the
integral term are considered in [2, 4].

In Section 2 we introduce a more general form of cordial Volterra integral
equation and also introduce singular fractional differential equations, which
can be reduced to this more general form. All later results about existence
and uniqueness of the solutions and about the convergence of the numerical
schemes apply to these general equations.

In Section 3 we study properties of the cordial integral operator in spaces
of analytic functions. It is known (see [6], [7]) that the operator in (1.1) is
not compact in spaces Cm[0, T ], if a(0, 0) 6= 0. In contrast, it turns out that
in spaces of functions, which are analytic in some region around [0, T ], the
operators in (1.1) and (1.2) are compact. In spaces of analytic functions com-
pactness of the cordial integral operator was proved in [3]. We describe exactly
the spectrum of the sum of cordial integral operators in the spaces of analytic
functions. In contrast, in [3] it was proved that the spectrum of the opera-
tor belongs to a certain set; here we prove that the spectrum is exactly equal
to this set, and we also prove that the spectrum of a sum of cordial integral
operators consists actually of just the sum of the corresponding eigenvalues,
which is quite surprising, because the eigenspaces are not the same. Similar
results have been obtained in [2] in spaces Cm and in [4] in spaces of analytic
functions, but only for cores of a very specific type; here we prove the result
for general cores and for general coefficients b.

In Section 4 we derive the results about the existence and uniqueness of the
solution in spaces of analytic functions. Special cases of these results are given
in [3,4]. We point out that even when the solution is unique in these spaces, it
may not be unique in some wider space, e.g. Cm[0, T ].

The analyticity of the solution means that it is possible to construct meth-
ods of solution for these equations which have exponential convergence in the
number of parameters in discretized equation. In Section 5 we propose the
polynomial collocation method with Chebyshev nodes as the collocation points
and prove exponential convergence of this method. We solve the discrete equa-
tions only on [0, T ], but the approximate solutions converge exponentially to
the exact solution in some wider region of the complex plane. Similar method
has been discussed in [7] in spaces Cm[0, T ], and in [3, 4] in spaces of analytic
functions. Compared to results in [3, 4], the equations considered are more
general, and we managed to remove one quite restrictive assumption on cores
allowed and on orders of fractional differential equations, which has been a
challenge for several years.

In [11] a cordial integro-differential equation has been solved, using polyno-
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mial collocation method with Chebyshev nodes. One of the numerical examples
there shows exponential convergence, even though it was not proved theoreti-
cally.

Similar results can be obtained for cordial integral equations of the first
kind. In [8] and [9] cordial integral equations of the first kind are studied in
spaces Cm[0, T ] (or in more general weighted spaces). The main idea in these
papers is to reduce the equation to an equation of the second kind and this can
be done in spaces of analytic functions as well.

2 General equation

2.1 Generalized cordial Volterra integral operators

Let ϕ ∈ L1(0, 1) and a ∈ C(∆T ) be given, where ∆T = {(t, s) : 0 ≤ s ≤ t ≤ T}.
Define the cordial integral operator Vϕ,a by

(Vϕ,au) (t) =

∫ t

0

1

t
ϕ
(s
t

)
a(t, s)u(s)ds, 0 ≤ t ≤ T. (2.1)

These operators have been studied thoroughly in spaces Cm[0, T ], case a ≡ 1
in [6] and the general case in [7]. In most cases we actually prove results for

slightly more general integral operators Ṽϕ,b defined by(
Ṽϕ,bu

)
(t) =

∫ 1

0

ϕ(x)b(t, x)u(tx)dx, 0 ≤ t ≤ T, (2.2)

which allows the results to hold for a more general class of operators. For
any smooth a the operator in the form (2.1) can be written in the form (2.2)
with smooth b by making a change of variables s = xt in the integral (then
b(t, x) = a(t, xt)), but not vice versa: smooth b generally corresponds to a,
which is discontinuous at (0,0). In case a ≡ 1 (or b ≡ 1) we simply use the

notation Vϕ; in this case Vϕ = Ṽϕ.
Note that the usual Volterra integral operator with continuous kernel

(Ku)(t) =

∫ t

0

k(t, s)u(s)ds

can also be written in the form (2.1) by choosing ϕ(x) ≡ 1 and a(t, s) = tk(t, s).
Also the Volterra integral operator with weakly singular kernel

(K1u)(t) =

∫ t

0

(t− s)−αs−βk(t, s)u(s)ds,

where k is continuous and α, β < 1, α + β < 1 can be written in the form
(2.1) by choosing ϕ(x) = (1 − x)−αx−β and a(t, s) = t1−α−βk(t, s). Hence all
results obtained for cordial integral equations in the special case a(0, 0) = 0
or b(0, x) ≡ 0 apply to usual Volterra integral equations as well (these results
are, of course well known already). In this sense the usual Volterra integral
equations are a special case of cordial integral equations.
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2.2 Singular fractional integro-differential equations

We consider fractional differential equations which have a singularity of certain
type at 0. In addition, they can also contain an integral term. It turns out
that these equations can also be reduced to a general cordial Volterra integral
equation.

First we define the fractional derivative used here. The Riemann-Liouville
fractional integral operator Jν is given by

(Jνu)(t) =
1

Γ (ν)

∫ t

0

(t− s)ν−1u(s)ds, u ∈ C[0, T ], ν > 0, t ≥ 0

and J0 = I, where Γ is the Euler Gamma function. We use fractional differen-
tial operator Dν

0 , ν ≥ 0, which is defined by Dν
0 = (Jν)−1 on JνC[0, T ]. Note

that the space JνC[0, T ] is described in [10]. Define also the multiplication
operator Mα for α ∈ R by (Mαu)(t) = tαu(t). We study singular fractional
differential equations of the form

(Dα
0Mαu)(t) =

l∑
k=1

ak(t)(Dαk
0 Mαku)(t) + a0(t)(Vϕu)(t) + f(t), 0 < t ≤ T,

(2.3)
where α > αk ≥ 0, ak, f are given sufficiently regular functions and u ∈
C[0, T ] is unknown. The operator Vϕ is a cordial Volterra integral operator
with the core ϕ ∈ L1(0, 1). Instead of operator a0Vϕ there can also be a
sum of operators of this type, but we do not want to make the notation too
cumbersome. Probably the results remain similar, if instead of a0Vϕ we have

Vϕ,a or Ṽϕ,b, but it seems hard to prove that the product (or even the sum!) of
two cordial operators is again a cordial operator in the sense of (2.1) or (2.2),
and it is possible that this does not hold in general. Maybe the class of cordial
integral operators should be made even more general. In case a ≡ 1 both the
sum and product of cordial integral operators are also cordial; for the sum it is
obvious and for the product see [6].

Note that for a smooth enough u the operator Dν
0Mν can always be applied

to u, because Mνu ∈ JνC[0, T ]. Actually instead of the operators Dν
0 the

Riemann-Liouville or the Caputo derivative of order ν can be used, because
when applied to functions of the form tνu(t) with smooth enough u they all
give the same results.

These equations (without the integral term) have been studied in spaces
Cm[0, T ] in [2]. Note that to get a unique smooth solution of (2.3), no ini-
tial or boundary condition are allowed: the smooth solution is unique, and
imposing any additional conditions generally results in a nonsmooth solution.
Fractional differential equations without singularities and with initial condi-
tions are discussed e.g. in [1].

In the following we reduce the equation to a cordial Volterra integral equa-
tion, using the ideas from [2]. We make a change of variables v = Dα

0Mαu in
equation (2.3). Note that u = (Dα

0Mα)−1v = M−αJ
αv, hence (2.3) is equiva-
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lent to

v =

l∑
k=1

akD
αk
0 MαkM−αJ

αv + a0VϕM−αJ
αv + f. (2.4)

Operator M−αJ
α can be written as a cordial integral operator:

(M−αJ
αu)(t)= t−α

1

Γ (α)

∫ t

0

(t− s)α−1u(s) ds =
1

Γ (α)

∫ t

0

1

t

(
1− s

t

)α−1
u(s)ds.

To write the operators Dαk
0 MαkM−αJ

α as cordial integral operators one
can first apply these operators to functions wn(t) = tn, n = 0, 1, . . ., write the
results in the form not depending on n, and then use density of polynomials in
C[0, T ]. This results in

(Dαk
0 MαkM−αJ

αu)(t) =
1

Γ (α− αk)

∫ t

0

1

t

(
1− s

t

)α−αk−1 (s
t

)αk
u(s) ds.

The integral part of the equation (2.4) can be written as

(VϕM−αJ
αv)(t) =

∫ 1

0

ϕ(x)t−αx−α
1

Γ (α)

∫ xt

0

(xt− s)α−1v(s) ds dx

=
1

Γ (α)

∫ t

0

1

t

∫ 1

s/t

x−α (x− s/t)α−1 ϕ(x)dx v(s) ds,

which is again a cordial integral operator with the core

ϕ0(y) =
1

Γ (α)

∫ 1

y

x−α (x− y)
α−1

ϕ(x)dx. (2.5)

It can be easily checked that ϕ0 ∈ L1(0, 1):∫ 1

0

|ϕ0(y)|dy ≤ 1

Γ (α)

∫ 1

0

∫ 1

y

x−α (x− y)
α−1 |ϕ(x)|dx dy

=
1

Γ (α)

∫ 1

0

|ϕ(x)|x−α
∫ x

0

(x− y)
α−1

dy dx =
‖ϕ‖L1

αΓ (α)
.

Denote

ϕα(x) =
1

Γ (α)
(1− x)α−1 and ϕα,αk(x) =

1

Γ (α− αk)
(1− x)α−αk−1xαk .

Note that ϕα ∈ L1(0, 1) if and only if α > 0, and ϕα,αk ∈ L1(0, 1) if and only
if α > αk > −1. Since for negative αk the operator Dαk

0 is not defined, we
assume αk ≥ 0. Now the equation (2.4) can be written as

v =

l∑
k=1

akVϕα,αk v + a0Vϕ0v + f. (2.6)

After solving this equation for v we can get the solution of the equation (2.3)
by u = Vϕαv.
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2.3 General cordial Volterra integral equation

Since it is not obvious how to write a sum of cordial integral operators as one
cordial integral operator, we consider general equations of the form

µu(t) =

n∑
k=0

(Ṽϕk,bku)(t) + f(t), 0 < t ≤ T. (2.7)

Note that equation (2.6) is also of this form. We will discuss, under which
conditions this equation has a unique analytic solution in some open region
containing [0, T ].

3 Properties of cordial integral operators

In this section we study integral operators of the form (2.2) in the spaces of
analytic functions.

Let D be a bounded open domain in the complex plane containing [0, T ]
such that if t ∈ D, then tx ∈ D ∀x ∈ [0, 1] (that means D is star-shaped
with respect to 0). Let A(D) be the space of functions analytic in D and
continuous on D with the norm ‖v‖∞ = maxt∈D |v(t)|. In the following we

actually consider operators Vϕ,a and Ṽϕ,b acting in the space A(D). If b(t, x)

is defined for t ∈ D (or can be analytically extended to D) then (Ṽϕ,bu)(t) is
defined for t ∈ D. If the function a(t, x) is defined for t ∈ D and for s ∈ [0, t]
with t ∈ D then (Vϕ,au)(t) is also defined for t ∈ D. In the following we show

that if u ∈ A(D) then these extensions of Vϕ,au and Ṽϕ,bu under quite general
conditions belong to A(D).

3.1 Compactness of cordial integral operator

First we show that for analytic b the operator Ṽϕ,b can be considered in the
space A(D) and it is compact in this space. This result is proved in [3], but
for completeness we bring a sketch of proof here.

Theorem 1. Let ϕ ∈ L1(0, 1), b ∈ C(D× [0, 1]) and b(·, x) ∈ A(D) ∀x ∈ [0, 1].

Then Ṽϕ,b ∈ K(A(D)) and

‖Ṽϕ,b‖A(D) ≤ ‖ϕ‖L1‖b‖∞.

Proof. Let u ∈ A(D) be given. Then (Ṽϕ,bu)(t) is defined for all t ∈ D and is
obviously continuous in D. For any closed contour γ in D we have∫

γ

(Ṽϕ,bu)(t)dt = 0,

because the integral signs can be exchanged and b(t, x) and u(tx) are analytic

in t for any x ∈ [0, 1]. Hence by Morera’s theorem, Ṽϕ,bu ∈ A(D). The estimate
for the norm is also straightforward.

Math. Model. Anal., 22(4):548–567, 2017.
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To show compactness of Ṽϕ,b, we can approximate the kernel of Ṽϕ,b by
smoother functions and show compactness of these smoother operators. Details
can be found in [3]. ut

Similar result can be obtained for operator Vϕ,a, but to get the most general
result one actually has to make the change of variables s = tx. Let

G = {(t, s) : t ∈ D, s ∈ [0, t]}.

Corollary 1. Let ϕ ∈ L1(0, 1), a ∈ C(G) and ∀x ∈ [0, 1], (t 7→ a(t, tx)) ∈ A(D)
. Then Vϕ,a ∈ K(A(D)) and

‖Vϕ,a‖A(D) ≤ ‖ϕ‖L1‖a‖∞.

In contrast, Ṽϕ,b is compact in Cm[0, T ] if and only if b(0, x) = 0 ∀x ∈ [0, 1];

Vϕ,a is compact in Cm[0, T ] if and only if a(0, 0) = 0 (see [7] for Vϕ,a; for Ṽϕ,b
the proofs are similar).

3.2 The spectrum of a cordial integral operator

For ψ ∈ L1(0, 1) and λ ∈ C with Reλ ≥ 0, denote ψ̂(λ) =

∫ 1

0

xλψ(x)dx.

In the following let ψ(x) = ϕ(x)b(0, x). It is known that if we consider Vϕ,a
as acting in Cm[0, T ] (assuming a is m times continuously differentiable), then
its spectrum is given by

σm(Vϕ,a) = {0} ∪ {a(0, 0)ϕ̂(j), j = 0, . . . ,m} ∪ {a(0, 0)ϕ̂(λ), Reλ ≥ m}

(see [7]). Similarly one can get that the spectrum of Ṽϕ,b in Cm[0, T ] (assuming
b is m times continuously differentiable with respect to t) is given by

σm(Ṽϕ,b) = {0} ∪ {ψ̂(j), j = 0, . . . ,m} ∪ {ψ̂(λ), Reλ ≥ m}.

Let

σ∞(Vϕ,a)={0} ∪ {a(0, 0)ϕ̂(j), j=0, 1, . . .}, σ∞(Ṽϕ,b)={0} ∪ {ψ̂(j), j=0, 1, . . .}.

Denote by σA(D)(Vϕ,a) and σA(D)(Ṽϕ,b) the spectrums of Vϕ,a and Ṽϕ,b inA(D).

The exact description of σA(D)(Ṽϕ,b) is given in the following theorem; the easy

part of this theorem, namely σA(D)(Ṽϕ,b) ⊂ σ∞(Ṽϕ,b) was proven in [3].

Theorem 2. Under the assumptions of Theorem 1 we have

σA(D)(Ṽϕ,b) = σ∞(Ṽϕ,b).

Proof. Since Ṽϕ,b is compact, its spectrum consists of 0 and eigenvalues of the
operator. Since all eigenfunctions in A(D) also belong to Cm[0, T ] for any m,
we have

σA(D)(Ṽϕ,b) ⊂
∞⋂
m=0

σm(Ṽϕ,b) = σ∞(Ṽϕ,b).
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To get the inclusion σ∞(Ṽϕ,b) ⊂ σA(D)(Ṽϕ,b) let λ ∈ σ∞(Ṽϕ,b) \ {0} and

let j be the last integer for which ψ̂(j) = λ (the last integer always exists,

because lim
n→∞

ψ̂(n) = 0). Look for solutions of Ṽϕ,bu = λu of the form u(t) =

tj + tj+1v(t). Then

(
Ṽϕ,bu

)
(t) =

∫ 1

0

ϕ(x)b(t, x)tjxjdx+

∫ 1

0

ϕ(x)b(t, x)tj+1xj+1v(tx)dx

= λtj + tj
∫ 1

0

ϕ(x)(b(t, x)− b(0, x))xjdx+ tj+1

∫ 1

0

ϕ(x)b(t, x)xj+1v(tx)dx.

Hence v satisfies (after cancelling λtj and dividing both sides of the equation
by tj+1)

λv(t) =

∫ 1

0

ϕ(x)b(t, x)xj+1v(tx)dx+

∫ 1

0

ϕ(x)
b(t, x)− b(0, x)

t
xjdx,

which can be written as λv = Wv+f . Here W is a cordial integral operator and

f ∈ A(D) (the apparent singularity of
b(t, x)− b(0, x)

t
at t = 0 is removable).

We know that W is compact and

σA(D)(W ) ⊂ σ∞(W ) = {0} ∪ {ψ̂(l), l = j + 1, j + 2, . . .},

hence λ does not belong to the spectrum of W , therefore the equation for v is
uniquely solvable in A(D). Consequently λ ∈ σA(D)(Ṽϕ,b). ut

Corollary 2. Under the assumptions of Corollary 1 we have

σA(D)(Vϕ,a) = σ∞(Vϕ,a).

3.3 The spectrum of a sum of cordial integral operators

To get the existence and uniqueness results for equation (2.7), we have to
study the spectrum of the sum of cordial integral equations. Assume bk and ϕk
satisfy the assumptions of Theorem 1. Let ψk(x) = ϕk(x)bk(0, x) , x ∈ (0, 1),
k = 0, . . . , n and denote

Wu =

n∑
k=0

Ṽϕk,bku and W0u =

n∑
k=0

Vψku. (3.1)

Since in the space A(D) the eigenvalues of Vψk are ψ̂k(j) with the corre-
sponding eigenfunctions tj , j = 0, 1, . . . we immediately get

σA(D)(W0) = {0} ∪ {
n∑
k=0

ψ̂k(j), j = 0, 1, . . .}.

We show that the same result is true for W .

Math. Model. Anal., 22(4):548–567, 2017.
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Theorem 3. Let ϕk ∈ L1(0, 1), bk ∈ C(D × [0, 1]) and bk(·, x) ∈ A(D) ∀x ∈
[0, 1], k = 0, . . . , n. Then

σA(D)(W ) = {0} ∪

{
n∑
k=0

ψ̂k(j), j = 0, 1, . . .

}
.

Proof. First we will show that σA(D)(W ) ⊂ σA(D)(W0). Note that

(W0u)(j)(t) =

n∑
k=0

∫ 1

0

ψk(x)xju(j)(xt)dx, j = 0, 1, . . . ,

hence

(W0u)(j)(0) =

n∑
k=0

ψ̂k(j)u(j)(0), j = 0, 1, . . . .

Suppose by contradiction that λ ∈ σA(D)(W ), but λ 6∈ σA(D)(W0). Then there
exists v ∈ A(D), v 6≡ 0 such that λv = Wv. Since (Wv−W0v)(0) = 0, we have

λv(0) = (Wv)(0) = (W0v)(0) =

n∑
k=0

ψ̂k(0)v(0).

Since λ 6=
n∑
k=0

ψ̂k(0), it follows that v(0) = 0. Taking the derivative of λv = Wv

and evaluating it at 0 we get

λv′(0) = (Wv)′(0) = (W0v)′(0) +

n∑
k=0

(Ṽ(bk)t,ϕkv)(0) =

n∑
k=0

ψ̂k(1)v′(0).

Since λ 6=
n∑
k=0

ψ̂k(1), it follows that v′(0) = 0. Continuing taking derivatives,

we always get (using the fact that the lower derivatives of v at 0 are zero)

λv(j)(0) = (Wv)(j)(0) = (W0v)(j)(0) =

n∑
k=0

ψ̂k(j)v(j)(0),

hence all derivatives of v at 0 must be 0. Since v is analytic, this implies that
v ≡ 0, a contradiction.

To show that σA(D)(W0) ⊂ σA(D)(W ) we use the same idea as in proving
Theorem 2. Let λ ∈ σA(D)(W0) \ {0} and let j be the last integer for which
n∑
k=0

ψ̂k(j) = λ. Look for solutions ofWu = λu (eigenfunctions ofW ) of the form

u(t) = tj+tj+1v(t). Substituting this into the equation, writing ϕk(x)bk(t, x) =
ψk(x) +ϕk(x)(bk(t, x)− bk(0, x)), cancelling λtj and dividing both sides of the
equation by tj+1 we conclude that v satisfies

λv(t) =

n∑
k=0

∫ 1

0

ϕk(x)bk(t, x)xj+1v(xt)dx+

n∑
k=0

∫ 1

0

ϕk(x)
bk(t, x)− bk(0, x)

t
xjdx,
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which can be written as λv = W̃jv+ f , where W̃j has the same form as W and
f ∈ A(D). By the first part of the proof we already know that

σA(D)(W̃j) ⊂ {0} ∪ {ψ̂(l), l = j + 1, j + 2, . . .},

hence λ does not belong to the spectrum of W̃j and hence the equation for v
is uniquely solvable in A(D). Consequently λ ∈ σA(D)(W ). ut

Corollary 3. The spectrum of the operator W =

l∑
k=1

akVϕα,αk + a0Vϕ0 in equa-

tion (2.6), with ϕ0 defined by (2.5), is given by

σA(D)(W )={0} ∪
{
a0(0)

Γ (j + 1)

Γ (j+α+1)
ϕ̂(j) +

l∑
k=1

ak(0)
Γ (j+αk+1)

Γ (j+α+1)
, j=0, 1, . . .

}
.

Proof. Just use Theorem 3 and note that

ϕ̂α,αk(j) =
1

Γ (α− αk)

∫ 1

0

xj(1− x)α−αk−1xαkdx =
Γ (j + αk + 1)

Γ (j + α+ 1)

and

ϕ̂0(j) =
1

Γ (α)

∫ 1

0

yj
∫ 1

y

x−α (x− y)
α−1

ϕ(x)dx dy

=
1

Γ (α)

∫ 1

0

∫ x

0

yj (x− y)
α−1

dy x−αϕ(x)dx =
Γ (j + 1)

Γ (j + α+ 1)
ϕ̂(j).

ut

4 Existence and uniqueness of analytic solutions

4.1 Existence and uniqueness for general cordial Volterra integral
equation

Now we turn to the question when equation (2.7) admits an analytic solution.
We note that the equation can still be considered only for t ∈ (0, T ], then the
results mean that the solution can be analytically extended to some region in
the complex plane. On the other hand, if a, b and f are analytic, the extensions
actually satisfy the equation with t being in this larger region.

The main result is the following.

Theorem 4. Let ϕk ∈ L1(0, 1), bk ∈ C(D × [0, 1]) and bk(·, x) ∈ A(D) ∀x ∈
[0, 1], k = 0, . . . , n. Let f ∈ A(D) be given. Let W be defined by (3.1) and
assume that µ 6∈ σA(D)(W ). Then equation (2.7) has a unique solution in
A(D).

Proof. Since µI−Ṽϕ,b ia a Fredholm operator of index 0 and µ does not belong
to the spectrum, the claim follows from Fredholm Alternative. ut
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Similar result can be stated if the operators in (2.7) are of the form (2.1).
We note the solution may not be unique in some wider space, e.g. in

Cm[0, T ], because µ may still be an eigenvalue of the operator in the wider
space. We point out that under the assumptions of the theorem it is not
possible to have solutions which belong to C∞[0, T ], but do not belong to
A(D). This was an open problem stated in [3,4]; now it follows from the exact
description of the spectrum, Theorems 2 and 3.

4.2 Existence and uniqueness for singular fractional integro-diffe-
rential equation

For equation (2.6) we can directly use Theorem 4 to get the conditions which
guarantee the existence and uniqueness of v. Under these conditions the ex-
istence of solution of the singular fractional integro-differential equation (2.3)
follows from u = Vϕαv; the uniqueness of u follows from the fact that if u1 and
u2 are analytic solutions of (2.3), then v = Dα

0Mα(u1 − u2) is also analytic in
some region containing 0, since Dα

0Mα can be applied to a power series around
0 and does not change the radius of convergence of the power series. Since
v is the unique solution of homogeneous equation (2.6) (possibly in a smaller
region), it must be zero, and by uniqueness and analyticity of the solution of
(2.6) in the larger region, the solution must be zero in the larger region as well.
Hence u1 − u2 must also be zero.

The spectrum of the operator in (2.6) is described in Corollary 3. The
existence and uniqueness result now follows easily.

Theorem 5. Let α > αk ≥ 0, ak ∈ A(D), k = 0, . . . , l, ϕ ∈ L1(0, 1) and
f ∈ A(D) be given. Assume that

a0(0)
Γ (j + 1)

Γ (j + α+ 1)
ϕ̂(j) +

l∑
k=1

ak(0)
Γ (j + αk + 1)

Γ (j + α+ 1)
6= 1, j = 0, 1, . . . .

Then equation (2.6) has a unique solution v ∈ A(D), and equation (2.3) has a
unique solution u = Vϕαv ∈ A(D).

Remark 1. Obviously this result can also be extended to the case when in the
fractional integro-differential equation (2.3) instead of one cordial integral op-
erator we have a sum of cordial integral operators. We can just use Theorem
3 to get the spectrum of the corresponding sum of cordial operators.

5 Discretization

5.1 Polynomial collocation method

The analyticity of the solution means that it is possible to construct methods of
solution for these equations which have exponential convergence in the number
of free parameters. We propose to use the polynomial collocation method,
where the collocation points are the Chebyshev points

tj =
T

2

(
1− cos

(2j + 1)π

2(N + 1)

)
, j = 0, . . . , N.
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We look for solutions of (2.7) in the form uN (t) =

N∑
p=0

cpt
p. Then the collocation

equations are

N∑
p=0

cpt
p
j

(
µ−

n∑
k=0

∫ 1

0

ϕk(x)bk(tj , x)xpdx

)
= f(tj), j = 0, . . . , N. (5.1)

To set up the system, one has to calculate exactly or “well enough” the integrals∫ 1

0

ϕk(x)bk(tj , x)xpdx.

For theoretical results it is easiest to use the basis {tp} for polynomials; for
practical calculations though, this results in very badly conditioned systems. So
for larger N one has to use a better basis, for example the (scaled) Chebyshev
polynomials Tp(t) = cos

(
p arccos

(
2t
T − 1

))
. In fact, it may be simpler to make

first the change of variables t = T
2 (1− cos s) and then work with trigonometric

polynomials in s instead.
For the singular fractional integro-differential equation (2.3) the collocation

equations are

N∑
p=0

cpt
p
j

(
Γ (α+ p+ 1)

Γ (p+ 1)
−

l∑
k=1

ak(tj)
Γ (αk + p+ 1)

Γ (p+ 1)
− a0(tj)ϕ̂(p)

)
= f(tj), j = 0, . . . , N. (5.2)

Note that if we first solve equation (2.6) for v using the polynomial collocation
method with Chebyshev points as the collocation points and then calculate
u = Vϕαv, then we end up getting the same approximate solution as when
solving (2.3) directly. Therefore convergence results for collocation method
(5.2) for (2.3) follow from the convergence results of this collocation method
(5.1) for cordial integral equations.

5.2 Properties of the interpolation operator

Let r > 1 and let Er be an ellipse with foci 0 and T and semiaxes
T

2

r + r−1

2
and

T

2

r − r−1

2
. Let tj be the Chebyshev points and let QN be the corresponding

Lagrange interpolation operator. The convergence of the interpolation process
in [0, T ] is a classical result; the convergence in ellipses is proved e.g. in [3],
but since the proof there contains several errors and typos, we provide a new
proof here.

Theorem 6. Let u ∈ A(Er) be given. Then

‖QNu− u‖A(Eρ) ≤ Cρ
(
r

ρ

)−N
‖u‖A(Er)
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for any 1 < ρ < r; in particular (corresponding to ρ = 1)

‖QNu− u‖C[0,T ] ≤ Cr−N‖u‖A(Er).

Proof. Make a change of variables t = T
2 (1 − cos s). Then t ∈ Er ⇔ s ∈ Sr,

where Sr = {s ∈ C : |Im s| < ln r}. Let v(s) = u
(
T
2 (1− cos s)

)
. Then

u ∈ C(Er)⇒ v ∈ C(Sr), v is even and 2π-periodic and

(QNu)

(
T

2
(1− cos s)

)
= (ΠNv)(s),

where ΠN is the trigonometric interpolation operator of order N for even func-

tions with interpolation nodes sj = (2j+1)π
2(N+1) , j = 0, . . . , N .

Let v(s) =
v0
2

+

∞∑
n=1

vn cosns and let w(x) = v(x + i ln r) + v(x − i ln r).

Then w is continuous, even and 2π-periodic. We have vn =
wn

rn + r−n
, where

w(x) =
w0

2
+

∞∑
n=1

wn cosnx.

Since for n ≥ N + 1 we have

|(ΠN (cosn·)) (s)− cosns| ≤ ρn + ρ−n for s ∈ Sρ,

we obtain the estimate

‖(ΠNv)(s)− v(s)‖A(Sρ)
≤

∞∑
n=N+1

|wn|
ρn + ρ−n

rn + r−n
≤

∞∑
n=N+1

|wn|
2ρn

rn

≤ 2ρ√
r2 − ρ2

√
2

π

(
r

ρ

)−N
‖w‖L2(0,π) ≤

2
√

2ρ√
r2 − ρ2

(
r

ρ

)−N
‖v‖A(Sr). (5.3)

This together with ‖v‖A(Sρ) = ‖u‖A(Eρ) gives us the first estimate of the theo-
rem. To get the second one, just use ρ = 1 and the norms of C[0, π] and C[0, T ]
in the arguments above. ut

Remark 2. From the proof one can see that the smoothness assumptions for
u in the theorem can be weakened slightly: it is enough to assume that u is
analytic in Er and u|Γ ∈ L2(Γ ), where Γ is the boundary of Er (the norm
‖u‖L2(Γ ) should then be used at the right hand side).

5.3 Convergence

To prove results about the convergence of the method we use a general con-
vergence theorem for projection methods for equations of second kind (see [5],
Theorem 13.9).
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Theorem 7. Let X be a Banach space, A : X → X be compact and I − A be
injective. Assume that the projection operators PN : X → XN satisfy ‖PNA−
A‖ → 0 as N →∞. Then for N large enough the approximate equation

uN − PNAuN = PNf

is uniquely solvable for all f ∈ X and there holds an error estimate

‖uN − u‖ ≤M‖PNu− u‖

with some positive constant M depending only on A. Here u is the unique
solution of u = Au+ f .

Now we can prove the exponential convergence of the method.

Theorem 8. Let ϕk ∈ L1(0, 1), bk ∈ C(Er × [0, 1]) and bk(·, x) ∈ A(Er) ∀x ∈

[0, 1], k = 0, . . . , n. Assume that
ϕk(x)√
1− x

∈ L1(0, 1), k = 0, . . . , n. Let f ∈

A(Er) be given. Let W be defined by (3.1) and assume that µ 6∈ σA(Er)(W ).
Then for N large enough the collocation system (5.1) is uniquely solvable and
its solution uN satisfies

‖uN − u‖A(Eρ) ≤ Cρ
(
r

ρ

)−N
‖u‖A(Er) for any 1 < ρ < r,

where u is the unique solution of (2.7).

Proof. We use Theorem 7 with X = A(Eρ), A = W =

n∑
k=0

Ṽϕk,bk and PN =

QN . Usually one shows that ‖PNA − A‖ → 0 by showing that A maps u to
some “better” (smoother) space; here this approach does not seem to work, at
least if we do not want to make additional assumptions about smoothness of
ϕ.

Let u ∈ A(Eρ). Let lj(t), j = 0, . . . , N be the Lagrange interpolation
polynomials for the Chebyshev nodes. We calculate first the difference for just
one term of the sum:

(QN Ṽϕk,bku)(t)− (Ṽϕk,bku)(t)

=

N∑
j=0

∫ 1

0

ϕk(x)bk(tj , x)u(tjx)dx lj(t)−
∫ 1

0

ϕk(x)bk(t, x)u(tx)dx

=

∫ 1

0

ϕk(x)
( N∑
j=0

bk(tj , x)u(tjx)lj(t)− bk(t, x)u(tx)
)
dx

=

∫ 1

0

ϕk(x) ((QN (bk(·, x)u(·x))(t)− bk(t, x)u(tx)) dx.

For fixed x ∈ (0, 1), u(·x) ∈ A(Eρ(x)), where ρ(x) is such that ∀t ∈ Eρ(x),
xt ∈ Eρ. This gives

ρ(x) =
(
ρ− 1 +

√
(ρ− 1)2 + 4ρx

)2
/(4ρx).
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Since b(·, x) ∈ A(Er), by choosing r(x) = min{ρ(x), r} we get from the estimate
(5.3) in the end of Theorem 6

‖QN (b(·, x)u(·x)− b(·, x)u(·x)‖A(Eρ)

≤ 2
√

2ρ√
r(x)2 − ρ2

(
r(x)

ρ

)−N
‖bk(·, x)‖A(Er)‖u‖A(Eρ).

Since ρ(x) is decreasing in x, ρ(x) → ∞ as x → 0+ and ρ(1) = ρ, there
exists x0 < 1 such that r(x) = r for x ≤ x0 and r(x) = ρ(x) for x0 < x ≤ 1.

Since ρ′(1) = −ρ(ρ− 1)

ρ+ 1
and ρ′′(x) > 0 for x ∈ (0, 1], we have ρ(x) ≥ ρ +

ρ(ρ− 1)

ρ+ 1
(1− x), hence

ρ(x)

ρ
> 1, if x < 1, and ρ(x)2− ρ2 ≥ 2ρ2(ρ− 1)

ρ+ 1
(1− x).

Now we can estimate

‖QN Ṽϕk,bku− Ṽϕk,bku‖A(Eρ) ≤
∫ 1

0

|ϕk(x)| 2
√

2ρ√
r(x)2 − ρ2

(
r(x)

ρ

)−N
× ‖bk(·, x)‖A(Er)‖u(·x)‖A(Eρ(x))dx ≤ 2

√
2ρ

(∫ x0

0

|ϕk(x)| 1√
r2−ρ2

(
r

ρ

)−N
dx

+

∫ 1

x0

|ϕk(x)|√
1− x

√
ρ+ 1

2ρ2(ρ− 1)

(
ρ(x)

ρ

)−N
dx

)
‖bk‖∞‖u‖A(Eρ).

Here the first term decays exponentially, and since (ρ(x)/ρ)
−N → 0 for all

x ∈ (0, 1), by Lebesgue’s Dominated Convergence Theorem the second integral
also converges to zero. Therefore, ‖QNW −W‖ → 0 as N →∞.

Consequently the assumptions of Theorem 7 are satisfied and hence for N
large enough the collocation system (5.1) is uniquely solvable and its solution
uN satisfies

‖uN − u‖A(Eρ)
≤ CMρ‖QNu− u‖A(Eρ).

The error estimate in A(Eρ) now follows from Theorem 6. ut

Remark 3. The assumptions
ϕk(x)√
1− x

∈ L1(0, 1) can probably be weakened, but

it is not clear right now, what the optimal assumptions are.

This approach does not work directly for getting the error estimate in
C(0, T ]. Theorem 7 cannot be used in C(0, T ], since the operator W is not
compact there. Instead we can choose some small ε > 0 and use Theorem 8 in

Eρ with ρ =
r

r − ε
and the fact that ‖uN − u‖C[0,T ] ≤ ‖uN − u‖A(Eρ) to get

the following estimate.

Corollary 4. Under the assumptions of Theorem 8 we have

‖uN − u‖C[0,T ] ≤ Cε(r − ε)−N‖u‖A(Er)

for any small ε > 0.
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In fact, to get a better error estimate in C(0, T ] (without ε), we can write
the equation as

µu = W0 + (W −W0)u+ f

and use the fact that the space of polynomials of fixed order is an invariant
subspace for W0, and similar reasoning as in [7] to show that W−W0 is compact
in C[0, T ] and actually smoothing. This is shown for operators of type (2.1)
in [7], but we expect that the reasoning works for more general operators as
well.

To get convergence result for the singular fractional integro-differential
equation (2.3) we rewrite the equation in the form (2.6) and then use The-
orem 8.

Theorem 9. Let αk ≥ 0, α > αk+1/2, (if there are no lower order derivatives,
then α > 1/2), ak ∈ A(Er), k = 0, . . . , l and f ∈ A(Er) be given. Assume that

a0(0)
Γ (j + 1)

Γ (j + α+ 1)
ϕ̂(j) +

l∑
k=1

ak(0)
Γ (j + αk + 1)

Γ (j + α+ 1)
6= 1, j = 0, 1, . . . .

Let u be the unique solution of (2.3). Then for N large enough the collocation
system (5.1) is uniquely solvable and its solution uN satisfies

‖uN − u‖A(Eρ) ≤ C (r/ρ)
−N ‖u‖A(Er) for any 1 < ρ < r.

In particular,
‖uN − u‖C[0,T ] ≤ Cε(r − ε)−N‖u‖A(Er).

Proof. We need to show that the operators in (2.6) satisfy the conditions of

Theorem 8. Since α > αk + 1/2, we have
ϕα,αk(x)√

1− x
∈ L1(0, 1). Check that ϕ0

also satisfies this condition:∫ 1

0

|ϕ0(y)|√
1− y

dy ≤ 1

Γ (α)

∫ 1

0

1√
1− y

∫ 1

y

x−α (x− y)
α−1 |ϕ(x)|dx dy

=
1

Γ (α)

∫ 1

0

|ϕ(x)|x−α
∫ x

0

(1− y)−1/2 (x− y)
α−1

dy dx

=
1

Γ (α)

∫ 1

0

|ϕ(x)|
∫ 1

0

(1− xs)−1/2 (1− s)α−1 ds dx < ‖ϕ‖L1

(α− 1/2)Γ (α)
,

if α > 1/2.
Now we can use Theorem 8 for equation (2.6) to get the convergence of vN

to v and then use u = Vϕαv and uN = VϕαvN . ut

6 Numerical examples

6.1 Numerical solution of singular fractional differential equations

Here we consider two very similar examples:

Dα
0 t
αu(t) = u(t) +

√
2− t, t ∈ [0, 1] (6.1)
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with α = 3/2 and α = 1/2. The exact solution can be written as

u(t) =

√
2

Γ (α+ 1)− 1
−
√

2

∞∑
k=1

Γ (k − 1/2) tk

2k+1
√
π (Γ (α+ 1)− Γ (k + 1))

.

Here f has a singularity at t = 2 and hence f ∈ A(Er), where r = 3+2
√

2 ≈
5.83. Since α1 = 0, the conditions of Theorem 9 require α > 1/2. In the first
case the condition is satisfied, but in the second case it is violated.

We used N = 2, 3, 4, . . . , 16 and calculated the errors in the maximum norm
on t ∈ [0, 1] and the ratios of the corresponding errors. If the convergence is
exponential, the ratios should be approximately 5.83. The results are presented
in the following table.

Table 1. Errors and ratios of errors for equation (6.1) with α = 3/2 and α = 1/2.

N error (α = 3/2) ratio error (α = 1/2) ratio

2 1.85 · 10−3 1.53 · 10−2

3 1.93 · 10−4 9.59 1.82 · 10−3 8.37
4 2.28 · 10−5 8.48 2.35 · 10−4 7.74
5 2.89 · 10−6 7.88 3.26 · 10−5 7.23
6 3.86 · 10−7 7.49 4.64 · 10−6 7.03
7 5.34 · 10−8 7.23 6.83 · 10−7 6.79
8 7.59 · 10−9 7.04 1.02 · 10−7 6.70
9 1.10 · 10−9 6.89 1.55 · 10−8 6.56

10 1.62 · 10−10 6.78 2.39 · 10−9 6.51
11 2.43 · 10−11 6.69 3.72 · 10−10 6.42
12 3.68 · 10−12 6.61 5.81 · 10−11 6.39
13 5.61 · 10−13 6.55 9.19 · 10−12 6.32
14 8.52 · 10−14 6.58 1.45 · 10−12 6.32
15 1.33 · 10−14 6.4 2.50 · 10−13 5.81
16 3.55 · 10−15 3.75 3.91 · 10−14 6.41

5

6

7

8

9

10

11

2 4 6 8 10 12 14 16

Figure 1. Ratios of the errors in cases α = 3/2 (W) and α = 1/2 (×) and theoretical
ratios if the convergence rate was CN−βrN for β = 3/2 (continuous line) and β = 1

(dashed line).

The convergence rate is somewhat better than the theoretical estimate.
Since the solution is actually better than just in A(Er), we may expect the
error to behave like CN−βr−N for some β > 0. If the errors behave as
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CN−βr−N , then the ratios should be r
(

N
N−1

)β
. In Figure 1 the ratios of

the errors are shown together with the theoretical ratios if the convergence
rate was CN−βr−NN for β = 3/2 and β = 1. It looks like the convergence
rate is actually in the first case N−3/2r−N and in the second case N−1r−N .

6.2 Numerical solution of singular fractional integro-differential
equations

We consider the equation

D
3/2
0 t3/2u(t) + 3

√
πD(tu(t))− 3

√
π

4

∫ t

0

1

t
u(s) ds

=
√

1 + t+
1

t
ln(1 + t) + 2 + 2

√
t arctan

√
t, t ∈ [0, T ] (6.2)

on three different intervals: T = 1, 2, 3. The exact solution is

u(t) =
(t+ 1)2

2t3/2
√
π

arctan
√
t+

t− 1

2
√
πt
.

Both u and f have a removable singularity at t = 0 and a branching type of
singularity at t = −1, so both of them can be continued to an analytic function
on the whole complex plane, except a cut along the negative part of the real
axis from −1 to −∞. Hence f ∈ A(Er), where T

2

(
1− 1

2

(
r + 1

r

))
= −1. For

T = 1 this gives r = 3 + 2
√

2 ≈ 5.83, for T = 2 we have r = 2 +
√

3 ≈ 3.73 and
for T = 3 we have r = 3.

Table 2. Errors and ratios for equation (6.2) with T = 1, T = 2 and T = 3.

N error (T = 1) ratio error (T = 2) ratio error (T = 3) ratio

2 5.14 · 10−4 2.80 · 10−3 6.68 · 10−3

3 5.17 · 10−5 9.94 4.56 · 10−4 6.13 1.38 · 10−3 4.84
4 5.79 · 10−6 8.93 8.26 · 10−5 5.52 3.16 · 10−4 4.37
5 6.94 · 10−7 8.34 1.60 · 10−5 5.17 7.70 · 10−5 4.10
6 8.72 · 10−8 7.97 3.23 · 10−6 4.94 1.96 · 10−5 3.92
7 1.13 · 10−8 7.70 6.77 · 10−7 4.78 5.17 · 10−6 3.80
8 1.51 · 10−9 7.51 1.45 · 10−7 4.66 1.40 · 10−6 3.70
9 2.05 · 10−10 7.36 3.18 · 10−8 4.57 3.84 · 10−7 3.63

10 2.82 · 10−11 7.25 7.09 · 10−9 4.49 1.08 · 10−7 3.57
11 3.93 · 10−12 7.19 1.60 · 10−9 4.43 3.05 · 10−8 3.53
12 5.54 · 10−13 7.09 3.65 · 10−10 4.38 8.75 · 10−9 3.49
13 8.94 · 10−14 6.20 8.42 · 10−11 4.34 2.54 · 10−9 3.45
14 2.33 · 10−14 3.83 1.96 · 10−11 4.30 7.40 · 10−10 3.42
15 4.54 · 10−12 4.31 2.18 · 10−10 3.40
16 1.08 · 10−12 4.20 6.45 · 10−11 3.38
17 2.67 · 10−13 4.05 1.92 · 10−11 3.36
18 6.11 · 10−14 4.37 5.75 · 10−12 3.34
19 1.65 · 10−14 3.69 1.73 · 10−12 3.32
20 2.53 · 10−14 0.65 5.34 · 10−13 3.24
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Figure 2. Ratios of the errors for T = 1 (W), T = 2 (×) and T = 3 (N) and theoretical
ratios if the convergence rate was CN−3/2r−N with r = 5.83 (continuous line), r = 3.73

(dashed line) and r = 3 (dotted line).

We used N = 2, 3, 4, . . . , 20 and calculated the errors in the maximum norm
on t ∈ [0, T ] and the ratios of the corresponding errors. If the error behaves as
Cr−N , the ratios should be approximately r; if the errors behave as CN−βr−N ,

then the ratios should be r
(

N
N−1

)β
. The results are presented in Table 2.

In Figure 2 the ratios of errors are presented for T = 1, T = 2 and T = 3
together with theoretical ratios if the convergence rate was CN−3/2r−N .

7 Conclusions

We derived results about the existence and uniqueness of analytic solutions
for general cordial Volterra integral equations of the second kind and certain
singular fractional integro-differential equations. We proposed the polynomial
collocation method, where the collocation points are the Chebyshev nodes, for
solving these equations and showed that the convergence of approximate solu-
tions to the exact solution is exponential in the number of variables. Numerical
examples were also given, which showed that in some cases the convergence
rates may be even better than predicted.
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