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Abstract. This paper presents a recursive method which yields necessary and suf-
ficient conditions for the existence of solutions of a class of n-th order linear focal
boundary value problems in the interior of a given interval, in the form of integral
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1 Introduction

Let I be a compact interval in R, let k, n ∈ N be such that 1 ≤ k < n and let
us consider the n-th order boundary value problem

y(n) + pn−1(x)y(n−1) + ...+ p0(x)y = 0, x ∈]a′, b′[, (1.1)

y(i)(a′) = 0, i = 0, 1, 2, ..., k − 1, (1.2)

y(βi)(b′) = 0, i = 1, 2, . . . , n− k, 0 ≤ β1 < β2 < . . . < βn−k = n− 1, (1.3)

where [a′, b′] ⊂ I and pj(x), 0 ≤ j ≤ n − 1, are functions continuous on I.
The purpose of this paper is to describe a method that allows asserting the
existence (or not) of solutions of (1.1)–(1.3) in extremes a′, b′ interior to a
given interval [a, b] ⊂ I, under certain conditions to be determined. Examples
of these types of problems appear in the study of the deflections of beams, both
straight ones with non-homogeneous cross-sections in free vibration, which are
subject to the fourth-order linear Euler-Bernoulli equation, and curved ones
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with different shapes. An account of these and other applications can be found
in [10, Chapter IV].

To this end, let us note that we can rewrite the problem (1.1)–(1.3) as

Ly =

µ∑
i=0

ci(x)y(i)(x), x ∈]a′, b′[, (1.4)

y(i)(a′) = 0, i = 0, 1, 2, . . . , k − 1, (1.5)

y(βi)(b′) = 0, i = 1, 2, . . . , n− k, 0 ≤ β1 < β2 < . . . < βn−k = n− 1, (1.6)

where L : Cn(I)→ C(I) is the right-disfocal differential operator defined by

Ly = y(n)(x) + an−1(x)y(n−1)(x) + · · ·+ a0(x)y(x), x ∈ I, (1.7)

µ ≤ n− 1, aj(x) ∈ C(I), 0 ≤ j ≤ n− 1 and ci(x) ∈ C(I), 0 ≤ i ≤ µ.
We will show that under certain conditions on the sign of aj(x), ci(x) and

the values of µ and β1, the operator M : Cµ[a, b]→ Cn[a, b] defined by

Mf =

∫ b

a

G(x, t)

µ∑
i=0

ci(t)f
(i)(t)dt, (1.8)

where [a, b] ⊂ I and G(x, t) is the Green function of the problem

Ly = 0, x ∈]a, b[, (1.9)

y(i)(a) = 0, i = 0, 1, 2, . . . , k − 1,

y(βi)(b) = 0, i = 1, 2, . . . , n− k, 0 ≤ β1 < β2 < . . . < βn−k = n− 1,

(assuming that such a problem has only the trivial solution, assumption which
we will keep throughout the paper), maps a cone of functions into itself, in a
manner that its recursive application over functions of the cone yields necessary
and sufficient conditions for the existence of solutions of the problem (1.4)–
(1.7) for a′ and b′ interior to a, b, in the form of integral inequalities. The
iterative comparison provides lower and upper bounds for the extremes a′ and
b′ for which (1.4)–(1.6) has a non-trivial solution, bounds which converge to
the values of these extremes a′ and b′ as the recursivity index grows.

The procedure to prove it will make use of cone theory and in particular [2,
Theorem 2], as well as certain properties of the sign of the derivatives of the
Green function of the problem (1.9). In this way, this paper can be considered
as an extension of [2] and [3] to boundary value problems with right focal
conditions (these papers requested βn−k < n − 1 in (1.6) as a fundamental
assumption).

Let us recall that the application of the cone theory to boundary value
problems dates from the works of Krein and Rutman [14] and Krasnosel’skii
[13], which were followed by many authors. References [5], [7], [9], [11], [12],
[16], [17] and [18] are a good account of this.

In terms of nomenclature, we will say that a′, b′ are interior to a, b if
a ≤ a′ < b′ ≤ b and a < a′ or b′ < b. We will use the notation M to name
the operator defined in (1.8), M if (Mf) to name the function resulting of
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the application of M to f(x) ∈ Cµ[a, b] recursively i (one) times and Mf(x)
to name the value of the function Mf at the point x. We will use Gab(x, t)
to name the Green function of (1.9) when we want to stress the dependence
of such a function with regards to the extremes a, b. And we will denote by
PC[a, b] the set of piecewise continuous functions on [a, b].

In order to make this paper self-contained, let us recall that, given a Banach
space B, a cone P ⊂ B is a non-empty closed set defined by the conditions:

1. If u, v ∈ P then cu+ dv ∈ P for any real numbers c, d ≥ 0.

2. If u ∈ P and −u ∈ P , then u = 0.

We will denote the interior of the cone P by P 0, and we will say that the cone
P is reproducing if any y ∈ B can be expressed as y = u − v with u, v ∈ P .
The existence of a cone in a Banach space B allows to define a partial ordering
relationship in that Banach space by setting u ≤ v if and only if v − u ∈ P .
Thus, we will say that the operator M is u0-positive if there exists a u0 ∈ P
such that for any v ∈ P\{0} one can find positive constants δ1, δ2 such that
δ1u0 ≤Mv ≤ δ2u0 (note that δ1 and δ2 will not be the same for all v).

The organization of the paper is as follows: Section 2 will provide results
on the sign of the Green function of the problem (1.9) and its derivatives.
Sections 3 and 4 will describe the method to obtain necessary and sufficient
conditions for the problem (1.4)–(1.6) to have a non-trivial solution, Section 3
being dedicated to the case β1 < k and Section 4 to the case β1 = k. Section 5
will apply the previous results to several examples. Finally Section 6 will
elaborate some conclusions.

2 The sign of the Green function of the problem

In this section we will obtain some sign properties of the Green functions asso-
ciated to the problem (1.9). The starting point for this discussion is a theorem
of Eloe and Ridenhour [8, Theorem 2.1] which, among other things, provides
signs for all derivatives of G(x, t) from 0 to min(k − 1, β1).

Theorem 1. The Green function G(x, t) of the problem (1.9) satisfies

(−1)n−k
∂iG(x, t)

∂xi
> 0, 0 ≤ i ≤ min(k − 1, β1), (x, t) ∈]a, b[×]a, b[;

(−1)n−k
∂kG(a, t)

∂xk
> 0, t ∈]a, b[. (2.1)

Next, following Eloe and Ridenhour [8] let us denote by H the partial
derivative of the Green function G(x, t) of the problem (1.9) with regards to
the extreme b:

H(x, t) =
∂Gab(x, t)

∂b
, (x, t) ∈ [a, b]× [a, b]. (2.2)

Our first theorem will determine the sign of the function H(x, t) and its
partial derivatives with regards to x.
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Theorem 2. Let us fix t ∈]a, b[ and let us suppose that

(−1)n(β,j)aj(b) ≤ 0, j = 0, . . . , n− 1; j 6= βi, i = 1, . . . , n− k, (2.3)

where n(β, j) denotes the number of components βi which exceed j. Then

(−1)n−k
∂iH(x, t)

∂xi
≥ 0, 0 ≤ i ≤ β1, x ∈ [a, b]. (2.4)

If, in particular, there is a j ∈ (0, . . . , n − 1)\(β1, β2, . . . , βn−k) such that
(−1)n(β,j)aj(b) < 0, then

(−1)n−k
∂iH(x, t)

∂xi
> 0, 0 ≤ i ≤ β1, x ∈]a, b[. (2.5)

Proof. We will follow an approach similar to the one used in [6, Lemma 3.7].
Thus, following the argument of [5, Lemma 3.3] H(x, t) must satisfy the BVP

LH = 0, (x, t) ∈ [a, b]× [a, b], (2.6)

∂iH(a, t)

∂xi
= 0, i = 0, 1, 2, . . . , k − 1, (2.7)

∂iH(b, t)

∂xi
= −∂

i+1G(b, t)

∂xi+1
, i = βj , j = 1, . . . , n− k. (2.8)

We can tackle the problem (2.6)–(2.8) by fixing t ∈]a, b[ and writing

H(x, t) =

n−k∑
l=1

yl(x), (2.9)

where each yl(x) satisfies

Lyl = 0, x ∈ [a, b], (2.10)

y
(i)
l (a) = 0, i = 0, 1, 2, . . . , k − 1,

y
(i)
l (b) = 0, i = βj , j = 1, . . . , n− k, i 6= βl; y

(βl)
l (b) = −∂

βl+1G(b, t)

∂xβl+1
.

For those l such that βl + 1 = βl+1, since the problem (1.9) has only the trivial
solution by hypothesis, one must have yl(x) ≡ 0, x ∈ [a, b]. Therefore we will
consider only those l for which βl + 1 6= βl+1, which includes at least βn−k.

Let us focus first on the yl(x) with l < n−k. From [8, Lemma 2.4] we know
that the Green function of the problem (1.9) satisfies

(−1)n(β,βl+1) ∂
βl+1G(b, t)

∂xβl+1
> 0, t ∈]a, b[, l = 1, . . . , n− k − 1.

It is easy to show that n(β, βl + 1) = n− k − l. This gives

(−1)n−k−ly
(βl)
l (b)=− (−1)n−k−l

∂βl+1G(b, t)

∂xβl+1
< 0, l = 1, . . . , n−k−1. (2.11)
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We can apply recursively [8, Lemma 2.3] to the problem (2.10) with l < n− k
to determine that there are l− 1 changes of sign between y

(βl)
l (x) and y

(β1)
l (x)

for a δ > 0 and x ∈ [b− δ, b[, which combined with (2.11) and [8, Lemma 2.3]
yields

−(−1)n−ky
(β1)
l (x)=(−1)n−k−l+l−1y

(β1)
l (x) ≤ 0, x ∈ [a, b], l=1, . . . , n−k−1.

(2.12)
And from (2.12) and the boundary conditions of (1.9) at a we finally get to

(−1)n−ky
(i)
l (x) ≥ 0, x ∈ [a, b], l = 1, . . . , n− k − 1, 0 ≤ i ≤ β1. (2.13)

Let us address now the case of yn−k(x). Given that, from [4, Chapter 3,
Section 6], G(x, t) is a solution of LG = 0 on [a, t[∪]t, b], from (1.7) one has

∂nG(b, t)

∂xn
= −an−1(b)

∂n−1G(b, t)

∂xn−1
− · · · − a0(b)G(b, t). (2.14)

Combining (2.3), (2.14) and [8, Lemma 2.4] one gets to ∂nG(b,t)
∂xn ≥ 0. If

all aj(b) = 0 for j ∈ (0, . . . , n − 1)\(β1, β2, . . . , βn−k) then ∂nG(b,t)
∂xn = 0. From

here, (2.10) and the fact that the boundary value problem (1.9) does not have
a non-trivial solution as per hypothesis one has

yn−k(x) ≡ 0. (2.15)

On the contrary, if there is a j ∈ (0, . . . , n − 1)\(β1, β2, . . . , βn−k) such that

(−1)n(β,j)aj(b) < 0 then ∂nG(b,t)
∂xn > 0, which together with (2.10) leads to

y
(n−1)
n−k (b) = −∂

nG(b, t)

∂xn
< 0. (2.16)

Applying [8, Lemma 2.3] recursively to (2.10) and using (2.16) it follows

(−1)n−ky
(β1)
n−k(x) > 0, x ∈]a, b[. (2.17)

From (2.17) and the boundary conditions of (1.9) at a we finally get to

(−1)n−ky
(i)
n−k(x) > 0, x ∈]a, b[, 0 ≤ i ≤ β1. (2.18)

The combination of (2.9), (2.13), (2.15) and (2.18) finally gives

(−1)n−k
∂iH(x, t)

∂xi
≥ 0, [x, t] ∈ [a, b]×]a, b[, 0 ≤ i ≤ β1, (2.19)

which is (2.4), whereas (2.5) can be obtained from (2.9), (2.13) and (2.18). ut

Let us turn our mind to the pure right focal case of (1.9) with β1 = k,
namely

Ly = 0, (2.20)

y(i)(a) = 0, i = 0, 1, 2, . . . , k − 1,

y(βi)(b) = 0, (β1, β2, . . . , βn−k) = (k, k + 1, . . . , n− 1).
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In this concrete case, we can extend the results of Theorem 1 to higher deriva-
tives, as no boundary conditions on the same derivative of G(x, t) apply at a
and b, which would force a change of sign in the next derivative due to Rolle’s
theorem. We will do so in the next result.

Theorem 3. Let us assume that

(−1)n−kaj(x) ≤ 0, x ∈ [a, b], j = 0, . . . , k − 1 (2.21)

and that
(−1)n−kai(b) < 0 (2.22)

for at least one i such that 0 ≤ i ≤ k − 1. Let us also assume that

(−1)n−jaj(x) ≤ 0, x ∈ [a, b], j = k, . . . , n− 1. (2.23)

Then the Green function of the problem (2.20) satisfies

(−1)n−k
∂iG(x, t)

∂xi
> 0, (x, t) ∈]a, b]×]a, b[, i = 0, . . . , k − 1, (2.24)

(−1)n−i
∂iG(x, t)

∂xi
> 0, (x, t) ∈ [a, b[×]a, b[, i = k, . . . , n− 1. (2.25)

Proof. We will only prove (2.25) since (2.24) is immediate from Theorem 1,
and we will do it by fixing t ∈]a, b[ and considering the cases x ∈ [t, b[ and
x ∈ [a, t[ separately. Thus, let us assume that there exists an xn−1 ∈ [t, b[ such
that

∂n−1G(xn−1, t)

∂xn−1
≥ 0 (2.26)

and let us denote by x∗n−1 the supremum of those xn−1. We will prove now
that there exists an ε > 0 such that

∂n−1G(x, t)

∂xn−1
< 0, x ∈ [b− ε, b[. (2.27)

From [8, Lemma 2.4] we know that

(−1)n−k
∂iG(b, t)

∂xi
> 0, 0 ≤ i ≤ k − 1. (2.28)

And from (1.7), (2.20), (2.21), (2.28) and condition (2.22) one gets

∂nG(b, t)

∂xn
= −an−1(b)

∂n−1G(b, t)

∂xn−1
− · · · − a0(x)G(b, t)

= −ak−1(b)
∂k−1G(b, t)

∂xk−1
− · · · − a0(x)G(b, t) > 0. (2.29)

By continuity of ∂nG(x,t)
∂xn at b and Taylor’s theorem one has (2.27).

Next, from the definition of x∗n−1 and (2.27) one must have

∂n−1G(x, t)

∂xn−1
< 0, x ∈]x∗n−1, b[,
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which, combined with Taylor’s theorem and the boundary conditions at b, yields

(−1)n−i
∂iG(x, t)

∂xi
> 0, x ∈]x∗n−1, b[, k ≤ i ≤ n− 1. (2.30)

Applying the mean value theorem and taking into account the definition of
x∗n−1, (2.26) and (2.27) there must exist an xn ∈]x∗n−1, b[ such that

∂nG(xn, t)

∂xn
< 0. (2.31)

But (1.7), (2.20), (2.21), (2.23), (2.24) and (2.30) imply that

∂nG(x, t)

∂xn
= −an−1(x)

∂n−1G(x, t)

∂xn−1
− · · · − a0(x)G(x, t) ≥ 0, x ∈]x∗n−1, b[,

which contradicts (2.31). Accordingly (2.26) must be wrong and

∂n−1G(x, t)

∂xn−1
< 0, x ∈ [t, b[, (2.32)

which again gives

(−1)n−i
∂iG(x, t)

∂xi
> 0, x ∈ [t, b[, k ≤ i ≤ n− 1. (2.33)

Let us address the case x ∈ [a, t[. From [4, Chapter 3, Section 6] we know
that the (n− 1)-th derivative of G(x, t) satisfies

∂n−1G(t−, t)
∂xn−1

− ∂n−1G(t+, t)

∂xn−1
= −1,

which, together with (2.32)–(2.33) and Taylor’s theorem implies that there
exists a δ > 0 such that

(−1)n−i
∂iG(x, t)

∂xi
> 0, x ∈ [t− δ, t[, k ≤ i ≤ n− 1. (2.34)

Now, let us assume that there exists j ∈ (k, . . . , n − 1) and ξj ∈ [a, t − δ[
with

(−1)n−j
∂jG(ξj , t)

∂xj
≤ 0.

If there are several j, let us pick the lowest one. Let us denote by ξ∗j the
supremum of all ξj . By continuity it is clear that

(−1)n−j
∂jG(ξ∗j , t)

∂xj
≤ 0, (2.35)

and that ξ∗j < t − δ. From (2.34), (2.35) and the mean value theorem there
must be a ξj+1 ∈]ξ∗j , t− δ[ such that

(−1)n−j−1
∂j+1G(ξj+1, t)

∂xj+1
< 0.
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We can apply this argument recursively until finding ξn ∈]ξ∗n−1, t−δ[ such that

∂nG(ξn, t)

∂xn
< 0, (2.36)

where ξn > ξ∗i for j ≤ i ≤ n− 1. However, the definition of ξ∗i implies

(−1)n−i
∂iG(ξn, t)

∂xi
> 0, k ≤ i ≤ n− 1,

which combined with (1.7), (2.20), (2.24) and the hypotheses (2.21) and (2.23)
gives

∂nG(ξn, t)

∂xn
= −an−1(ξn)

∂n−1G(ξn, t)

∂xn−1
− · · · − a0(ξn)G(ξn, t) ≥ 0,

contradicting (2.36). This completes the proof. ut

Theorem 4. Let us fix t ∈]a, b[ and let us assume that

(−1)n−kai(x) ≥ 0, x ∈ [a, b], i = 0, . . . , k − 1,

(−1)n−iai(x) ≥ 0, x ∈ [a, b], i = k, . . . , n− 1

and there is a j < k such that (−1)n−kaj(x) > 0 on [a, b]. Then, the k-th
partial derivative of the Green function of (2.20) with x changes sign in ]a, t[.

Proof. Following a similar argument to the first part of Theorem 3 one has

(−1)n−k
∂kG(x, t)

∂xk
< 0, x ∈ [t, b[. (2.37)

The continuity of ∂kG(x,t)
∂xk

for x ∈ [a, b], (2.1) and (2.37) yield the result. ut

Remark 1. Theorems 3 and 4 extend the results of Peterson [15] (also in [1,
Theorem 1.11.3]) on the sign properties of the Green function of the problem

y(n) + λp(x)y = 0, x ∈]a, b[,

y(i)(a) = 0, i = 0, 1, 2, . . . , k − 1,

y(βi)(b) = 0, (β1, β2, . . . , βn−k) = (k, k + 1, . . . , n− 1),

with λ = ±1 and p(x) > 0 on [a, b], to the broader problem (2.20).

Theorem 5. Let I(x, t) be defined as

I(x, t) =
∂G(x, t)

∂a
, (x, t) ∈ [a, b]× [a, b].

Under the conditions (2.21)–(2.23) one has

(−1)n−k
∂iI(x, t)

∂xi
< 0, (x, t) ∈]a, b]×]a, b[, i = 0, . . . , k − 1, (2.38)

(−1)n−i
∂iI(x, t)

∂xi
< 0, (x, t) ∈ [a, b[×]a, b[, i = k, . . . , n− 1. (2.39)
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Proof. Let us fix t ∈]a, b[. With the argument of [5, Lemma 3.3] I(x, t) satisfies
the BVP

LI = 0, x ∈ [a, b], (2.40)

∂iI(a, t)

∂xi
= 0, i = 0, 1, 2, . . . , k − 2;

∂k−1I(a, t)

∂xk−1
= −∂

kG(a, t)

∂xk
, (2.41)

∂iI(b, t)

∂xi
= 0, i = k, . . . , n− 1. (2.42)

Applying [8, Lemma 2.3 (i)-(ii)] to the problem (2.40)–(2.42) and using (2.1) one
gets (2.38). The proof of (2.39) can be obtained following the same argument
of the first part of Theorem 3 and taking (2.21)–(2.23) and (2.38) into account.
ut

Theorem 6. Let H be defined as in (2.2). Then under the conditions (2.21)–
(2.23) one has

(−1)n−k
∂iH(x, t)

∂xi
> 0, (x, t) ∈]a, b]×]a, b[, i = 0, . . . , k − 1, (2.43)

(−1)n−i
∂iH(x, t)

∂xi
> 0, (x, t) ∈ [a, b[×]a, b[, i = k, . . . , n− 1. (2.44)

Proof. Let us fix t ∈]a, b[. Again, with the argument of [5, Lemma 3.3] H(x, t)
satisfies the BVP

LH = 0, x ∈ [a, b],

∂iH(a, t)

∂xi
= 0, i = 0, 1, 2, . . . , k − 1,

∂iH(b, t)

∂xi
= 0, i = k, . . . , n− 2;

∂n−1H(b, t)

∂xn−1
= −∂

nG(b, t)

∂xn
.

From the proof of Theorem 3 and under the conditions (2.21)–(2.23)

∂nG(b, t)

∂xn
> 0.

Applying recursively [8, Lemma 2.3] one obtains (2.43). And from (1.7), (2.20),
(2.21)–(2.23), (2.43) and the argument of the first part of the proof of Theo-
rem 3 one finally gets to (2.44). ut

3 A procedure to assess solvability of the BVP

Let us consider the eigenvalue problem

Mu(x) = λu(x), x ∈ [a, b] (3.1)

with M defined as in (1.8). For the sake of completeness we will recall the main
result of [2] on the problem (3.1):
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Theorem 7. [2, Theorem 2]. Let us suppose that there is a Banach space
B and a reproducing cone P therein for which M(P ) ⊂ P and M is u0-
positive. Then the eigenvalue problem (3.1) has a solution u ∈ P and its
associated eigenvalue λ is positive, simple and bigger in absolute value than
any other eigenvalue of such a problem. In addition, if the spectral radius of
M , r(M), is strictly increasing with the length of the interval [a, b] (that is, if
fixed a, r(Mab) is increasing with b and fixed b, r(Mab) is decreasing with a)
and limb→a+ r(Mab) = lima→b− r(Mab) = 0, one has:

• If there is no non-trivial solution of (1.4)–(1.6) at extremes a′, b′ equal
or interior to a, b, then

lim
k→∞

Mkv = 0 (3.2)

for any v ∈ P , for any v, w ∈ P\{0} there exists a k0 ≥ 1 such that

Mkv ≤Mw, k ≥ k0

and there cannot be any v ∈ P\{0} and any k1 ≥ 1 such that

Mk1v ≥ v.

• If there is a non-trivial solution of (1.4)–(1.6) at extremes a′, b′ interior
to a, b, then for any v, w ∈ P\{0} there exists a k2 ≥ 1 such that

Mkv ≥Mw, k ≥ k2

and there cannot be any v ∈ P\{0} and any k3 ≥ 1 such that

Mk3v ≤ v.

The results of the previous section allow distinguishing two cases in the
analysis of the problem (1.4)–(1.6) with regards to the application of Theo-
rem 7, depending on the number of derivatives of G(x, t) whose sign is known,
namely: 1. The case β1 < k, 2. The case β1 = k.

Accordingly we will tackle both cases separately, focusing this section on
the case β1 < k. Thus, let us assume first that µ ≤ β1 < k, let us pick ν such
that µ ≤ ν ≤ β1 and let us define the Banach space B as

B = {y ∈ PC[a, b]},

if ν = 0, and as

B = {y ∈ Cν−1[a, b] : y(ν)(x) ∈ PC[a, b], y(i)(a) = 0, 0 ≤ i ≤ ν − 1},

if ν > 0, in both cases the associated norm being

‖y‖ = max{sup{|y(i)(x)|, x ∈ [a, b]}, i = 0, . . . , ν}.

Let us also define the cone P by

P = {y ∈ B : (−1)n−ky(ν)(x) ≥ 0; x ∈ [a, b]}. (3.3)

From the definition of P it is clear that (−1)n−ky(i)(x) ≥ 0, x ∈ [a, b], 0 ≤ i ≤ ν.
With the help of the cone P it is possible to prove the following theorem:
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Theorem 8. Let us assume that µ ≤ β1 < k and

(−1)n(β,j)aj(x) ≤ 0, x ∈ [a, b], j = 0, . . . , n− 1, j 6= βi, i = 1, . . . , n− k
(3.4)

with at least one j such that 0 ≤ j ≤ n− 1, j 6= βi, i = 1, . . . , n− k and

(−1)n(β,j)aj(x) < 0, a.e. for x ∈ [a, b]. (3.5)

Let us also assume that

(−1)n−kcj(x) ≥ 0, x ∈ [a, b], j = 0, . . . , µ

with at least one l ≤ µ such that

(−1)n−kcl(x) > 0, a.e. for x ∈ [a, b].

Then the conclusions of Theorem 7 are applicable to the problem (1.4)–(1.6)
and the cone P defined in (3.3).

Proof. The proofs of the reproducing character of P and the u0-monotonicity
of M on P follow the same steps of [3, Theorem 2], replacing µ by ν. The
proof of the monotonicity of the eigenvalue λ of (3.1) with a mimicks that
of [2, Theorem 8], and the one with b can be proven following the steps of [7,
Theorem 8] and noting that, from Theorem 1, Theorem 2, (3.4) and (3.5), for
B < b one has

(−1)n−k
∂iGab(x, t)

∂xi
> (−1)n−k

∂iGaB(x, t)

∂xi
> 0, 0 ≤ i ≤ ν, (x, t) ∈]a, b[×]a, b[.

ut

Remark 2. Theorem 8 implies in practice that one can find bounds for the
values of a′ and b′ for which (1.4)–(1.6) has a non-trivial solution, by assessing
whether M jw ≤ M iw or M jw ≥ M iw for j > i ≥ 0 and w ∈ P\{0}. These
bounds converge to a′ and b′ as the recursivity index j grows.

As shown in [3], in the case that µ < β1 one can pick ν < β1 and functions
w ∈ P that simplify the practical evaluation of whether M jw ≤ w or M jw ≥ w.

Theorem 9. Under the conditions of Theorem 8, suppose that µ ≤ ν < β1 and
that w ∈ P\{0} is such that w(ν+1)(x) exists and satisfies (−1)n−kw(ν+1)(x) ≤
0 on the points of [a, b] where w(ν)(x) is continuous. One has:

1. If w(x) ∈ Cν [a, b] and there exists an integer j > 0 such that

(−1)n−kw(ν)(b) ≥ (−1)n−k
∂νM jw(b)

∂xν
,

then the problem (1.4)–(1.7) cannot have a non-trivial solution at ex-
tremes a′, b′ interior to a, b.
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2. If (−1)n−kw(ν)(a) ≤ 0, there exists a single discontinuity point z ∈ [a, b]
of w(ν)(x) such that

lim
x→z−

(−1)n−kw(ν)(x) < (−1)n−kw(ν)(z) = lim
x→z+

(−1)n−kw(ν)(x)

and there exists an integer j > 0 such that

(−1)n−kw(ν)(z) ≤ (−1)n−k
∂νM jw(z)

∂xν
,

then the problem (1.4)–(1.7) does have a non-trivial solution either at a,
b or at extremes a′, b′ interior to a, b.

Proof. The proof is identical as that of [3, Theorem 3] replacing µ by ν and

noting that (−1)n−k ∂
ν+1G(x,t)
∂xν+1 ≥ 0 from Theorem 1 and that ν + 1 ≤ β1. ut

An example of a function w(x) satisfying the conditions of the statement 1
of the Theorem 9 is

w(x) = (−1)n−k
(x− a)ν

ν!
, x ∈ [a, b]. (3.6)

And, picking any z ∈]a, b[, an example of a function w(x) that satisfies the
conditions of the statement 2 of the Theorem 9 is

w(x) =

{
0, a ≤ x < z,

(−1)n−k (x−z)ν
ν! , z ≤ x ≤ b.

Remark 3. As pointed out in the introduction, (1.4)–(1.7) is just a way of repre-
senting a set of problems of the type (1.1)–(1.3) in a way that allows applying
the procedures of Theorems 7 or 9. But as long as pi(x) = ai(x) − ci(x),
0 ≤ i ≤ µ, there are infinitely many choices of ai(x) and ci(x) that lead to
problems for which the application of these Theorems, as the number of times
M is applied grows, yields bounds a and b that converge to the values a′ and
b′ for which (1.1)–(1.3) has a non-trivial solution. Thus, one can wonder what
choices of such functions facilitate a faster convergence to a′ and b′. [2, The-
orem 12 and Remark 13] and [3, Remark 5] answered that question for the
problem similar to (1.1)–(1.3) with βn−k < n− 1 by proving the faster conver-
gence of the method when the functions ci(x), 0 ≤ i ≤ µ are closer to zero. It is
easy to prove that such a behaviour is also applicable to the cone P defined in
(3.3) and the problem (1.1)–(1.3), following the same steps used in [2, Theorem
12].

4 The solvability of the purely right focal case

When β1 = k one can, under certain circumstances, extend the applicability
of Theorem 7 to the case µ > β1, overcoming one of the main limitations of
the method, as discussed in the conclusions of [2]. That is possible due to
the constant sign of the partial derivatives of the Green function G(x, t) with
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regards to x under the conditions of Theorem 3. To this end, let us pick ν such
that k ≤ µ ≤ ν ≤ n− 1 and let us define the Banach space B as

B = {y ∈ Ck−1[a, b] : y(k)(x) ∈ PC[a, b], y(i)(a) = 0, 0 ≤ i ≤ k − 1},

if ν = k, and

B = {y ∈ Cν−1[a, b] : y(ν)(x) ∈ PC[a, b], y(i)(a) = 0, 0 ≤ i ≤ k − 1,

y(i)(b) = 0, k ≤ i ≤ ν − 1},

if ν > k, in both cases with the associated norm

‖y‖ = max{sup{|y(i)(x)|, x ∈ [a, b]}, i = 0, . . . , ν},

as well as the cone P

P = {y ∈ B : (−1)n−νy(ν)(x) ≥ 0; x ∈ [a, b]}. (4.1)

From the definition of P one has (−1)n−iy(i)(x) ≥ 0, k ≤ i ≤ ν, as well as
(−1)n−ky(i)(x) ≥ 0, 0 ≤ i ≤ k − 1, for x ∈ [a, b].

Theorem 10. Let us suppose that β1 = k and

(−1)n−kaj(x) ≤ 0, x ∈ [a, b], j = 0, . . . , k − 1, (4.2)

(−1)n−jaj(x) ≤ 0, x ∈ [a, b], j = k, . . . , n− 1, (4.3)

(−1)n−kai(x) < 0, a.e. on [a, b], (4.4)

for at least one i such that 0 ≤ i ≤ k − 1. Let us also suppose that

(−1)n−kcj(x) ≥ 0, x ∈ [a, b], j = 0, . . . , k − 1, (4.5)

(−1)n−jcj(x) ≥ 0, x ∈ [a, b], j = k, . . . , n− 1 (4.6)

with at least one l ≤ n− 1 such that either

(−1)n−kcl(x) > 0, a.e. on [a, b], (4.7)

if l < k, or
(−1)n−lcl(x) > 0, a.e. on [a, b], (4.8)

if l ≥ k. Then the conclusions of Theorem 7 are applicable to the problem
(1.4)–(1.6) and the cone P defined in (4.1).

Proof. Using the notation

{u(x)}+ = (−1)n−ν max
{

(−1)n−νu(x), 0
}
,

{u(x)}− = (−1)n−ν max
{
−(−1)n−νu(x), 0

}
for x ∈ [a, b], it is clear that

y(ν)(x) = {y(ν)(x)}+ − {y(ν)(x)}−, x ∈ [a, b].
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Then it is straightforward to show that, for any y ∈ B,

y(x) = −
∫ x

a

(x− t)k−1

(k − 1)!

∫ b

t

(t− s)ν−k−1

(ν − k − 1)!
{y(ν)(s)}+ds dt

+

∫ x

a

(x− t)k−1

(k − 1)!

∫ b

t

(t− s)ν−k−1

(ν − k − 1)!
{y(ν)(s)}−ds dt, x ∈ [a, b]

with the two terms of the right hand side being functions which belong to P .
This proves that P is a reproducing cone inB. The proof of the u0-monotonicity
of M on P is similar to that [3, Theorem 2], replacing µ by ν and applying
Theorem 3, (2.29) and (4.2)–(4.8) to show that MP ⊂ P0, where P is a cone
on the Banach space B

B = {y ∈ Cn[a, b], y(i)(a) = 0, 0 ≤ i ≤ k − 1,

y(i)(b) = 0, k ≤ i ≤ n− 1},

such that
P = {y ∈ B : (−1)n−νy(ν)(x) ≥ 0; x ∈ [a, b]},

whose interior P0 is defined by

P0 = {y ∈ B : (−1)n−νy(ν)(x) > 0; x ∈ [a, b[, y(n)(b) > 0}.

Obviously P ⊂ P since B ⊂ B. Next, the monotonicity of the eigenvalue λ of
(3.1) with the extreme a can be proven mimicking the one of [2, Theorem 8] and
taking into account Theorem 5 and the hypotheses (4.2)–(4.8). And finally the
monotonicity of λ with b can also be proven following the steps of [7, Theorem
8] and using Theorem 6 and the hypotheses (4.2)–(4.8). ut

Remark 4. The results of [3, Section 3] and in particular [3, Theorem 8] are also
applicable to the problem (1.4)–(1.7) (whether β1 < k or β1 = k) and provide a
mechanism to apply Theorems 8 and 10 (that is, to determine whether M jw ≥
M iw or M jw ≤ M iw) when the comparison of M jw and M iw with respect
to the cone is performed only at the points of a partition {xi} of [a, b]. This
happens, for instance, when the calculation of M jw, M iw and their derivatives
is done via numerical integration.

As happened in the previous section, for the case that k ≤ µ < n − 1 one
can pick ν with µ ≤ ν < n− 1 and obtain a theorem equivalent to Theorem 9.

Theorem 11. Under the conditions of Theorem 10, let us suppose that µ, k ≤
ν < n − 1 and that w ∈ P\{0} is such that w(ν+1)(x) exists and satisfies
(−1)n−ν−1w(ν+1)(x) ≤ 0 on those points of [a, b] where w(ν+1)(x) is continuous.
One has:

1. If w(x) ∈ Cν [a, b] and there exists an integer j > 0 such that

(−1)n−νw(ν)(a) ≥ (−1)n−ν
∂νM jw(a)

∂xν
,

then the problem (1.4)–(1.7) cannot have a non-trivial solution at ex-
tremes a′, b′ interior to a, b.
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2. If (−1)n−νw(ν)(b) ≤ 0, there exists a single discontinuity point z ∈ [a, b]
of w(ν)(x) such that

lim
x→z−

(−1)n−νw(ν)(x) = (−1)n−νw(ν)(z) > lim
x→z+

(−1)n−νw(ν)(x)

and there exists an integer j > 0 such that

(−1)n−νw(ν)(z) ≤ (−1)n−ν
∂νM jw(z)

∂xν
,

then the problem (1.4)–(1.7) does have a non-trivial solution either at a,
b or at extremes a′, b′ interior to a, b.

Proof. The proof is similar to that of [3, Theorem 3] replacing µ by ν and

noting that ∂νMjw(b)
∂xν = 0 (this follows from the boundary conditions at b) and

that (−1)n−ν−1 ∂
ν+1G(x,t)
∂xν+1 ≥ 0, from Theorem 3 and the fact that ν+1 ≤ n−1,

so that (−1)n−ν ∂
ν+1Mjw(x)
∂xν+1 ≤ 0 for x ∈ [a, b]. ut

The conditions of the statement 1 of Theorem 11 are fulfilled, e.g., by

w(x) = (−1)n−ν
∫ x

a

(x− t)k−1

(k − 1)!

(t− b)ν−k

(ν − k)!
dt, x ∈ [a, b]. (4.9)

And, picking a z ∈]a, b[, the conditions of the statement 2 of Theorem 11
are fulfilled by

w(x) =

{
(−1)n−ν

∫ x
a

(x−t)k−1

(k−1)!
(t−z)ν−k
(ν−k)! dt x ∈ [a, z],

(−1)n−ν
∫ z
a

(x−t)k−1

(k−1)!
(t−z)ν−k
(ν−k)! dt x ∈]z, b].

(4.10)

5 Some examples

In this section we will present a couple of examples where the results of the
Sections 3 and 4 will be used to provide progressively better upper and lower
bounds of the extremes that make (1.4)–(1.7) have a non-trivial solution. One
of them will cover the case β1 < k and the other the case β1 = k. In all of them
the extreme a will be fixed, focusing the analysis on the extreme b. Up to 3
decimal figures will be provided for each bound of b. The integral calculations
will be done numerically using a mesh {xl} and applying the trapezoidal rule in
each of the subintervals [xl, xl+1] of the mesh. This also includes the calculation
of the derivatives (Mkv)(m)(x), 0 ≤ m ≤ ν, as these can be written as

(Mkv)(m)(x) =

∫ b

a

∂mG(x, t)

∂xm

µ∑
j=0

cj(t)(M
k−1v(t))(j)dt.

Example 1. Let us consider the following boundary value problem

y′′′ + 4y′ − xy = 0, x ∈ [0, b], y(0) = y(b) = y′′(b) = 0. (5.1)
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A possible representation of (5.1) in a manner that yields an equation Ly = 0
right disfocal in the interval of interest is

y′′′ + 4y′ = (−1)n−kxy, x ∈ [0, b], y(0) = y(b) = y′′(b) = 0

with n = 3, k = 1, β1 = 0, µ = 0. This forces ν = 0 and prevents the use
of Theorem 9 since ν = β1. Nevertheless, the problem satisfies the hypotheses
of Theorem 8, which allows applying Theorem 7 to estimate the value of the
extreme b. To do so, we need to calculate the Green function of the BVP

y′′′ + 4y′ = 0, x ∈ [0, b], y(0) = y(b) = y′′(b) = 0,

which can be obtained following Coppel [4] as

G(x, t) =

{
(− cot 2b+ cot 2b cos 2t+ sin 2t) sin 2x

4 + cos 2x−1
4 , 0 ≤ x ≤ t ≤ b,

cos 2t−1
4 cot 2b sin 2x+ 1−cos 2t

4 cos 2x, 0 ≤ t < x ≤ b.

In this example we have decided to test Theorem 7 with several functions
w(x): the one defined in (3.6) and two others defined by

w(x) =

{
0, x ∈ [0, z1[∪]z2, b],
1, x ∈ [z1, z2],

(5.2)

one of them having z1 = b/3 and z2 = 2b/3 and the other one having z1 = b/4
and z2 = 3b/4. All these functions belong to the cone P of (3.3).

The application of Theorem 7 (i.e., the comparison of M jw(x) and M iw(x)
with respect to the cone P for different values of j, i) to these w(x) yields
the Table 1. Since Mw(0) = Mw(b) = 0 regardless of the selected w(x), the
comparison of Mw(x) and w(x) can only provide lower bounds of b when w(x)
is that of (3.6) and upper bounds of b when w(x) is that of (5.2). This limitation
is not present for higher values of j, i.

Table 1. Comparison of bounds for b in the Example 1.

Bound with (3.6) Bound with (5.2) Bound with (5.2)

and z2 − z1 = b
2

and z2 − z1 = b
3

Recursivity Lower Upper Lower Upper Lower Upper
index bound bound bound bound bound bound

j=1, i=0 b > 1.419 N.A. N.A. b < 1.51 N.A. b < 1.52
j=2, i=1 b > 1.465 b < 1.469 b > 1.466 b < 1.469 b > 1.466 b < 1.469
j=3, i=2 b > 1.467 b < 1.468 b > 1.467 b < 1.468 b > 1.467 b < 1.468

Table 1 shows that, as expected, the bounds get improved when the number
of iterations grows. The precise value of b which makes (5.1) have a non-trivial
solution lies between 1.467 and 1.468, and those bounds are obtained with just
three iterations of M . All functions w(x) give similar bounds, with slightly
better results for the w(x) of (5.2) and j = 2. For j = 1 the method provides
a better upper bound for b if we pick z2 − z1 = b

2 instead of z2 − z1 = b
3 in the

function w(x) of (5.2), but such an advantage is not clearly visible for other
values of j, at least if we stick to three decimal figures in the calculation of b.
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Example 2. Let us consider the following boundary value problem associated
to the Bessel equation of order zero:

x2y′′ + xy′ + x2y = 0, x ∈ [a, b], y(a) = y′(b) = 0, (5.3)

where a is the first positive zero of the Bessel function of the first kind and
order zero, i.e. a = 2.4048. Since J ′0(x) = −J1(x), b must be the first positive
zero of the Bessel function of the first kind and order 1, i.e. b = 3.8317. This
will allow testing the speed of convergence of the method to the value of b.

We can rewrite the problem (5.3) as

y′′ + y = − 1

x
y′, x ∈ [a, b], y(a) = y′(b) = 0 (5.4)

with n = 2, k = 1, β1 = 1 and µ = 1, which prevents the use of Theorem 11
since one can only choose ν = 1 = n− 1. However, for b < a+ π

2 the equation

y′′ + y = 0

is disfocal on [a, b], and the problem (5.4) satisfies all the hypotheses of Theo-
rem 10, which allows the application of Theorem 7 to estimate the value of b.
To do that we first need to determine the Green function of the problem

y′′ + y = 0, x ∈ [a, b], y(a) = y′(b) = 0.

Following Coppel [4] as we did in Example 1, the mentioned Green function
can be calculated as

G(x, t) =

{
− sin(x− a) cos(b−t)

cos(b−a) , a ≤ x ≤ t ≤ b,
− cos(b− x) sin(t−a)

cos(b−a) , 0 ≤ t < x ≤ b.

The application of Theorem 7 (i.e., the comparison of M jw(x) and M iw(x)
with respect to the cone P for different values of j, i) to the functions w(x)
defined in (4.9) and (4.10) (considering two different cases z = a + b−a

2 and

z = a+ b−a
3 to test the effect of the choice of z in the result of the calculations)

gives the Table 2. As happened in the previous example, the value of the
selected w(ν)(x) at the neighborhood of b affects the bounds of b that can be
obtained by comparing Mw(x) and w(x): the w(x) of (4.9) can only yield a
lower bound of b, whereas the w(x) of (4.10) can only yield upper bounds of b.

As expected, the bounds get improved when the number of iterations grows,
the precise value of b (b = 3.8317, let us recall) lying between 3.831 and 3.832.
The function w(x) defined in (4.9) provides slightly better upper bounds than
the w(x) of (4.10), regardless of the value of z, whereas with the lower bounds
one has exactly the opposite behaviour, for all values of j. The use of z =
a+ b−a

2 in (4.10) also provides better bounds (both lower and upper) than the

use of z = a + b−a
3 , for all values of j. It is also remarkable that with just

three iterations one can obtain lower and upper bounds for the precise value of
b which are within a 0.001 distance of that value.
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Table 2. Comparison of bounds for b in the Example 2.

Bound with (4.9) Bound with (4.10) Bound with (4.10)

and z = a+ b−a
2

and z = a+ b−a
3

Recursivity Lower Upper Lower Upper Lower Upper
index bound bound bound bound bound bound

j=1, i=0 b > 3.663 N.A. N.A. b < 3.92 N.A. b < 3.936
j=2, i=1 b > 3.814 b < 3.844 b > 3.82 b < 3.844 b > 3.818 b < 3.858
j=3, i=2 b > 3.83 b < 3.832 b > 3.831 b < 3.834 b > 3.83 b < 3.835

6 Discussion

The results presented in this paper allow extending the method described in [2]
and [3], to the focal case βn−k = n− 1, and therefore can be used to calculate
bounds for the extremes a′ and b′ for which the problem (1.1)–(1.3) has a non-
trivial solution, bounds which converge to the concrete extremes a′ and b′ when
the recursivity index of application of the operator M grows. That extension
comes at the expense of imposing sign conditions on the functions ai(x), con-
ditions that were not needed in the non-focal problem. It is straightforward
to show that the results can also be used to provide bounds for the principal
eigenvalue of the problem (3.1) by comparing M jw and λj−iM iw with respect
to the cone P .

In the application of the method there is freedom in the choice of the func-
tions ai(x) and ci(x) that come from the decomposition pi(x) = ai(x)− ci(x),
as long as some sign conditions on ai(x) and ci(x) are respected. As in [2], our
recommendation is to look for ai(x) for which the corresponding problem (1.9)
has a Green function easy to calculate and ci(x) as close to zero as possible.
This guarantees a faster convergence of the method, as per Remark 3.

The cases µ < β1 (for β1 < k) and µ < n − 1 (for β1 = k) allow the ap-
plication of Theorems 9 and 11, which simplify the practical determination of
M jw(x) ≥M iw(x) with regards to the cone P since they restrict the compar-
ison to a single point instead of the whole interval [a, b]. In the rest of cases, if
numerical integration is used over a mesh {xl} of [a, b] it becomes necessary to
include in the comparison an interpolation error for the interior of each of the
subintervals ]xl, xl+1[. Whereas the calculation of such an interpolation error

can be sometimes tedious (it requires computing ∂ν+2Mjw(x)
∂xν+2 , see Remark 4),

its value is usually so small (it is proportional to the square of the step of the
mesh) that it allows a faster convergence of the method using Theorem 7 even
in the cases where Theorems 9 and 11 could be applied.

As for the choice of w(x), the examples do not provide clear arguments for
some or others, since the results depend on the type of searched bound. It is
worth remarking, in any case, that in the assessed examples with just three
iterations one could obtain bounds as precise as three decimal figures.

It is also worth remarking that the paper also provides results for the sign
of the derivatives greater than k − 1 of the Green function of the problem
(2.20), in particular Theorem 3, which improve previous results as far as the
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authors are aware. They allow extending the method to problems where β1 = k
and µ > β1. The main limitation in this case is that one needs specific sign
conditions for all pi(x), when the problem is displayed in the form (1.1)–(1.3),
in order that all ai(x) and ci(x) satisfy the sign conditions required by the
method. However, when these conditions are fulfilled, it allows picking ai(x)
for which the calculation of the Green function is straightforward (e.g. ai(x)
that are constant), which removes one of the problems of the method raised in
the conclusions of [2].
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