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Abstract. This paper considers a generalized Nicholson’s blowflies system with non-
linear density-dependent mortality terms and patch structure. Under appropriate
conditions, we establish some criteria to ensure that the solutions of this system ex-
ist and converge globally exponentially to a positive almost periodic solution. The
results complement another case of nonlinear density-dependent mortality terms in
Chen and Wang [5].
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1 Introduction

To describe the population of the Australian sheep blowfly and agree with the
experimental date of Nicholson [20], Gurney et al. [9] proposed the following
Nicholson’s blowflies equation

N ′(t) = −δN(t) + pN(t− τ)e−aN(t−τ).

Here, N(t) is the size of the population at time t, p is the maximum per capita
daily egg production, 1

a is the size at which the population reproduces at its
maximum rate, δ is the per capita daily adult death rate, and τ is the generation
time.

As we all know, the study of stability for the nonlinear models (see e.g.
[1, 6, 19, 24, 26, 27, 32, 33]) not only has profound practical significance, but
also will enrich and perfect the theory of nonlinear equations to some extent.
In the past forty years, the theory of the Nicholson’s blowflies equation has
made a remarkable progress with main results scattered in numerous research
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papers. In particular, there have been extensive studies on the problem of the
existence of positive periodic solutions for the classical Nicholson’s model and
some generalizations with variable coefficients and delays. We refer the reader
to [14,16,18,21] and the references cited therein.

In 2010, Berezansky et al. [2] pointed out that a new study indicates that
a linear model of density-dependent mortality will be most accurate for popu-
lations at low densities. And there have been extensive results on the problem
of the existence of positive almost periodic solutions for Nicholson’s blowflies
equation without nonlinear density-dependent mortality term in the litera-
ture [4, 13, 17, 30]. Berezansky et al. [2] presented the following Nicholson’s
blowflies model with a nonlinear density-dependent mortality term

N ′(t) = −D(N(t)) + PN(t− τ)e−aN(t−τ), (1.1)

where P is a positive constant and function D might have one of the following
forms: D(N) = aN

N+b or D(N) = a − be−N with positive constants a, b > 0.
Some results on (1.1) can be found in [3, 12,15,29,31].

Since the biological species compete and cooperate with each other in real
world, the growth models given by patch structure systems of delay differential
equation have been provided by several authors to analyze the dynamics of
multiple species, see [7, 25] and the reference therein. Up to present, several
authors in [3,5,28] have researched the exponential extinction, permanence and
existence of positive periodic and almost periodic solutions for the following de-
layed Nicholson’s blowflies system with nonlinear density-dependent mortality
terms and patch structure:

N ′i(t) = −Dii(t,Ni(t)) +

n∑
j=1,j 6=i

Dij(t,Nj(t))

+

l∑
j=1

cij(t)Ni(t− τij(t))e−γij(t)Ni(t−τij(t)), (1.2)

where Dij(t,N) =
aij(t)N
bij(t)+N

or Dij(t,N) = aij(t)− bij(t)e−N .
As far as we know, few works have been done on the global exponential

stability of positive almost periodic solutions for (1.2). Moreover, it is more
significant to discuss the almost periodic properties of differential equations
than periodic properties. Motivated by the above arguments, in this paper,
we investigate the existence and global exponential stability of positive almost
periodic solutions for the following delayed Nicholson’s blowflies system with
nonlinear density-dependent mortality terms and patch structure:

x′i(t) = − aii(t)xi(t)

bii(t) + xi(t)
+

n∑
j=1,j 6=i

aij(t)xj(t)

bij(t) + xj(t)

+

l∑
j=1

βij(t)xi(t− τij(t))e−γij(t)xi(t−τij(t)), (1.3)

where aij , bij , βim, γim : R → (0,+∞) and τim : R → R+ are continuous
almost periodic functions with i, j = 1, 2, . . . , n, m = 1, 2, . . . , l. The case of
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(1.2) with Dij(t,N) = aij(t)− bij(t)e−N has been studied by Chen and Wang
in [5] before. And it is easy to see that (1.3) is the another case of (1.2) with

Dij(t,N) =
aij(t)N
bij(t)+N

.

For convenience, we introduce some notations. Throughout this paper,
given a bounded continuous function g defined on R, let g+ and g− be defined
as

g+ = sup
t∈R

g(t), g− = inf
t∈R

g(t).

It will be assumed that

ri = max
1≤j≤l

τ+ij > 0, γ−ij ≥ 1, i = 1, 2, . . . , n, j = 1, 2, . . . , l. (1.4)

Let Rn(Rn+) be the set of all (nonnegative) real vectors, we will use x =

(x1, . . . , xn)
T ∈ Rn to denote a column vector, in which the symbol (T ) de-

notes the transpose of a vector. We let |x| denote the absolute-value vec-
tor given by |x| = (|x1|, . . . , |xn|)T and define ‖x‖ = max

1≤i≤n
|xi|. Denote

C =
∏n
i=1 C([−ri, 0], R) and C+ =

∏n
i=1 C([−ri, 0], R+) as a Banach space

equipped with the supremum norm defined by ‖ϕ‖ = sup
−ri≤t≤0

max
1≤i≤n

|ϕi(t)| for

all ϕ(t) = (ϕ1(t), . . . , ϕn(t))
T ∈ C(or ∈ C+). If xi(t) is defined on [t0 − ri, v)

with t0, v ∈ R and i = 1, . . . , n, then we define xt ∈ C as xt = (x1t , . . . , x
n
t )T ,

where xit(θ) = xt(t+ θ) for all θ ∈ [−ri, 0] and i = 1, . . . , n.
It is biologically reasonable to assume that only positive solutions of model

(1.3) are meaningful and therefore admissible. So we consider the admissible
initial conditions

xt0 = ϕ, ϕ = (ϕ1, . . . , ϕn)T ∈ C+ and ϕi(0) > 0, i = 1, 2, . . . n. (1.5)

We denote xt(t0, ϕ)(x(t; t0, ϕ)) for a solution of the initial value problem
(1.3) and (1.5). Also, let [t0, η(ϕ)) be the maximal right-interval of existence
of xt(t0, ϕ).

As it is easy to analyze the property of functions 1−x
ex and xe−x in the range

R+, one can get that there exist only κ ∈ (0, 1) and κ̃ ∈ (1,+∞) such that

1− κ
eκ

=
1

e2
, sup

x≥κ
|1− x
ex
| = 1

e2
, κe−κ = κ̃e−κ̃. (1.6)

This paper is organized as follows: In Section 2 we give some preliminary
lemmas, and in Section 3 we devote to prove our main results.

2 Preliminary results

In this section, some definitions and lemmas will be presented, which are of
importance in proving our main results in Section 3.

Definition 1. (see [8, 11]). Let u(t) : R1 → Rn be continuous in t, u(t) is
said to be almost periodic on R1, if for any ε > 0, the set T (u, ε) = {δ :
‖u(t + δ) − u(t)‖ < ε for all t ∈ R1} is relatively dense, i.e., for any ε > 0,
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it is possible to find a real number l = l(ε) > 0, such that for any interval
with length l(ε), there exists a number δ = δ(ε) in this interval such that
‖u(t+ δ)− u(t)‖ < ε, for all t ∈ R1.

From the theory of almost periodic functions in [8, 11], it follows that for any
ε > 0, it is possible to find a real number l = l(ε) > 0, for any interval with
length l(ε), there exists a number δ = δ(ε) in this interval such that

|aij(t+ δ)− aij(t)| < ε, |bij(t+ δ)− bij(t)| < ε,

|βim(t+ δ)− βim(t)| < ε,

|τim(t+ δ)− τim(t)| < ε, |γim(t+ δ)− γim(t)| < ε,

(2.1)

for all t ∈ R, i, j = 1, 2, . . . , n and m = 1, 2, . . . , l.

Lemma 1. Suppose that there exists a positive constant M > κ such that

γij(t) ·M ≤ κ̃ for all t ∈ R, i, j = 1, 2, . . . , n, (2.2)

and for all i = 1, 2, . . . , n,

sup
t∈R
{− aii(t)·M

bii(t)+M
+

n∑
j=1,j 6=i

aij(t) + 1
e

l∑
j=1

βij(t)
γij(t)

} < 0, (2.3)

inf
t∈R,s∈[0,κ]

{− aii(t)
bii(t)+s

+
n∑

j=1,j 6=i

aij(t)
bij(t)+M

+
l∑

j=1

βij(t)
γij(t)

· e−s} > 0. (2.4)

Then, for ϕ ∈ C0 = {ϕ|ϕ ∈ C, ϕ(θ) ∈ (κ,M) for all θ ∈ [−r, 0]},
η(ϕ) =∞ and xt(t0, ϕ) ∈ C0 for t ≥ t0.

Proof. This lemma can be proven in the similar way as in Lemma 1 of [5].
But for convenience of reading, we give the proof as follows.

Let x(t) = x(t; t0, ϕ) = (x1(t), x2(t), . . . , xn(t))T for all t ∈ [t0, η(ϕ)).
Firstly, we assert that

xi(t) > 0 for all t ∈ [t0, η(ϕ)), i = 1, 2, . . . , n. (2.5)

With the reduction to absurdity, assume that there exist s1 ∈ [t0, η(ϕ)) and
i ∈ {1, 2, . . . , n} such that

xi(s1) = 0, xj(t) > 0 for all t ∈ [t0, s1), j = 1, 2, . . . , n. (2.6)

Calculating the derivative of xi(t), (1.3) and (2.6) imply that

0 ≥ x′i(s1) = − aii(s1)xi(s1)

bii(s1) + xi(s1)
+

n∑
j=1,j 6=i

aij(s1)xj(s1)

bij(s1) + xj(s1)

+

l∑
j=1

βij(s1)xi(s1 − τij(s1))e−γij(s1)xi(s1−τij(s1)) =

n∑
j=1,j 6=i

aij(s1)xj(s1)

bij(s1) + xj(s1)

+

l∑
j=1

βij(s1)xi(s1 − τij(s1))e−γij(s1)xi(s1−τij(s1)) > 0,

Math. Model. Anal., 22(4):484–502, 2017.



488 P.Y. Liu, L. Zhang, S.T. Liu and L.F. Zheng

which is paradoxical and implies that (2.5) holds.
Next we show that

xi(t) < M for all t ∈ [t0, η(ϕ)), i = 1, 2, . . . , n. (2.7)

Suppose, for the sake of contradiction, that (2.7) dose not hold. Then, there
exist t1 ∈ (t0, η(ϕ)) and i ∈ {1, 2, . . . , n} such that

xi(t1) = M, xj(t) < M for all t ∈ [t0 − ri, t1), j = 1, 2, . . . , n. (2.8)

Calculating the derivative of xi(t), together with the fact that sup
u≥0

ue−u = 1
e ,

(1.3), (2.3) and (2.8) implies that

0 ≤ x′i(t1) = − aii(t1)xi(t1)

bii(t1) + xi(t1)
+

n∑
j=1,j 6=i

aij(t1)xj(t1)

bij(t1) + xj(t1)

+

l∑
j=1

βij(t1)xi(t1 − τij(t1))e−γij(t1)xi(t1−τij(t1))

= − aii(t1)xi(t1)

bii(t1) + xi(t1)
+

n∑
j=1,j 6=i

aij(t1)−
n∑

j=1,j 6=i

aij(t1)bij(t1)

bij(t1) + xj(t1)

+

l∑
j=1

βij(t1)xi(t1 − τij(t1))e−γij(t1)xi(t1−τij(t1))

≤ − aii(t1)M

bii(t1) +M
+

n∑
j=1,j 6=i

aij(t1) +
1

e

l∑
j=1

βij(t1)

γij(t1)

≤ sup
t∈R
{− aii(t)M

bii(t) +M
+

n∑
j=1,j 6=i

aij(t) +
1

e

l∑
j=1

βij(t)

γij(t)
} < 0,

which is a contradiction and implies that (2.7) holds. Then we prove that

xi(t) > κ for all t ∈ [t0, η(ϕ)), i = 1, 2, . . . , n. (2.9)

Assume, by way of contradiction, that (2.9) dose not hold. Then, there
exist t2 ∈ (t0, η(ϕ)) and i ∈ {1, 2, . . . , n} such that

xi(t2) = κ, xj(t) > κ for all t ∈ [t0 − ri, t2), j = 1, 2, . . . , n. (2.10)

From (1.4), (2.2), (2.7) and (2.10), we get

κ ≤ γij(t2)xi(t2 − τij(t2)) ≤ γij(t2)M ≤ κ̃

and hence

γij(t2)xi(t2 − τij(t2))eγij(t2)xi(t2−τij(t2)) ≥ min{κe−κ, κ̃e−κ̃} = κe−κ,

where i, j = 1, 2, . . . , n.
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It follows from (2.4) and (2.10) that

0 ≥ x′i(t2) = − aii(t2)xi(t2)

bii(t2) + xi(t2)
+

n∑
j=1,j 6=i

aij(t2)xj(t2)

bij(t2) + xj(t2)

+

l∑
j=1

βij(t2)xi(t2 − τij(t2))e−γij(t2)xi(t2−τij(t2))

≥ − aii(t2)κ

bii(t2) + κ
+

n∑
j=1,j 6=i

aij(t2)κ

bij(t2) +M
+

l∑
j=1

βij(t2)

γij(t2)
κe−κ

≥ κ inf
t∈R,s∈[0,κ]

{
− aii(t)

bii(t) + s
+

n∑
j=1,j 6=i

aij(t)

bij(t) +M
+

l∑
j=1

βij(t)

γij(t)
e−s
}
> 0,

which is a contradiction and implies that (2.9) holds. Thus x(t) is bounded on
[t0, η(ϕ)). From Theorem 2.3.1 in [10], we easily obtain η(ϕ) = +∞. This ends
the proof of Lemma 1. ut

Lemma 2. Suppose that (2.2), (2.3) and (2.4) hold, and

sup
t∈R

{
− aii(t)bii(t)

(bii(t) +M)2
+

n∑
j=1,j 6=i

aij(t)bij(t)

(bij(t) + κ)2
+

l∑
j=1

1

e2
βij(t)

}
< 0. (2.11)

Moreover, assume that x(t) = x(t; t0, ϕ) = (x1(t), x2(t), . . . , xn(t))T is a solu-
tion of equation (1.3) with initial condition ϕ ∈ C0 and ϕ′i is bounded contin-
uous on [−ri, 0], i = 1, 2, . . . , n. Then, for any ε > 0, there exists l = l(ε) > 0
such that every interval [α, α+ l] contains at least one number δ for which there
exists N > 0 satisfying ‖x(t+ δ)− x(t)‖ ≤ ε for all t > N.

Proof. For all i ∈ 1, 2, . . . , n, define continuous functions Γi(u) by setting

Γi(u)=−
[ aii(t)bii(t)

(bii(t) +M)2
−u
]
+

n∑
j=1,j 6=i

aij(t)bij(t)

(bij(t)+κ)2
+

l∑
j=1

1

e2
βij(t)e

uri , u ∈ [0, 1].

Then, from (2.11), we have

Γi(0) = − aii(t)bii(t)

(bii(t) +M)2
+

n∑
j=1,j 6=i

aij(t)bij(t)

(bij(t) + κ)2
+

l∑
j=1

1

e2
· βij(t) < 0,

which implies that there exist two constants η > 0 and λ ∈ (0, 1] such that

Γi(λ) = −[
aii(t)bii(t)

(bii(t) +M)2
− λ] +

n∑
j=1,j 6=i

aij(t)bij(t)

(bij(t) + κ)2
+

l∑
j=1

1

e2
βij(t)e

λri

< −η < 0 for all t ∈ R, i = 1, 2, . . . , n. (2.12)
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For i ∈ 1, 2, . . . , n, t ∈ (−∞, t0 − ri], we add the definition of xi(t) with
xi(t) ≡ xi(t0 − ri). Set

εi(δ, t) = −
[ aii(t+ δ)xi(t+ δ)

bii(t+ δ) + xi(t+ δ)
− aii(t)xi(t+ δ)

bii(t+ δ) + xi(t+ δ)

]
−
[ aii(t)xi(t+ δ)

bii(t+ δ) + xi(t+ δ)
− aii(t)xi(t+ δ)

bii(t) + xi(t+ δ)

]
+

n∑
j=1,j 6=i

[ aij(t+ δ)xj(t+ δ)

bij(t+δ) + xj(t+δ)

− aij(t)xj(t+ δ)

bij(t+δ)+xj(t+δ)

]
+

n∑
j=1,j 6=i

[ aij(t)xj(t+ δ)

bij(t+ δ) + xj(t+ δ)
− aij(t)xj(t+ δ)

bij(t) + xj(t+ δ)

]

+

l∑
j=1

[
βij(t+ δ)− βij(t)

]
xi
(
t+ δ − τij(t+ δ)

)
e−γij(t+δ)xi(t+δ−τij(t+δ))

+

l∑
j=1

βij(t)
[
xi
(
t+ δ − τij(t+ δ)

)
e−γij(t+δ)xi(t+δ−τij(t+δ))

− xi
(
t+ δ − τij(t)

)
e−γij(t+δ)xi(t+δ−τij(t))

]
+

l∑
j=1

βij(t)
[
xi
(
t+ δ − τij(t)

)
× e−γij(t+δ)xi(t+δ−τij(t))−xi

(
t+δ−τij(t)

)
e−γij(t)xi

(
t+δ−τij(t)

)]
, t ∈ R. (2.13)

By Lemma 1, the solution x(t) is bounded and

κ < xi(t) < M for all t ≥ t0, i = 1, 2, . . . , n, (2.14)

which implies that the right-hand side of (1.3) is also bounded, and x′i(t) is a
bounded function on [t0 − ri,+∞), i = 1, 2, . . . , n. Thus, in view of the fact
that xi(t) ≡ xi(t0−ri) for t ∈ (−∞, t0−ri], i = 1, 2, . . . , n, we obtain that xi(t)
is uniformly continuous on R. From (2.1) and (2.13), for any ε, there exists
l = l(ε) > 0, such that every interval [α, α+ l], α ∈ R, contains δ for which

|εi(δ, t)| ≤
1

2
ηε for all t ∈ R, i = 1, 2, . . . , n. (2.15)

Let N0 ≥ max{t0, t0−δ, t0 + max
i=1,2,...,n

ri} and denote u(t)=(u1(t), u2(t), . . . ,

un(t))T , where ui(t) = xi(t + δ) − xi(t), i = 1, 2, . . . , n. Then, for all t ≥ N0,
we have

u′i(t) = −
[ aii(t)xi(t+ δ)

bii(t) + xi(t+ δ)
− aii(t)xi(t)

bii(t) + xi(t)

]
+

n∑
j=1,j 6=i

[ aii(t)xj(t+ δ)

bii(t) + xj(t+ δ)

− aii(t)xj(t)

bii(t) + xj(t)

]
+

l∑
j=1

βij(t)
[
xi
(
t+ δ − τij(t)

)
eγij(t)xi(t+δ−τij(t))

− xi
(
t− τij(t)

)
e−γij(t)xi(t−τij(t))

]
+ εi(δ, t). (2.16)

Set

U(t) = (U1(t), U2(t), . . . , Un(t))T , where Ui(t) = eλtui(t), i = 1, 2, . . . , n.
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Let it be such an index that

|Uit(t)| = ‖U(t)‖. (2.17)

Calculating the upper left derivative of |Uis(t)| along with (2.16), together with
(1.6), (2.13), (2.14), (2.17) and the inequalities

−
( as

b+ s
− at

b+ t

)
sgn(s− t) = − ab

(b+ s− θ(s− t))2
|s− t|

≤ − ab

(b+M)2
|A−B|, where s, t ∈ [κ,M ], 0 < θ < 1, (2.18)

| as
b+ s

− at

b+ t
| = ab

(b+ s− θ(s− t))2
|s− t|

≤ ab

(b+ κ)2
|s− t|, where s, t ∈ [κ,+∞], 0 < θ < 1, (2.19)

|se−s − te−t| =
∣∣∣1− (s+ θ(t− s))

es+θ(t−s)

∣∣∣|s− t| (2.20)

≤ − 1

e2
|s− t|, where s, t ∈ [κ,+∞], 0 < θ < 1, (2.21)

we get

D−(|Uis(s)|)|s=t

≤ λeλt|uit(t)|+ eλt
{
−
[ aitit(t)xit(t+ δ)

bitit(t) + xit(t+ δ)
− aitit(t)xit(t)

bitit(t) + xit(t)

]
× sgn(xit(t+ δ)− xit(t)) +

n∑
j=1,j 6=it

| aitj(t)xj(t+ δ)

bitj(t) + xj(t+ δ)
− aitj(t)xj(t)

bitj(t) + xj(t)
|

+

l∑
j=1

βitj(t)

γitj(t)
|γitj(t)xit(t+ δ − τitj(t))e−γitj(t)xit (t+δ−τitj(t))

− γitj(t)xit(t− τitj(t))e−γitj(t)xit (t−τitj(t))|+ |εit(δ, t)|
}

≤ λeλt|uit(t)|+ eλt
{
− aitit(t)bitit(t)

(bitit(t) +M)2
|uit(t)|

+

n∑
j=1,j 6=it

aitj(t)bitj(t)

(bitj(t) + κ)2
|uj(t)|+

l∑
j=1

βitj(t)

e2
|uit(t− τitj(t))|+ |εit(δ, t)|

}
= −

[ aitit(t)bitit(t)
(bitit(t) +M)2

− λ
]
eλt|uit(t)|+

n∑
j=1,j 6=it

aitj(t)bitj(t)

(bitj(t) + κ)2
eλt|uj(t)|

+

l∑
j=1

βitj(t)
1

e2
eλτitj(t)eλ(t−τitj(t))|uit(t− τitj(t))|+ eλt|εit(δ, t)| (2.22)

for all t ≥ N0, which is held under the following fact:

κ ≤ γitj(t)xit(t+ δ − τitj(t)), γitj(t)x
∗
it(t− τitj(t)) ≤ γ

+
ijM ≤ κ̃,
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for j = 1, 2, . . . , l, t ≥ N0. Let M(t) = max
s≤t
{‖U(s)‖. It is obvious that M(t) ≥

‖U(t)‖ and M(t) is non-decreasing. Now, we distinguish two cases to finish the
proof.

Case1.
M(t) > ‖U(t)‖ for all t ≥ N0. (2.23)

We claim that

M(t) ≡M(N0) is a constant for all t ≥ N0. (2.24)

Assume, by a way of contradiction, that (2.24) does not hold. Then there exists
t̃1 > N0 such that M(t̃1) > M(N0). Since

M(N0) ≥ ‖U(t)‖ for all t ≥ N0.

There must exist β ∈ (N0, t̃1) such that

‖U(β)‖ = M(t̃1) ≥M(β),

which contradicts (2.23) and implies that (2.24) holds. It follows that there
exists t̃2 > N0 such that

‖u(t)‖ ≤ e−λtM(t) = e−λtM(N0) < ε for all t ≥ t̃2.

Case 2. There is ρ > N0 such that M(ρ) = ‖U(ρ)‖. Then, in view of
(2.12), (2.15) and (2.22), we have

0 ≤ D−(|Uis(s)|)|s=ρ ≤ −
[ aiρiρ(ρ)biρiρ(ρ)

(biρiρ(ρ) +M)2
− λ
]
eλρ|Uiρ(ρ)|

+

n∑
j=1,j 6=iρ

aiρj(ρ)biρj(ρ)

(biρj(ρ) + κ)2
eλρ|Uj(ρ)|+

l∑
j=1

βiρj(ρ)
1

e2
eλτiρj(ρ)

× eλ(ρ−τiρj(ρ))|Uiρ(ρ− τiρj(ρ))|+ eλρ|εiρ(δ, ρ)|

≤
{
−
[ aiρiρ(ρ)biρiρ(ρ)

(biρiρ(ρ) +M)2
− λ
]

+

n∑
j=1,j 6=iρ

aiρj(ρ)biρj(ρ)

(biρj(ρ) + κ)2

+

l∑
j=1

1

e2
βiρj(ρ)eλriρ

}
‖U(ρ)‖+

1

2
ηεeλρ < −η‖U(ρ)‖+ ηεeλρ,

which yields that

eλρ‖u(ρ)‖ = ‖U(ρ)‖ < εeλρ and ‖u(ρ)‖ < ε. (2.25)

For any t > ρ, with the same approach as that in deriving of (2.25), we show

eλt‖u(t)‖ = ‖U(t)‖ < εeλt and ‖u(t)‖ < ε, (2.26)

if M(t) = ‖U(t)‖. On the other hand, if M(t) > ‖U(t)‖ and t > ρ, we can
choose ρ ≤ t3 < t such that

M(t3) = ‖U(t3)‖, and M(s) > ‖U(s)‖ for all t ∈ (t3, t],
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which together with (2.26) yields ‖u(t3)‖ < ε.
With a similar argument as that in the proof of case one, we can show that

M(s) ≡M(t3) is a constant for all s ∈ (t3, t],

which implies that

‖u(t)‖ < e−λtM(t) = e−λtM(t3) = ‖u(t3)‖e−λ(t−t3) < ε.

In summary, there must exist N > max{ρ,N0, t̃2} such that ‖u(t)‖ ≤ ε
holds for all t > N . This completes the proof. ut

3 Main results

In this section, we establish sufficient conditions for the existence and global
exponential stability of positive almost periodic solutions for system (1.3).

Theorem 1. Under the assumptions of Lemma 2, system (1.3) has at least
one positive almost periodic solution x∗(t).

Proof. Let v(t) = v(t; t0, ϕ) = (v1(t), v2(t), . . . , vn(t))T be a solution of system
(1.3) with initial conditions satisfying the assumptions in Lemma 2. We also
add the definition of v(t) with vi(t) ≡ vi(t0 − ri) for all t ∈ (−∞, t0 − ri],
i = 1, 2, . . . , n.

For all t ∈ R, i = 1, 2, . . . , n, set

εi,k(t) = −
[ aii(t+ tk)xi(t+ tk)

bii(t+ tk) + xi(t+ tk)
− aii(t)xi(t+ tk)

bii(t+ tk) + xi(t+ tk)

]
−
[ aii(t)xi(t+ tk)

bii(t+ tk) + xi(t+ tk)
− aii(t)xi(t+ tk)

bii(t) + xi(t+ tk)

]
+

n∑
j=1,j 6=i

[ aij(t+ tk)xj(t+ tk)

bij(t+ tk) + xj(t+ tk)
− aij(t)xj(t+ tk)

bij(t+ tk) + xj(t+ tk)

]
+

n∑
j=1,j 6=i

[ aij(t)xj(t+ tk)

bij(t+ tk) + xj(t+ tk)
− aij(t)xj(t+ tk)

bij(t) + xj(t+ tk)

]

+

l∑
j=1

[
βij(t+tk)−βij(t)

]
xi(t+tk−τij(t+ tk))e−γij(t+tk)xi(t+tk−τij(t+tk))

+

l∑
j=1

βij(t)
[
xi(t+ tk − τij(t+ tk))e−γij(t+tk)xi(t+tk−τij(t+tk))

− xi(t+ tk − τij(t))e−γij(t+tk)xi(t+tk−τij(t))
]

+

l∑
j=1

βij(t)
[
xi(t+ tk − τij(t))e−γij(t+δ)xi(t+δ−τij(t))

− xi(t+ δ − τij(t))e−γij(t)xi(t+tk−τij(t))
]
,
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where {tk} is any sequence of real numbers. By Lemma 1, the solution v(t) is
bounded and

κ < vi(t) < M for all t ∈ R, i = 1, 2, . . . , n,

which implies that the right-hand side of (1.3) is also bounded, and v′i(t) (i =
1, 2, . . . , n) are bounded functions on [t0 − ri,+∞). Thus, in view of the fact
that vi(t) ≡ vi(t0 − ri) for all t ∈ (−∞, t0 − ri], i = 1, 2, . . . , n, we obtain that
vi(t) (i = 1, 2, . . . , n) are uniformly continuous on R. Then, from the almost
periodicity of aij , bij , βim, γim and τim, we can select a sequence {tk} → +∞
such that |aij(t+ tk)− aij(t)| ≤ 1

k , |bij(t+ tk)− bij(t)| ≤ 1
k ,

|βim(t+ tk)− βim(t)| ≤ 1
k ,

|τim(t+ tk)− τim(t)| ≤ 1
k , |γim(t+ tk)− γim(t)| ≤ 1

k ,
(3.1)

for all t ∈ R, i, j = 1, 2, . . . , n and m = 1, 2, . . . , l.
Since {vi(t+tk)}+∞k=1 (i = 1, 2, . . . , n) and {v′i(t+tk)}+∞k=1 (i = 1, 2, . . . , n) are

uniformly bounded, then {vi(t+ tk)}+∞k=1 (i = 1, 2, . . . , n) is uniformly bounded
and equi-uniformly continuous, by the Arzel-Ascoli lemma and the diagonal
selection principle, we can choose a subsequence {tkj} of {tk} such that vi(t+
tkj ) (for convenience, we still denote it by vi(t+ tk) (i = 1, 2, . . . , n)) uniformly
converges to a continuous function x∗i (t) (i = 1, 2, . . . , n) on any compact set
of R, and

κ ≤ x∗i (t) ≤M for all t ∈ R, i = 1, 2, . . . , n.

Now, we prove that x∗(t) = (x∗1(t), x∗2(t), . . . , x∗n(t))T is a solution of (1.3).
In fact, for any t ≥ t0 and ∆t ∈ R, from (3.1), we have

x∗i (t+∆t)− x∗i (t) = lim
k→+∞

[vi(t+∆t+ tk)− vi(t+ tk)]

= lim
k→+∞

∫ t+∆t

t

{
− aii(µ+ tk)vi(µ+ tk)

bii(µ+tk)+vi(µ+tk)
+

n∑
j=1,j 6=i

aij(µ+ tk)vj(µ+ tk)

bij(µ+tk)+vj(µ+tk)

+

l∑
j=1

βij(µ+tk)vi(µ+tk − τij(µ+tk))e−γij(µ+tk)vi(µ+tk−τij(µ+tk))
}
dµ

= lim
k→+∞

∫ t+∆t

t

{
− aii(µ)vi(µ+ tk)

bii(µ) + vi(µ+ tk)
+

n∑
j=1,j 6=i

aij(µ)vj(µ+ tk)

bij(µ) + vj(µ+ tk)

+

l∑
j=1

βij(µ)vi(µ+tk−τij(µ))e−γij(µ)vi(µ+tk−τij(µ))+εi,k(µ)
}
dµ

=

∫ t+∆t

t

{
− aii(µ)x∗i (µ)

bii(µ) + x∗i (µ)
+

n∑
j=1,j 6=i

aij(µ)x∗j (µ)

bij(µ) + x∗j (µ)

+

l∑
j=1

βij(µ)x∗i (µ− τij(µ))e−γij(µ)x
∗
i (µ−τij(µ))

}
dµ, (3.2)
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where t+∆t ≥ t0, i = 1, 2, . . . , n. Consequently, (3.2) implies that

d

dt
{x∗i (t)} = − aii(t)x

∗
i (t)

bii(t) + x∗i (t)
+

n∑
j=1,j 6=i

aij(t)x
∗
j (t)

bij(t) + x∗j (t)

+

l∑
j=1

βij(t)x
∗
i (t− τij(t))e−γij(t)x

∗
i (t−τij(t)), i = 1, 2, . . . , n.

Therefore, x∗i (t) is a solution of (1.3).
Next we prove that x∗i (t) is an almost periodic solution of (1.3). From

Lemma 2, for any ε > 0, there exists l = l(ε) > 0, such that every interval
[α, α+ l] contains at least one number δ for which there exists N > 0 satisfying

|v(t+ δ)− v(t)| ≤ ε for all t > N.

Then, for any fixed s ∈ R, we can find a sufficiently large positive integer
N1 > N such that for any k > N1,

s+ tk > N, |v(s+ tk + δ)− v(s+ tk)| ≤ ε.

Let k → +∞, we obtain

|x∗(s+ δ)− x∗(s)| ≤ ε,

which implies that x∗(t) is an almost periodic solution of system (1.3). The
proof of Theorem 1 is now complete. ut

Theorem 2. Suppose that all conditions in Theorem 1 are satisfied. Let x∗(t)
be the positive almost periodic solution of equation (1.3) in Theorem 1. Then,
x∗(t) is globally exponentially stable, i.e., the solution x(t; t0, ϕ) of (1.3) with
admissible initial conditions (1.5) converges exponentially to x∗(t) as t→ +∞.

Proof. Let x∗(t) be the positive almost periodic solution of equation (1.3) in
Theorem 1. To prove Theorem 2, we should show the global exponential stabil-
ity for x∗(t). Since ϕ ∈ C+, using Theorem 5.2.1 in [23], we have xt(t0, ϕ) ∈ C+

for all t ∈ [t0, η(ϕ)). Let x(t) = x(t; t0, ϕ) = (x1(t), x2(t), . . . , xn(t))T for all
t ∈ [t0, η(ϕ)).

Firstly, we show that there is tϕ > t0 such that

κ < xi(t) < M for all t ≥ tϕ, i = 1, 2, . . . , n. (3.3)

We next show that there exists t4 ∈ [t0,+∞) such that

xi(t4) < M, i = 1, 2, . . . , n. (3.4)

Otherwise, there exists i ∈ {1, 2, . . . , n} such that

xi(t) ≥M for all t ∈ [t0,+∞), (3.5)
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which together with the fact that sup
u≥0

ue−u = 1
e , (1.3), (2.3) and (3.5) implies

that

x′i(t) = − aii(t)xi(t)

bii(t) + xi(t)
+

n∑
j=1,j 6=i

aij(t)xj(t)

bij(t) + xj(t)

+

l∑
j=1

βij(t)xi(t− τij(t))e−γij(t)xi(t−τij(t))

= − aii(t)xi(t)

bii(t) + xi(t)
+

n∑
j=1,j 6=i

aij(t)−
n∑

j=1,j 6=i

aij(t)bij(t)

bij(t) + xj(t)

+

l∑
j=1

βij(t)xi(t− τij(t))e−γij(t)xi(t−τij(t))

≤ − aii(t) ·M
bii(t) +M

+

n∑
j=1,j 6=i

aij(t) +
1

e

l∑
j=1

βij(t)

γij(t)
< 0 for all t ≥ t0.

It leads to

xi(t) = xi(t0) +

∫ t

t0

x′i(s)ds

≤ xi(t0) + sup
t∈R

{
− aii(t) ·M
bii(t) +M

+

n∑
j=1,j 6=i

aij(t) +
1

e

l∑
j=1

βij(t)

γij(t)

}
× (t− t0)

for all t ≥ t0. Thus
lim

t→+∞
xi(t) = −∞,

which contradicts with (2.5). Hence, (3.4) holds. We claim

xi(t) < M for all t ∈ [t0,+∞), i = 1, 2, . . . , n. (3.6)

Suppose, for the sake of contradiction, there exists t5 ∈ [t4,+∞) and i ∈
{1, 2, . . . , n} such that

xi(t5) = M, xj(t) < M for all t ∈ [t4, t5), j = 1, 2, . . . , n. (3.7)

Calculating the derivative of xi(t), together with the fact that sup
u≥0

ue−u = 1
e ,

(1.3), (2.3) and (3.7) imply that

0 ≤ x′i(t5) = − aii(t5)xi(t5)

bii(t5) + xi(t5)
+

n∑
j=1,j 6=i

aij(t5)xj(t5)

bij(t5) + xj(t5)

+

l∑
j=1

βij(t5)xi(t5 − τij(t5))e−γij(t5)xi(t5−τij(t5))

= − aii(t5)xi(t5)

bii(t5) + xi(t5)
+

n∑
j=1,j 6=i

aij(t5)−
n∑

j=1,j 6=i

aij(t5)bij(t5)

bij(t5) + xj(t5)
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+

l∑
j=1

βij(t5)xi(t5 − τij(t5))e−γij(t5)xi(t5−τij(t5))

≤ − aii(t5)M

bii(t5) +M
+

n∑
j=1,j 6=i

aij(t5) +
1

e

l∑
j=1

βij(t5)

γij(t5)
< 0,

which is a contradiction and implies that (3.6) holds.
Furthermore, we show that li = lim inf

t→+∞
xi(t) > κ for all i = 1, 2, . . . , n. By

a way of contradiction, we assume that there exists i ∈ {1, 2, . . . , n} such that
0 ≤ li ≤ κ. By the fluctuation lemma [22], there exists a sequence {tk}k≥1
such that

tk → +∞, xi(tk)→ lim inf
t→+∞

xi(t), x′i(tk)→ 0 as k → +∞.

Since {xtk}k≥1 is bounded and equicontinuous, by the Ascoli-Arzel theorem,
there exists a subsequence, still denoted by itself for simplicity of notation, such
that

xtk → ϕ∗ for some ϕ∗ ∈ C+.

Moreover,

ϕ∗j (0) = lj ≤ ϕ∗j (θ) ≤M for θ ∈ [−rj , 0), j = 1, 2, . . . n.

Without loss of generality, we assume that all aij(tk), bij(tk), βim(tk),
γim(tk) and τim(tk) are convergent to a∗ij , b

∗
ij , β

∗
im, γ

∗
im and τ∗im, respectively,

where i, j = 1, 2, . . . , n, m = 1, 2, . . . , l. This can be achieved because of almost
periodicity. Then by (1.5) and (2.2) we arrive at

li ≤ γ∗ijϕ∗i (−τ∗ij) ≤ γ∗ijM ≤ κ̃, j = 1, 2, . . . , l.

It follows from

x′i(tk) = − aii(tk)xi(tk)

bii(tk) + xi(tk)
+

n∑
j=1,j 6=i

aij(tk)xj(tk)

bij(tk) + xj(tk)

+

l∑
j=1

βij(tk)xi(tk − τij(tk))e−γij(tk)xi(tk−τij(tk))

that (taking limits)

0 = − a∗iili
b∗ii + li

+

n∑
j=1,j 6=i

a∗ijϕ
∗
j (0)

b∗ij + ϕ∗j (0)
+

l∑
j=1

β∗ijϕ
∗
i (−τ∗ij)e−γ

∗
ijϕ

∗
i (−τ

∗
ij)

≥ − a∗ii · li
b∗ii + li

+

n∑
j=1,j 6=i

a∗ij · li
b∗ij +M

+

l∑
j=1

β∗ij
γ∗ij
· lie−li

≥ li inf
t∈R,s∈[0,κ]

{
− aii(t)

bii(t) + s
+

n∑
j=1,j 6=i

aij(t)

bij(t)+M
+

l∑
j=1

βij(t)

γij(t)
e−s
}
> 0,
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which is a contradiction. This proves that li > κ for all i = 1, 2, . . . n.
Finally, we prove that x∗(t) is globally exponentially stable.
Let y(t) = x(t) − x∗(t) = (y1(t), y2(t), . . . , yn(t))T , where yi(t) = xi(t) −

x∗i (t), t ∈ [t0 − ri,+∞), i = 1, 2, . . . , n. Then

y′i(t) = −
[ aii(t)xi(t)

bii(t) + xi(t)
− aii(t)x

∗
i (t)

bii(t) + x∗i (t)

]
+

n∑
j=1,j 6=i

[ aij(t)xj(t)

bij(t) + xj(t)

−
aij(t)x

∗
j (t)

bij(t) + x∗j (t)

]
+

l∑
j=1

βij(t)
[
xi
(
t− τij(t)

)
e−γij(t)xi(t−τij(t))

− x∗i
(
t− τij(t)

)
e−γij(t)x

∗
i (t−τij(t))

]
. (3.8)

It follows from (3.3) that there exists tϕ,x∗ > t0 such that

κ ≤ xi(t), x∗i (t) ≤M for all t ∈ [tϕ,x∗ − ri,+∞), i = 1, 2, . . . , n. (3.9)

We consider the Lyapunov functional

Vi(t) = |yi(t)|eλt, where λ is defined in (2.12), i = 1, 2, . . . , n.

Calculating the upper left derivative of Vi(t) along with the solution yi(t) of
(3.8). We have

D−(Vi(t)) ≤ λ|yi(t)|eλt −
[ aii(t)xi(t)

bii(t) + xi(t)
− aii(t)x

∗
i (t)

bii(t) + x∗i (t)

]
× sgn(xi(t)−x∗i (t))eλt +

n∑
j=1,j 6=i

| aij(t)xj(t)
bij(t)+xj(t)

−
aij(t)x

∗
j (t)

bij(t)+x∗j (t)
|eλt+

l∑
j=1

βij(t)

× |xi(t−τij(t))e−γij(t)xi(t−τij(t))−x∗i
(
t− τij(t)

)
e−γij(t)x

∗
i (t−τij(t))|eλt. (3.10)

In the sequel, we claim that

Vi(t) = |yi(t)|eλt < eλtϕ,x∗
(

max
i=1,2,...,n

max
t∈[t0−ri,tϕ,x∗ ]

|x(t)− x∗(t)|+ 1
)

:= Kϕ,x∗ for all t > tϕ,x∗ , i = 1, 2, . . . , n. (3.11)

Contrarily, there must exist t∗ > tϕ,x∗ and i ∈ {1, 2, . . . , n} such that

Vi(t∗)=Kϕ,x∗ , Vj(t)<Kϕ,x∗ for all t ∈ [t0−rj , t∗), j=1, 2, . . . , n. (3.12)

Since

κ ≤ γij(t∗)xi(t∗− τij(t∗)), γij(t∗)x∗i (t∗− τij(t∗)) ≤ γ+ijM ≤ κ̃, j = 1, 2, . . . , l,

together with (2.18)–(2.21), (3.9), (3.10) and (3.12), we get

0 ≤ D−(Vi(t∗)) ≤ λ|yi(t∗)|eλt∗ −
[ aii(t∗)xi(t∗)

bii(t∗) + xi(t∗)
− aii(t∗)x

∗
i (t∗)

bii(t∗) + x∗i (t∗)

]



Exponential Stability for Nicholson’s Blowflies System 499

× sgn
(
xi(t∗)−x∗i (t∗)

)
eλt∗+

n∑
j=1,j 6=i

∣∣∣ aij(t∗)xj(t∗)

bij(t∗) + xj(t∗)
−
aij(t∗)x

∗
j (t∗)

bij(t∗)+x∗j (t∗)

∣∣∣eλt∗
+

l∑
j=1

βij(t∗)

γij(t∗)
|βij(t∗)xi(t∗ − τij(t∗))e−γij(t∗)xi(t∗−τij(t∗))

− βij(t∗)x∗i (t∗ − τij(t∗))e−γij(t∗)x
∗
i (t∗−τij(t∗))|eλt∗

≤ λVi(t∗)−
aii(t∗)bii(t∗)

(bii(t∗) +M)2
Vi(t∗) +

n∑
j=1,j 6=i

aij(t∗)bij(t∗)

(bij(t∗) + κ)2
Vi(t∗)

+

l∑
j=1

βij(t∗)
1

e2
Vi(t∗ − τij(t∗))eλτij(t∗)

≤
{
−
[ aii(t∗)bii(t∗)

(bii(t∗)+M)2
−λ
]

+

n∑
j=1,j 6=i

aij(t∗)bij(t∗)

(bij(t∗) + κ)2
+

l∑
j=1

βij(t∗)

e2
eλri

}
Kϕ,x∗ .

Thus,

0 ≤ −
[ aii(t∗)bii(t∗)

(bii(t∗) +M)2
− λ
]

+

n∑
j=1,j 6=i

aij(t∗)bij(t∗)

(bij(t∗) + κ)2
+

l∑
j=1

βij(t∗)

e2
eλri ,

which contradicts (2.12). Hence (3.11) holds. It follows that

|yi(t)| < Kϕ,x∗eλt for all t > tϕ,x∗ , i = 1, 2, . . . , n.

This completes the proof. ut

Remark 1. For the above system, Chen [3] have considered the permanence
of it and Wang et al. [28] have investigated its exponential extinction. Chen
and Wang et al. [5] have studied the existence and global exponential stability
of positive almost periodic solutions for system (1.2) with nonlinear density-
dependent mortality terms Dij(t,N) = aij(t) − bij(t)e

−N . It is clear that
our work complement the existence and global exponential stability of positive
almost periodic solutions for system (1.2) with nonlinear density-dependent

mortality terms Dij(t,N) =
aij(t)N
bij(t)+N

.
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