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Abstract. In this paper we derive the closed-form solutions for the Lucas-Uzawa
growth model with the aid of the partial Hamiltonian approach and then compare our
results with those derived in literature. The partial Hamiltonian approach provides
two first integrals [9] in the case where there are no parameter restrictions and these
two first integrals are utilized to construct three sets of closed form solutions for all
the variables in the model. We begin by using the two first integrals to find two closed
form solutions, one of which is new to the literature. We then use only one of the
first integrals to derive a third solution that is the same as that found in the previous
literature. We continue by analyzing the newly derived solution in detail also show
that all three solutions converge to the same long run balanced growth path. The
special case when the share of capital is equal to the inverse of the intertemporal
elasticity of substitution is also investigated in detail.

Keywords: economic growth, partial Hamiltonian approach, Lucas-Uzawa model, current-

value Hamiltonian.
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1 Introduction

One of the foundations of modern economic growth theory is the two-sector en-
dogenous growth model developed by Lucas and Uzawa. The model addresses
the relationship between human capital accumulation and economic growth
and the idea behind the Lucas-Uzawa model ( [5] and [11]) is to determine
optimal time paths for consumption and the amount of labor devoted to the
production of capital in an economy which has constrained levels of physical

http://www.tandfonline.com/TMMA
https://doi.org/10.3846/13926292.2017.1323035
mailto:rehananaz_qau@yahoo.com
mailto:drrehana@lahoreschool.edu.pk
mailto:azam@lahoreschool.edu.pk


Comparison of Closed-Form Solutions for the Lucas-Uzawa Model 465

and human capital. One of the interesting features of the Lucas-Uzawa model
is the existence of multiple equilibria which implies different steady state values
for key economic variables in the model.

The partial Hamiltonian approach [10] uses tools from Lie group theory
and is used to construct closed-form solutions of dynamical systems such as
those arising in economic growth theory. This approach is unique and a sig-
nificant departure from the rest of the literature because unlike the previously
used methods, the partial Hamiltonian is applicable to an arbitrary system
of ordinary differential equations which means that it can be applied to more
complex models [8] in economic growth and other fields. In the context of our
paper, the partial Hamiltonian methodology yields a series of first integrals for
a system of ordinary differential equations and we use these first integrals to
find closed-form solutions for the Lucas-Uzawa model of economic growth. In
this paper we establish the closed-form solutions for the Lucas-Uzawa model
with the aid of the partial Hamiltonian approach and we compare our results
with those derived by the classical approach [1, 3]. The partial Hamiltonian
approach provides two first integrals [9] for case where there are no parame-
ter restrictions. We utilize these two first integrals to construct closed form
solutions for all variables of model for two different scenarios: (i) z = z∗ and

(ii) z 6= z∗ where z(t) = h(t)u(t)
k(t) where k(t) is physical capital, h(t) is human

capital and u(t) is the fraction of labor devoted to the production of physical
capital.

We begin by using both first integrals to construct closed-form solutions for
both scenarios. One solution is exactly the same as derived by Chilarescu [3]
and the second is completely new to the literature. We then use only one first
integral to determine a different solution, again under fairly general parameter
values, and show that this is the same solution that has been derived in the
previous literature (see [1, 3]).

We find that in the case where z = z∗, both the partial Hamiltonian ap-
proach and the classical approach provide one solution. For the z 6= z∗ case, the
classical approach yields one solution while the partial Hamiltonian approach
yields the same solution as well as providing one additional solution which is
completely new to the economic growth literature. What is especially interest-
ing about our new solution is that while the equilibrium levels of consumption
and capital stock in the new solution are equal to those found in the old solu-
tion, the amount of labor allocated to the production of physical capital and
the level of human capital are different in the new solution. In the context of
economic growth theory, this means that an economy can be in either a high
or low human capital equilibrium. The existence of three closed form solutions
is new to the literature and we also show that these closed form solutions all
converge to the same long run balanced growth path.

It is important to mention here that under a specific parameter restriction

σ = β(ρ+π)
2πβ−δ+δβ−π (where σ is the inverse of the elasticity of intertemporal

substitution) a third first integral was obtained and the closed form solution
for this case was new in the literature (see Naz et al [9]). The partial Hamil-
tonian approach provides three solutions for the case in which there are no
parameter restrictions and fourth solution for the specific parameter restric-
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tion σ = β(ρ+π)
2πβ−δ+δβ−π was established in Naz et al [9]. The classical approach

provides only two closed-form solutions for this model (see Chilarescu [3]) which
means that the partial Hamiltonian approach not only provides all the solutions
constructed in the previous literature (see Chilarescu [3]) but also provides ad-
ditional closed-form solutions which are completely new to the literature on
economic growth. Moreover, the special case of when the share of capital
is equal to the inverse of the intertemporal elasticity of substitution is also
discussed in detail. We then analyze our results in the context of the previ-
ous literature by comparing our results with those found by Marsiglio and La
Torre [6,7] who derived closed form solutions for the model under various types
of population growth.

The layout of the paper is as follows. In Section 2, we provide an overview
of partial Hamiltonian approach. Moreover, we introduce the Lucas-Uzawa
model and provided an overview of first integrals derived by partial Hamilto-
nian approach previously in [9]. In Section 3, the closed-form solutions of the
dynamical system of ODEs are constructed by utilizing both first integrals in
the case of no parameter restrictions. In Section 4, we use only one first integral
to derive the closed form solutions for all the variables in the model. A com-
parison of our results with those derived by the classical approach is presented
in Section 5. In Section 6, the closed-form solutions of the dynamical system
of ODEs are provided for σ = β. Finally, our conclusions are summarized in
Section 7.

2 Overview of papers [9, 10]

In this section, we provide an overview of partial Hamiltonian approach [10].
Moreover, the overview of first integrals for Lucas-Uzawa model derived by
partial Hamiltonian approach [9] is presented.

2.1 Overview of partial Hamiltonian approach

Let time t be the independent variable and (q, p) = (q1, ..., qn, p1, ..., pn) the
phase space coordinates. We provide an overview of partial Hamiltonian ap-
proach [9,10]. The following definitions and results are adapted from [2,4,9,10].
The total derivative operator with respect to the time t is given by

D =
∂

∂t
+ q̇i

∂

∂qi
+ ṗi

∂

∂pi
+ . . . .

The Euler operator δ/δqi is defined as

δ

δqi
=

∂

∂qi
−D ∂

∂q̇i
, i = 1, 2, . . . , n

and the variational operator δ/δpi is given by

δ

δpi
=

∂

∂pi
−D ∂

∂ṗi
, i = 1, 2, . . . , n.
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The summation convention applies for repeated indices.
The variables t, q, p are independent and satisfy

ṗi = D(pi), q̇
i = D(qi), i = 1, 2, . . . , n.

In economic analysis, the optimal control problem for constant discount factor
case, is stated as (see, e.g. [2])

Maximize F =

∫ T

0

F (t, qi, ci) e−ρt dt,

subject to q̇i = f i(t, qi, ci), i = 1, . . . , n,

subject to appropriate initiate and transversality conditions. One can define
minimization problems as well.

The current value Hamiltonian H(t, qi, pi, ci) (see, e.g. [2]) is defined as

H = F (t, qi, ci) + pif
i(t, qi, ci). (2.1)

The Pontryagin’s maximum principle provides necessary conditions for optimal
control for the current value Hamiltonian H defined in (2.1) (see, e.g. [2])

∂H

∂ci
= 0,

∂2H

∂ci2
< 0,

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
+ Γi, i = 1, . . . , n, (2.2)

where Γi = Γi(t, pi, q
i) but for a constant discount factor e−ρt, we have Γi =

ρpi. One can compute control variables ci = hi(pi, q
i) from first equation of

condition of maximum principle for current value Hamiltonian.
The following result is adapted from [10] and is essential for construction

of first integrals via partial Hamiltonian approach:

Theorem 1. (see [10] ) An operator X of the form

X = ξ(t, qi, pi)
∂

∂t
+ ηi(t, qi, pi)

∂

∂qi
+ ζi(t, q

i, pi)
∂

∂pi

is said to be a partial Hamiltonian operator corresponding to a current value
Hamiltonian H(t, qi, pi, ci) which satisfies (2.2), if there exists a function
B(t, qi, pi) such that

ζi
∂H

∂pi
+ piD(ηi)−X(H)−HD(ξ) = D(B) + (ηi − ξ ∂H

∂pi
)(−Γi) (2.3)

holds. The first integral corresponding to the system (2.2) associated with a
partial Hamiltonian operator X of the current value Hamiltonian H(t, qi, pi, ci)
is determined from

I = piη
i − ξH −B, (2.4)

where B(t, pi, q
i) is a gauge-like function.
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2.2 Overview of first integrals for the Lucas-Uzawa model via
partial Hamiltonian approach

In this section, we provide an overview of the partial Hamiltonian approach to
solving the Lucas-Uzawa model which is taken from Naz et al [9].

The representative agent’s utility function is defined as

Maxc,u

∫ ∞
0

c1−σ − 1

1− σ
e−ρt, σ 6= 1,

subject to the constraints of physical capital and human capital (see details of
parameters:

k̇(t) = γkβu1−βh1−β − πk − c, k0 = k(0),

ḣ(t) = δ(1− u)h, h0 = h(0), (2.5)

where 1/σ is the constant elasticity of intertemporal substitution, ρ > 0 is the
discount factor, β is the elasticity of output with respect to physical capital,
γ > 0 is the technological levels in the goods sector, δ > 0 is the technological
levels in the education sector, k is the level of physical capital, h is the level
of human capital, c is per capita consumption and u is the fraction of labor
allocated to the production of physical capital.

The current value Hamiltonian function is defined as

H(t, c, k, λ) =
c1−σ − 1

1− σ
+ λ[γkβu1−βh1−β − πk − c] + µδ(1− u)h, (2.6)

where λ(t) and µ(t) are costate variables. The transversality conditions are

lim
t→∞

e−ρtλ(t)k(t) = 0, lim
t→∞

e−ρtµ(t)h(t) = 0. (2.7)

The Pontryagin’s maximum principle provides following set of first order con-
ditions:

λ = c−σ, (2.8)

uβ =
γ(1− β)kβh−β

δ

λ

µ
, (2.9)

k̇(t) = γkβu1−βh1−β − πk − c, (2.10)

ḣ(t) = δ(1− u)h, (2.11)

λ̇ = −λγβu1−βkβ−1h1−β + λ(ρ+ π), (2.12)

µ̇ = µ(ρ− δ). (2.13)

The growth rates of consumption c and physical capital u are given by

ċ

c
=
βγ

σ
u1−βkβ−1h1−β − ρ+ π

σ
, (2.14)

u̇

u
=

(δ + π)(1− β)

β
− c

k
+ δu. (2.15)
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The partial Hamiltonian determining equation (2.3), for the current value
(partial) Hamiltonian (2.6), yields

λ(η1t + k̇η1k + ḣη1h) + µ(η2t + k̇η2k + ḣη2h)− η1
[
βλγ

(
hu/k

)1−β
− πλ

]
− η2δµ−H(ξt + k̇ξk + ḣξh) = Bt + k̇Bk + ḣBh

+
[
η1 − ξ

(
γkβ(uh)1−β − πk − c

)]
(−λρ) +

[
η2 − ξδ(1− u)h

]
(−µρ), (2.16)

in which we assume that ξ = ξ(t, k, h), η1(t, k, h), η2(t, k, h), B = B(t, k, h).
Note that for Lucas-Uzawa model q1 = k, q2 = h, p1 = λ, p2 = µ, Γ1 =
ρλ, Γ2 = ρµ. The variables c (consumption) and u (fraction of labor devoted
to producing physical capital) are control variable which are connected with
co-state variables λ, µ by equations (2.8) and (2.9). It is worthy to mention
here that in partial Hamiltonian operator determining equation (2.16) either
we can keep control variables c and u or co-state variables λ, µ as these are
connected by equations (2.8) and (2.9). First, we expand (2.16) and then we
eliminate λ, µ by utilizing (2.8) and (2.9). The resulting equation is then
separated with respect to powers of the control variables c and u, we have

c2−σ : ξk = 0, (2.17)

c−σu2−β : ξh = 0, (2.18)

uc−σ : η1h = 0, (2.19)

c1−σ : − η1k − σξt/(1− σ) + ρξ = 0, (2.20)

c1−σu−β : η2k = 0, (2.21)

c−σu1−β : η1k − (1− β)η2h − η1
β

k
− βξt − ρξβ = 0, (2.22)

c−σ : η1t − πkη1k + η1π + πkξt + ρη1 + ρπkξ = 0, (2.23)

c−σu−β : η2t + δhη2h − δη2 − δhξt + ρη2 − ρξδh = 0, (2.24)

c : Bk = 0, (2.25)

u : Bh = 0, (2.26)

1 : Bt = ξt/(1− σ). (2.27)

The solution of equations (2.17)–(2.27) yield the expressions for ξ, η1, η2

and B. For the case, when there is no restriction on the parameters the partial
Hamiltonian operators and gauge terms are given by

ξ = 0, η1 = 0, η2 = e−(ρ−δ)t, B(t) = 0,

ξ = e−ρt, η1 =
1

1− σ
ρe−ρtk, η2 =

1

1− σ
ρe−ρth, B =

1

1− σ
e−ρt. (2.28)

Under the parameters restriction σ = β(ρ+π)
−π+2πβ−δ+δβ , the partial Hamiltonian

operators and gauge term are given by

ξ = e−
(σ−1)(ρ+π)

σ t, η1 = −πke−
(σ−1)(ρ+π)

σ t,

η2 =
h

σ(1− β)
[−ρβ − πσ + 2βσπ − πβ]e−

(σ−1)(ρ+π)
σ t,

Math. Model. Anal., 22(4):464–483, 2017.
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B = e−
(σ−1)(ρ+π)

σ t/(1− σ). (2.29)

For the partial Hamiltonian operators and gauge terms given in (2.28), formula
(2.4) yields following two first integrals with no restrictions on parameters of
economy:

I1 =
γ(1− β)

δ
c−σkβu−βh−βe−(ρ−δ)t,

I2 =
c−σe−ρt

1− σ

[
(ρ+ π − πσ)k − σc− βγ(1− σ)

(uh
k

)1−β
k

+
(1− β)γ

δ
(ρ− δ + δσ)

( k

uh

)β
h
]
.

Under parameter restriction σ = β(ρ+π)
2πβ−δ+δβ−π , the formula (2.4) with the aid

of the partial Hamiltonian operators and gauge terms given in (2.29) provides
following first integral:

I3 = e−
(σ−1)(ρ+π)

σ tc−σ
[
− β(ρ+ π)

(π + δ − ρ)β − π − δ
c− βγ

(uh
k

)1−β
k
]
, (2.30)

provided 2πβ − δ + δβ − π > 0 to ensure that σ > 0.
The complete analysis in terms of closed-from solution under parameter

restriction σ = β(ρ+π)
2πβ−δ+δβ−π was provided by Naz et al [9]. The convergence of

closed-form solution to balanced growth path was established as well.

3 Closed-form solution for the Lucas-Uzawa model under
fairly general values of parameters via I1 and I2

The closed-form solution via I1 and I2 for the case z 6= z∗ case was provided
in Naz et al [9] but was not analyzed in detail. Here, we provide closed form
solutions for the original economic variables c(t), u(t), k(t), h(t), λ(t) and µ(t)
for the case z 6= z∗ explicitly in terms of variable z(t). Moreover, we provide
closed form solutions for the original variables c(t), u(t), k(t), h(t), λ(t) and µ(t)
for the case z = z∗ as well. We also compare our solution with the previous
literature.

By setting I1 = c1, we obtain

γ(1− β)

δ
c−σkβu−βh−βe−(ρ−δ)t = c1, (3.1)

where c1 is an arbitrary constant. Introducing z = hu
k , Equation (3.1) can be

re-written as

z =

(
(1− β)γ

c1δ

) 1
β

λ
1
β e−

(ρ−δ)
β t, (3.2)

where λ = c−σ. Equation (2.12) with the aid of Equation (3.2) yields following
Bernoulli’s differential equation for λ

λ̇− λ(ρ+ π) = −βγ
[

(1− β)γ

c1δ

] 1−β
β

λ
1
β e−

(ρ−δ)(1−β)
β t,
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and thus we have

λ = c−σ =

[
βγ

1
β

δ + π

(
1− β
c1δ

) 1−β
β

e−
(ρ−δ)(1−β)

β t + c2e
− (1−β)(ρ+π)

β t

] β
β−1

, (3.3)

where c2 is an arbitrary constant. We found explicit solution for z after sub-
stituting value of λ from Equation (3.3) into Equation (3.2)

z =

[
βγ

δ + π
+ c2

(
(1− β)γ

c1δ

) β−1
β

e−
(1−β)(δ+π)

β t

] 1
β−1

(3.4)

and z∗ =
(
βγ/(δ + π)

)1/(β−1)
is the steady state solution. It is worthy to

mention here that the system of differential equations (2.10)–(2.13) provides
two sets of solutions depending on c2 = 0 and c2 6= 0.

Thus we discuss two scenarios. Scenario I: c2 = 0 and thus z = z∗. Scenario
II: c2 6= 0 and thus z 6= z∗.

3.1 Scenario I: c2 = 0 and thus z = z∗

For c2 = 0, we have

z(t) =

(
δ + π

βγ

) 1
1−β

= z∗. (3.5)

Equation (3.2) yields

λ(t) =
c1δ

(1− β)γ
e(ρ−δ)tz∗β (3.6)

and thus

c(t) =

(
(1− β)γz∗β

c1δ

) 1
σ

e−
(ρ−δ)
σ t. (3.7)

Using initial condition c(0) = c0 and k(0) = k0, Equation (3.7) gives

c0 =

(
(1− β)γ

c1δz∗β

) 1
σ

.

Equation (2.10) provides following solution for physical capital k(t):

k(t) =
σβc0

σπ + δ(σ − β)− (πσ − ρ)β
e−

(ρ−δ)
σ t + a1e

− (πβ−π−δ)
β t. (3.8)

The transversality condition (2.7) for k is satisfied provided δ < ρ + δσ and
a1 = 0. Using initial condition k(0) = k0, we have

c0
k0

=
δ + π(1− β)

β
− δ − ρ

σ
> 0, (3.9)

as δ+π−πβ
β − δ−ρ

σ > 0 (see proof in Proposition 1 [3]). Equations (2.9) and (3.1)
provide following expression of costate variable µ

µ = c1e
(ρ−δ)t. (3.10)

Math. Model. Anal., 22(4):464–483, 2017.
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Next, we set I2 = c3 and after some simplifications, we arrive at following
expression for human capital h

h(t) =
δ

γ(1− β)(ρ− δ + δσ)
z∗β
[
c3(1− σ)cσ0 e

−δt

+
(
βγ(1− σ)z∗1−βk0 − (ρ+ π − πσ)k0 + σc0

)
e−

(ρ−δ)
σ t
]
.

The transversality condition (2.7) for h is satisfied provided c3 = 0 and
δ < ρ+ δσ. The initial condition h(0) = h0 yields

h(t) = h0e
− (ρ−δ)

σ t, h0 =
z∗k0δσ

ρ− δ + δσ
.

Finally, we obtain an expression for the fraction of labor devoted to the pro-
duction of physical capital u = zk

h

u = (ρ− δ + δσ)/(δσ)

and this completes the solution. We can summarize these solutions for all the
economic variables in the following simple forms:

c(t) = c0e
− (ρ−δ)

σ t, k(t) = k0e
− (ρ−δ)

σ t,

u(t) =
ρ− δ + δσ

δσ
= u∗, h(t) = h0e

− (ρ−δ)
σ t, (3.11)

λ(t) = c−σ0 e(ρ−δ)t, µ = c1e
(ρ−δ)t, z∗ =

(
δ + π

βγ

) 1
1−β

,

provided δ < ρ+ δσ, c0 =

(
(1−β)γ
c1δz∗β

) 1
σ

, c0k0 = δ+π(1−β)
β − δ−ρ

σ > 0, h0 = z∗k0
u∗ .

3.2 Scenario II: c2 6= 0 and thus z 6= z∗

The expression for λ given in Equation (3.3) can be alternatively given as

λ =
c1δ

(1− β)γ
e(ρ−δ)tzβ . (3.12)

Equation (3.4) for z(t) with initial condition z(0) = z0 takes following form:

z(t) =
z∗z0

[(z∗1−β − z1−β0 )e−
(1−β)(δ+π)

β t + z1−β0 ]
1

1−β

, (3.13)

where c2 = (z1−β0 − z∗1−β)/( (1−β)γ
c1δ

)
β−1
β .

The variable c(t) with c(0) = c0 takes following form:

c = c0z
β
σ
0 e
− (ρ−δ)

σ tz−
β
σ , c0z

β
σ
0 =

(
c1δ

(1− β)γ

)− 1
σ

, (3.14)
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where z is same as given in (3.13). The differential equation (2.10) for k results
in following integrable differential equation

k̇ + (π − γz1−β)k = −c0z
β
σ
0 e
− (ρ−δ)

σ tz−
β
σ (3.15)

and it provides an expression for physical capital

k(t) =
(
a3 −

c0z
β
σ
0

(π + δ)
1

1−β
F (t)

)
(π + δ)

1
1−β z(t)−1e

(π+δ−πβ)
β t, (3.16)

where

F (t) =

∫ t

0

z(t)
σ−β
σ e−(

δ+π−πβ
β − δ−ρσ )tdt, (3.17)

a3 is arbitrary constant of integration and δ+π−πβ
β − δ−ρ

σ > 0 (see proof in

Proposition 1 [3]). The initial condition k(0) = k0 yields a3 = k0z0

(π+δ)
1

1−β
and

thus expression for k(t) simplifies to the following form:

k(t) =
(
k0/
(
c0z

β−σ
σ

0

)
− F (t)

)
c0z

β
σ
0 z(t)

−1e
(δ+π−πβ)

β t. (3.18)

The transversality condition (2.7) for k is satisfied provided δ < ρ+ δσ and

lim
t→∞

F (t) = k0/
(
c0z

(β−σ)/σ
0

)
. (3.19)

It is important to mention here that the integrand of F (t) is positive and
bounded therefore limt→∞ F (t) is a finite number. Equations (2.9) and (3.1)
provide following expression for the costate variable

µ = c1e
(ρ−δ)t. (3.20)

Setting I2 = c3, we find

c−σe−ρt

1− σ

[
(ρ+ π − πσ)k − σc− βγ(1− σ)

(uh
k

)1−β
k

+
(1− β)γ

δ
(ρ− δ + δσ)

( k

uh

)β
h
]

= c3

and this gives an expression for human capital

h(t) =

(
c3(1−σ)
λ e−ρ t − (ρ+ π − π σ) k + σc+ β γ (1− σ) z1−βk

)
δzβ

γ(1− β)(ρ− δ + δσ)
.

The transversality condition for h requires to choose c3 = 0 and δ < ρ +
δσ. Finally, the variable u, the fraction of labor devoted to the production of
physical capital can be determined from u = zk/h and it simplifies to

u(t) =
δ−1γ(1− β)(ρ− δ + δσ)

(
k0/
(
c0z

β−σ
σ

0

)
− F (t)

)
[βγ(1−σ)−(ρ+π−πσ)zβ−1]( k0

c0z
β−σ
σ

0

−F (t))+σzβ−
β
σ e

−(
δ+π−πβ

β
− δ−ρ

σ
)t
.
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This completes the solution. We then apply the initial conditions h(0) = h0,
u0 = z0k0

h0
and we summarize the solutions for all variables as follows:

c(t) = c0z
β
σ
0 e
− (ρ−δ)

σ tz−
β
σ , k(t) =

(
k0

c0z
β−σ
σ

0

− F (t)

)
c0z

β
σ
0 z(t)

−1e
(δ+π−πβ)

β t,

h(t) =
h0

z0[σc0z
β−1
0 − (ρ+π−πσ)k0z

β−1
0 +βγ(1−σ)k0]

[σc0z
β
σ
0 e
− (ρ−δ)

σ tz−
β
σ+β

+ (βγ(1− σ)− (ρ+ π − πσ)zβ−1)(
k0

c0z
β−σ
σ

0

− F (t))c0z
β
σ
0 e

(δ+π−πβ)
β t],

u(t) =
u0
k0

[σc0z
β−1
0 − (ρ+ π − πσ)k0z

β−1
0 + βγ(1− σ)k0]

×
(
k0/
(
c0z

β−σ
σ

0

)
− F (t)

)
[βγ(1−σ)−(ρ+π−πσ)zβ−1]( k0

c0z
β−σ
σ

0

−F (t)) + σzβ−
β
σ e−(

δ+π−πβ
β − δ−ρσ )t

,

λ(t) = c−σ0 z−β0 e(ρ−δ)tzβ , µ(t) = c1e
(ρ−δ)t,

where

F (t) =

∫ t

0

z(t)
σ−β
σ e−(

δ+π−πβ
β − δ−ρσ )tdt,

z(t) =
z∗z0

[(z∗1−β − z1−β0 )e−
(1−β)(δ+π)

β t + z1−β0 ]
1

1−β

, (3.21)

lim
t→∞

F (t) =
k0

c0z
β−σ
σ

0

, ρ < δ < ρ+ δσ,
δ + π − πβ

β
− δ − ρ

σ
> 0,

c0z
β
σ
0 =

(
c1δ

(1− β)γ

)− 1
σ

, z∗ =

(
βγ

δ + π

) 1
β−1

,

γ(1− β)(ρ− δ + δσ)

δ
=
u0
k0

[σc0z
β−1
0 − (ρ+ π − πσ)k0z

β−1
0 + βγ(1− σ)k0].

The first integrals I1 and I2 yield two solutions of the dynamical system of
ODEs (2.10)–(2.15) given in equations (3.11) and (3.21) for fairly general values
of σ and β. It is straight forward to show that

lim
t→∞

u(t) = u∗.

4 Closed-form solution for the Lucas-Uzawa model under
fairly general values of parameters via I1

Now we show how one can utilize only one first integral I1 to derive the same
closed-from solution as in the existing literature which was also derived by
Chilarescu [3] via the classical approach. By setting I1 = c1, we will arrive at
equations (3.1)–(3.4).

Here also the following two scenarios will arise: Case I: c2 = 0, Case II:
c2 6= 0.
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Equations (3.5)–(3.10) for variables c(t), k(t), λ(t) and µ(t) will follow from
the previous section. Now instead of utilizing the second first integral, we
proceed as follows to derive closed form solutions for h(t) and u(t).

Equation (2.15) simplifies to

u̇

u
=
δ − ρ− δσ

σ
+ δu. (4.1)

Equation (4.1) gives

u(t) =
(δ − ρ− δσ)/σ

a2( δ−ρ−δσσ )e−
δ−ρ−δσ

σ t − δ
.

Finally, h = zk/u gives

h(t) =
a2( δ−ρ−δσσ )e−

δ−ρ−δσ
σ t − δ

(δ − ρ− δσ)/σ
z∗k0e

− (ρ−δ)
σ t.

The transversality condition (2.7) for h is satisfied provided δ < ρ + δσ and
a2 = 0. Thus we arrive at the same solution for all variables as given by
equation (3.11).

For a2 6= 0, we will follow same procedure as described in previous section
to derive equations (3.12)–(3.20). Substituting c(t) and k(t) from equations
(3.14) and (3.18) into equation (2.15), we have

u̇

u
=

(δ + π)(1− β)

β
− z(t)

σ−β
σ e−(

δ+π−πβ
β − δ−ρσ )t

k0/(c0z
β−σ
σ

0 )− F (t)
+ δu. (4.2)

The solution of equation (4.2) with initial condition u(0) = u0 is given by (see
Chilarescu [3])

u(t) =

(δ+π)(1−β)
β u0[k0/(c0z

β−σ
σ

0 )− F (t)]

H(t)
, (4.3)

where

H(t) =
[( (δ + π)(1− β)

β
+ δu0

) k0

c0z
(β−σ)/σ
0

− δu0G(t)
]
e−

(δ+π)(1−β)
β t

− δu0
[ k0

c0z
(β−σ)/σ
0

− F (t)
]
,

G(t) =

∫ t

0

z(t)
σ−β
σ e−

δσ−δ−ρ
σ tdt. (4.4)

The solution (4.3) holds provided

lim
t→∞

[( (δ + π)(1− β)

β
+ δu0

) k0

c0z
(β−σ)/σ
0

− δu0G(t)

]
= 0, (4.5)
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and this can be re-written as

lim
t→∞

G(t) =
(δ + π)(1− β)/β + δu0

δu0
lim
t→∞

F (t),

where limt→∞ F (t) is given in (3.19). The variable h can be determined from
h = zk/u and is given by

h(t) =
[(( (δ + π)(1− β)

β
+ δu0

) k0

c0z
(β−σ)/σ
0

− δu0G(t)
)
e−

(δ+π)(1−β)
β t

− δu0
( k0

c0z
(β−σ)/σ
0

− F (t)
)] c0z

β/σ
0

(δ+π)(1−β)
β u0

e
(π+δ−πβ)

β t.

We can summarize the solutions for all variables as follows:

c(t) = c0z
β
σ
0 e
− (ρ−δ)

σ tz−
β
σ , k(t) =

( k0

c0z
(β−σ)/σ
0

− F (t)
)
c0z

β
σ
0 z(t)

−1e
(π+δ−πβ)

β t,

h(t) =
[( (δ + π)(1− β)

β

k0

c0z
(β−σ)/σ
0

+
δu0k0

c0z
(β−σ)/σ
0

− δu0G(t)
)
e−

(δ+π)(1−β)
β t

− δu0
( k0

c0z
(β−σ)/σ
0

− F (t)
)] c0z

β/σ
0

(δ+π)(1−β)
β u0

e
(π+δ−πβ)

β t,

u(t) =

(δ+π)(1−β)
β u0

[
k0/(c0z

β−σ
σ

0 )− F (t)
]

H(t)
,

λ(t) = c−σ0 z−β0 e(ρ−δ)tzβ , µ(t) = c1e
(ρ−δ)t,

where

ρ < δ < ρ+ δσ,
δ + π − πβ

β
− δ − ρ

σ
> 0,

F (t) =

∫ t

0

z(t)
σ−β
σ e−(

δ+π−πβ
β − δ−ρσ )tdt, G(t) =

∫ t

0

z(t)
σ−β
σ e−

δσ−δ+ρ
σ tdt,

z(t) =
z∗z0

[(z∗1−β − z1−β0 )e−
(1−β)(δ+π)

β t + z1−β0 ]
1

1−β

, (4.6)

c0z
β
σ
0 =

( c1δ

(1− β)γ

)− 1
σ

, lim
t→∞

F (t) =
k0

c0z
(β−σ)/σ
0

,

lim
t→∞

[
(
(δ + π)(1− β)

β
+ δu0)

k0

c0z
(β−σ)/σ
0

− δu0G(t)
]

= 0,

lim
t→∞

G(t) =
( (δ+π)(1−β)

β + δu0)

δu0
lim
t→∞

F (t), z∗ =

(
βγ

δ + π

) 1
β−1

.

The closed form solution (4.6) derived by only utilizing I1 is exactly the same
as derived by Chilarescu [3] via the classical approach.
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5 Comparison of Closed-form Solutions for the Lucas-
Uzawa model

The closed form solutions of the Lucas-Uzawa model of economic growth have
been derived in the literature by using both the newly developed partial Hamil-
tonian approach and the classical approach. The partial Hamiltonian approach
utilizes Lie group theoretical techniques to construct a closed-form solution.
Using the partial Hamiltonian methodology, we have established three sets of
closed form solutions (3.11), (3.21) and (4.6) for the Lucas-Uzawa model with
no parameter restrictions. For the case z = z∗ case only one solution arises
which is given in (3.11) whereas for the case z 6= z∗ case we obtained two
solutions which are given in (3.21) and (4.6). We have shown how first inte-
grals derived via the partial Hamiltonian approach can be utilized to construct
multiple closed form solutions for the Lucas-Uzawa model. Thus there exist
three sets of closed form solutions (3.11), (3.21) and (4.6) for the Lucas-Uzawa
model with no parameter restrictions.

5.1 Comparison with Chilarescu [3]

Chilarescu [3] made a significant contribution by utilizing the classical approach
to obtain two closed form solutions of the form (3.11) and (4.6). We have
shown in previous sections that the solution (3.11) can also be constructed by
utilizing either one first integral I1 or by using two first integrals I1 and I2. For
the case where z 6= z∗, we have obtained the second solution (4.6) found by
Chilarescu [3] and this solution was obtained by utilizing only one first integral
I1. Using our partial Hamiltonian methodology, we also arrive at an additional
new solution (3.21) in the case where z 6= z∗ by utilizing the two first integrals
I1 and I2.

A comparison of the closed-form solutions (3.21) and (4.6) shows that the
expressions for consumption c, physical capital stock k, and the costate vari-
ables λ and µ are the same in both solutions. On the other hand, the expressions
for the fraction of labor devoted to physical capital, u, and the level of human
capital, h, are different in our newly obtained solution. This is important in
the context of economic growth theory because it shows that an economy can
either be in an equilibrium with a higher level of human capital or in an equi-
librium with a lower level of human capital. Another important result is that
the previously obtained closed form solution (4.6) involves two numerically
computable functions F (t) and G(t) whereas our newly derived closed form
solution (3.21) involves only one numerically computable function F (t). So our
newly derived closed form solution (3.21) which was obtained from the partial
Hamiltonian approach is fundamentally different and is also in a simpler form
than the previously obtained solution (4.6).

5.2 Comparison with Boucekkine and Ruiz-Tamarit [1]

Boucekkine and Ruiz-Tamarit [1] were the first to use the classical approach
to derive elegant closed form solutions and they obtained one solution under
no parameter restrictions which is similar to (4.6). Chilarescu [3] then utilized
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the classical approach to provide two solutions with no restrictions on the
parameters which are the same as the solutions in (3.11) and (4.6). So in
both [3] and [1], the Lucas-Uzawa model was solved by the classical approach.
For the closed-form solution (4.6), the only difference in these two works is the
evaluation of the functions F (t) and G(t). In [3] , the functions F (t) and G(t)
were computed by numerical simulations whereas in [1] these type of functions
were solved in terms of Gaussian Hypergeometric functions. With the aid
of numerical simulations, it is well-demonstrated by Chilarescu [3], that the
transitional dynamics of variables for solution (4.6) were same as derived by
Boucekkine and Ruiz-Tamarit [1].

It is important to note that the partial Hamiltonian approach also provides
one additional solution given in (3.21) which is new to the literature. Moreover,

under specific restriction σ = β(ρ+π)
2πβ−δ+δβ−π on parameters another first integral

was established and another set of closed form solution was derived in Naz
et al [9]. It was also shown that the closed-form solution under this specific
parameter restriction converges to the balanced growth path. The closed form
solution under this specific restriction was not derived before in literature.
Thus partial Hamiltonian approach provides four sets of closed-from solutions:
three under no parameter restriction and fourth is under parameter restriction

σ = β(ρ+π)
2πβ−δ+δβ−π whereas classical approach provides olny two closed-form

solutions.

5.3 Convergence to balanced growth path

The discussion of convergence of closed-form (3.11) and (4.6) is well presented
in detail in Chilarescu [3]. Boucekkine and Ruiz-Tamarit [1] analyzed closed-
form solution (4.6). Naz et al [9] provided detailed analysis and convergence
to balanced growth path for the closed-from solution under specific restriction

σ = β(ρ+π)
2πβ−δ+δβ−π on parameters. We provide here a detailed analysis of newly

derived closed-form solution (3.21). We prove that our newly derived solution
(3.21) satisfies all properties stated in Proposition 1 of Chilarescu [3]. It is
straight forward to show, for the closed form solutions (3.21) that

lim
t→∞

u(t) = u∗ =
ρ− δ + δσ

δσ
.

It is worthy to mention here that l’Hôpital rule is applied to establish lim t→∞
of the fraction of labor devoted to the production of physical capital u(t). We
find the ratio of consumption to the capital stock for economy

c(t)

k(t)
=
z(t)

σ−β
σ e−(

δ+π−πβ
β − δ−ρσ )t

k0
c0z

(β−σ)/σ
0

− F (t)
, lim

t→∞

c(t)

k(t)
=
δ + π − πβ

β
− δ − ρ

σ
.

Next, we find the ratio of the capital stock to the fraction of labor for
economy

lim
t→∞

k(t)

h(t)
= lim
t→∞

u(t)

z(t)
=
ρ− δ + δσ

δσ
(
βγ

δ + π
)

1
β−1 .
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The growth rates of all the variables for the closed-form solution (3.21) after
simplifications are

ċ

c
=
δ − ρ
σ
− β

σ

ż

z
,

k̇

k
=
π + δ − πβ

β
− z(t)

σ−β
σ e−(

δ+π−πβ
β − δ−ρσ )t

k0/(c0z
σ−β
β

0 )− F (t)
− ż

z
,

ḣ

h
=

σz(t)β−1

σz(t)β−1 + [βγ(1− σ)− (ρ+ π − πσ)z(t)β−1]k(t)c(t)

ċ

c

+
σβz(t)β−1 c(t)k(t) − (ρ+ π − πσ)(β − 1)z(t)β−1

σz(t)β−1 c(t)k(t) + βγ(1− σ)− (ρ+ π − πσ)z(t)β−1

ż

z

+
[βγ(1− σ)− (ρ+ π − πσ)z(t)β−1]

σz(t)β−1 c(t)k(t) + βγ(1− σ)− (ρ+ π − πσ)z(t)β−1

ż

z

+
βγ(1− σ)− (ρ+ π − πσ)z(t)β−1

σz(t)β−1 c(t)k(t) + βγ(1− σ)− (ρ+ π − πσ)z(t)β−1

k̇

k
,

u̇

u
=
k̇

k
− ḣ

h
+
ż

z
,

λ̇

λ
= ρ− δ + β

ż

z
,

µ̇

µ
= ρ− δ, (5.1)

where

ż

z
=

(π + δ)(z∗1−β − z1−β0 )e−
(1−β)(π+δ)

β t

β
(
z1−β0 + (z∗1−β − z1−β0 )e−

(1−β)(π+δ)
β t

) .
Now we analyze the dynamic growth rates provided in (5.1). First we

observe that as t→∞, ż
z approaches to zero which shows that the rate of

growth of z(t) decreases asymptotically as we approach the steady state. The
growth rates of consumption, c, physical capital, k, and human capital, h,
decrease over time and approach δ−ρ

σ as t 7→ ∞. Also, the growth rate of the
fraction of labor allocated to the production of physical capital, u, approaches
zero as t 7→ ∞ whereas the growth rates of both costate variables, λ and µ,
equal (ρ − δ) as t 7→ ∞. In the long run our newly derived solution (3.21)
solutions converge to the same balanced growth path as solutions (3.11) and
(4.6). This is important in the context of economic growth theory and gives rise
to multiple equilibria. This establishes the convergence of our newly derived
closed-form solution (3.21).

6 Closed-from solution for σ = β case

In this Section, we consider the special case when σ = β which is commonly
discussed in economic growth theory. We obtained two closed-form solutions
for Lucas-Uzawa model under restriction σ = β whether we utilize only I1 or
we utilize both I1 and I2.
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For z = z∗ case, the closed-form solution for all variables is obtained by
taking σ = β in (3.11) and is given by

c(t) = c0e
− (ρ−δ)

β t, k(t) = k0e
− (ρ−δ)

β t, u(t) =
ρ− δ + δβ

δβ
= u∗, (6.1)

h(t) = h0e
− (ρ−δ)

β t, λ(t) = c−β0 e(ρ−δ)t, µ = c1e
(ρ−δ)t, z∗ =

(
δ + π

βγ

) 1
1−β

,

provided δ < ρ+ δβ , c0 =
( (1−β)γ
c1δz∗β

) 1
β , c0

k0
= ρ+π(1−β)

β > 0, h0 = z∗k0
u∗ .

Next, we take σ = β in (3.21), the variable c(t) takes following form:

c(t) = c0z0e
− (ρ−δ)

β tz(t)−1.

The equation (3.17) for F (t) simplifies to

F (t) =
β

π − πβ + ρ

(
1− e−

(π−πβ+ρ)
β t

)
and (3.19) yields

c0
k0

=
ρ+ π(1− β)

β
. (6.2)

The variable k(t) takes following form:

k(t) = k0z0e
− (ρ−δ)

β tz(t)−1

and satisfies the transversality condition provided δ < ρ + δβ. After some
simplifications, the variables h(t) and u(t) in (3.21) take following form:

h(t) = h0e
− (ρ−δ)

β t

and u(t) = u0. The condition

γ(1− β)(ρ− δ + δσ)

δ
=
u0
k0

[σc0z
β−1
0 − (ρ+ π − πσ)k0z

β−1
0 + βγ(1− σ)k0]

provides u0 = ρ−δ+δβ
δβ .

For z 6= z∗ case, the closed-form solution for all variables is summarized as
follows:

c(t)=c0z0e
− (ρ−δ)

β tz(t)−1, k(t) = k0z0e
− (ρ−δ)

β tz(t)−1, h(t) = h0e
− (ρ−δ)

β t, (6.3)

u(t) =
ρ− δ + δβ

δβ
= u∗, λ(t) = c−β0 z−β0 e(ρ−δ)tz(t)β , µ(t) = c1e

(ρ−δ)t,

provided

δ < ρ+ δβ, c0 =

(
(1− β)γ

c1δz
β
0

) 1
β

,
c0
k0

=
ρ+ π(1− β)

β
> 0,
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h0 =
z0k0
u∗

, z(t) =
z∗z0

[(z∗1−β − z1−β0 )e−
(1−β)(δ+π)

β t + z1−β0 ]
1

1−β

.

Next, we take σ = β in (4.6). In (4.6), only the expressions for u(t) and
h(t) are different from (3.21). Equations (4.4) and (4.5) for σ = β case reduces
to the following form:

G(t) =
β

δβ − δ + ρ

(
1− e−

(δβ−δ+ρ)
β t

)
, (6.4)(

(δ + π)(1− β)

β
+ δu0

)
k0
c0

=
δu0β

δβ − δ + ρ
, (6.5)

where c0
k0

is given in (6.2). With the aid of equations, (6.4) and (6.5), the
equations for the variables u(t) and h(t) reduce to same equations as presented
in (6.3).

We conclude that for the special case σ = β, both solutions (3.21) and (4.6)
reduces to same solution (6.3). This also verifies the correctness of our newly
derived solution (3.21). It is important to mention here that σ = β assumption

leads to the constancy of c(t)
k(t) and we obtain less solutions in this case. In the

previous literature only the solution (6.3) had been reported. It is important
to mention here that the (6.1) directly follows from (6.3) by setting z = z∗ so
it is sufficient to just mention (6.3) (see e.g [6, 7]).

6.1 Comparison with Marsiglio and La Torre [7]

We can compare the closed-form solution (6.3) with the previous literature
[7]. In [7], the population dynamics were discussed for three different types of
population growth: exponential, logistic and von Bertalanffy. If we simplify the
model by Marsiglio and La Torre [7] by taking N = 1 and n = 0 to normalize
the effect of population growth to zero and if we set π = 0 in our model then
we find that both models take the same form and the only difference is in
terms of the notations used for different parameters. The solution presented
in equations (33)–(36) of Marsiglio and La Torre [7] is exactly the same as the
closed-form solution provided in (6.3). This can be established by using the
expression for z(t) which provides the alternative form of the solution (6.3) as

k(t) = e−(
ρ+π
β )t

[
k1−β0 +

γu1−βh1−α0

(ρ+ π)/β + δ − δu

(
e(1−β)((ρ+π)/β+δ−δu)t − 1

)] 1
1−β

,

c(t) =
c0
k0
k(t), h(t) = h0e

δ(1−u)t, u(t) =
ρ− δ + δβ

δβ
= u∗, (6.6)

λ(t) = c−β0 z−β0 e(ρ−δ)tz(t)β , µ(t) = c1e
(ρ−δ)t,

c0
k0

=
ρ+ π(1− β)

β
,

which is exactly the same as presented in equations (33)–(36) of Marsiglio and
La Torre [7] if the population growth is normalized to zero1.

1 In [7], δ = B, β = α, γ = A, π = 0
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6.2 Comparison with Marsiglio and La Torre [6]

We can also compare the closed-form solution (6.3) with another solution found
in the previous literature [6] in which a closed-form solution was established by
using the dynamic programming technique. By setting N(t) = 1, δH = 0 for
β = 1− α, the model by Marsiglio and La Torre [6] reduces to same model as
presented here just there is difference in terms of notations used for different
parameters. The solution presented by equations (11)–(14) reduces to the form
(6.6) provided N(t) = 1, δH = 0 for β = 1− α.

7 Conclusions

In this paper we establish closed-form solutions for the Lucas-Uzawa model
with the aid of the partial Hamiltonian approach and then compare our re-
sults with those derived by the classical approach. The partial Hamiltonian
approach provides two first integrals [9] in the case where there are no param-
eter restrictions. We utilize these two first integrals to construct closed form
solutions for all the economic variables in the model for two different scenarios:
(i) z = z∗ and (ii) z 6= z∗ where z(t) = h(t)u(t)

k(t) .

For the z = z∗ case, both the partial Hamiltonian approach and the classical
approach provide one solution. For the z 6= z∗ case, the classical approach
yields one solution while the the partial Hamiltonian approach provides the
same solution as well as one additional solution which is completely new to
the literature. In the newly obtained solution, the expressions for the levels of
consumption and capital stock are equal to those found in the older solution,
while the amount of labor allocated to the production of physical capital and
the level of human capital are different from those values found in the older
solution. The existence of three closed form solutions is new to the literature
on economic growth. We also show that the economic equilibria all converge
to the same long run balanced growth path. We have also analyzed the special
case σ = β and obtained two sets of closed-form solutions. In addition to this,
we also present a detailed comparison of our derived results with the previous
literature for the σ 6= β case as well as for the σ = β case.
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