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Abstract. A detailed analysis of absorbing boundary conditions for the linear Schrö-
dinger equation is presented in this paper. It is focused on absorbing boundary condi-
tions that are obtained by using rational functions to approximate the exact transpar-
ent boundary conditions. Different strategies are investigated for the optimal selection
of the coefficients of these rational functions, including the Padé approximation, the
L2 norm approximations of the Fourier symbol, L2 minimization of a reflection co-
efficient, and two error minimization techniques for the chosen benchmark problems
with known exact solutions. The results of computational experiments are given and
a detailed comparison of the efficiency of these techniques is presented.
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1 Introduction

In this paper, as a basic mathematical model, we consider the initial-value
problem for the linear one-dimensional Schrödinger equation

i
∂ũ

∂t
+
∂2ũ

∂x2
= 0, −∞ < x <∞, t > 0, (1.1)

ũ(x, 0) = u0(x).

http://www.tandfonline.com/TMMA
https://doi.org/10.3846/13926292.2017.1306725
mailto:raimondas.ciegis@vgtu.lt
mailto:andrej.bugajev@vgtu.lt
mailto:rima.kriauziene@vgtu.lt
mailto:terese.leonaviciene@vgtu.lt
mailto:julius.zilinskas@mii.vu.lt


On the Accuracy of Some ABCs for the Schrödinger Equation 409

The Schrödinger equation is widely used for modelling quantum mechanics
and non-linear optics problems. Usually, the equation is supplemented with
an initial condition and only asymptotical behaviour of the solution at infinite
boundaries is defined (the last requirement is equivalent to the boundedness
of the solution in some specified norms). In order to solve this problem, a
discretization must be performed and an infinite space domain must be reduced
to a finite domain. Thus it is necessary to formulate correct artificial boundary
conditions at the new boundaries of the selected domain.

In most cases, we are interested to find a solution of problem (1.1) only
on a finite domain so a proper restriction of the infinite domain is well suited
for most real world modelling applications. Thus it is a common practice to
approximate the initial value problem (1.1) by some initial-boundary value
problem.

i
∂ũ

∂t
+
∂2ũ

∂x2
= 0, a < x < b, t > 0,

ũ(x, 0) = u0(x), Laũ = ga, Lbũ = gb.

However, these new boundary conditions must be carefully constructed,
because they can perturb essentially the solution of the initial value problem.
It is well known that if simple standard boundary conditions are formulated
on the boundaries of the restricted domain (e.g. the homogeneous Dirichlet
boundary conditions), the solution after reaching the boundary will be reflected
back into the domain and will pollute the results of subsequent simulations. A
simple and straightforward way to avoid such perturbations is to enlarge the
domain of simulations and thus to delay the reflection of the wave from the
artificial boundaries. However, for a long time modelling, this strategy is very
inefficient – it forces calculations to be performed on a domain that is much
bigger than the domain of interest.

Special artificial and transparent boundary conditions were developed and
investigated in many papers, see [1, 2, 4, 5, 6, 9]. A good review on construc-
tion of transparent boundary conditions not only for differential problems but
also for discrete finite difference schemes, as well as stability analysis and com-
putational experiments are given in [2, 9]. The exact transparent boundary
conditions are non-local in time and the full history of the solution at the
boundary should be preserved during computations. We also mention papers
where exact transparent boundary conditions are constructed and the stability
of initial-boundary value problem is analysed for the differential Schrödinger
equation [1,2,4]. A similar analysis for discrete unconditionally stable schemes
for the one-dimensional Schrödinger equation is done in [2,3]. The transparent
boundary conditions for high-order finite difference schemes are constructed
in [10,16].

Non-local boundary conditions increase the computational costs and mem-
ory requirements of numerical algorithms and they are inefficient for long time
modelling problems. Thus it is a challenge to construct appropriate local
boundary conditions and to avoid the negative long memory effects included
into the definition of the exact non-local transparent boundary conditions. A
few approaches are proposed to construct such boundary conditions. Various
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absorbing boundary conditions (ABCs) are constructed for this purpose (see,
e.g. [9] and references therein). These boundary conditions absorb the energy
of waves as they reach the boundary area and attempt to minimize the amount
of energy reflected by the artificial boundaries.

Different techniques, such as polynomials, splines or finite elements, can be
used as a basis for approximations. In this paper, we are interested in methods
based on approximations by rational functions [5,9]. Our aim is to investigate
the accuracy of a family of absorbing boundary conditions. Different objective
functions are used to define the optimal values of coefficients and the conver-
gence rate of the selected family of rational functions is tested. We start from
the approximation of the Fourier symbol, which is defined by considering the
Fourier transform of the exact transparent boundary conditions. The classi-
cal Padé method is considered as the first approach, where coefficients of the
approximation can be computed in the explicit form. In the second method
coefficients of the rational function are defined by solving the minimization
problem and the Fourier symbol is approximated in the L2 norm.

The third method is based on minimization of the reflection coefficient [17],
since the main aim of artificial boundary conditions is to avoid a reflection from
the new boundaries. We note that the Nelder-Mead method [11] was used to
find local minima in [17].

In the last part of computational experiments an adaptive strategy is ap-
plied. Two representative benchmarks are selected where the exact solutions of
these problems are known. The coefficients of the rational functions are deter-
mined by minimizing the error of the approximate solution in the L2 and L∞
norms. This part of computations enabled us to test the robustness of global
optimization and estimate the possibilities/limitations of the rational functions
technique when the order of polynomials is small.

The formulated minimization problems are black box problems of global
optimization [18]. The search space is very large and therefore deterministic
covering methods for global optimization are not applicable. We use multistart
strategy for estimating the globally optimal solution. Derivative-free local op-
timization is applied since analytical expressions for gradients are not available
and the objective functions are too computationally expensive for numerical
estimation of the gradient. Starting points are generated randomly and lo-
cal optimization by Nelder-Mead downhill simplex method [11] and Powell’s
method [14] is applied. This strategy is also favorable for parallelization since
different runs of local optimization are independent and may be performed in
parallel.

The rest of this paper is organized as follows. In Section 2, the initial value
problem (1.1) is approximated by the initial-boundary value problem. Some
general notations of finite difference schemes are introduced. A short review
on exact transparent boundary conditions and discretizations is presented. In
Section 3, approximate boundary conditions are constructed by using rational
functions. Four different techniques are applied to define coefficients of the ap-
proximations. Three of them solve global minimization problems with different
objective functions. Results of numerical experiments and theoretical analysis
are given in Section 4. Final conclusions are presented in Section 5.
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2 Transparent boundary conditions

To solve problem (1.1) we approximate it by an initial-boundary value problem
formulated in a finite space domain:

i
∂u

∂t
+
∂2u

∂x2
= 0, x ∈ (a, b), t ∈ (0, T ],

u(x, 0) = u0(x), x ∈ [a, b],

Llu(a) = 0, Lru(b) = 0, t ∈ (0, T ],

(2.1)

where operators Ll, Lr define artificial boundary conditions. Let us assume
that we are interested to find a solution only in the domain [A,B]. Then the
operators Ll, Lr and the ends of the finite domain a, b must be such that∫ T

0

∫ B

A

|ũ− u|2 dxdt ≤ ε, a ≤ A < B ≤ b,

where ε is a selected accuracy of the approximation. The extended domains
[a,A), (B, b] can be used to damp possible reflections and oscillations of the
solution from the artificial boundaries. But in this paper, for simplicity we
restrict to the case A = a, B = b.

2.1 Finite difference scheme

In this subsection we approximate equation (2.1) by the Crank-Nicolson met-
hod. We consider the domain [a, b] × [0, T ] and introduce the discretization
ωh × ωτ , where ωh and ωτ are discrete uniform grids, h and τ are discrete
steps:

ωh =
{
xj : x0 = a, xJ = b, xk = xk−1 + h, k = 1, . . . , J

}
,

ωτ = {tn : tn = nτ, n = 0, . . . , N, Nτ = T}.

We consider numerical approximations Unj of the exact solution unj = u(xj , t
n)

at the grid points (xj , t
n) ∈ ωh × ωτ . For functions defined on the grid we

introduce the forward and backward difference quotients with respect to x:

∂xU
n
j = (Unj+1 − Unj )/h, ∂x̄U

n
j = (Unj − Unj−1)/h

and similarly the backward difference quotient and the averaging operator with
respect to t:

∂t̄U
n
j = (Unj − Un−1

j )/τ, Un−1+θ
j = θUnj + (1− θ)Un−1

j .

We approximate the differential equation (2.1) by the Crank-Nicolson finite
difference scheme [16]

i∂t̄U
n
j + ∂x∂x̄U

n−0.5
j = 0, xj ∈ ωh, n > 0. (2.2)

Appropriate boundary conditions will be specified in the following sections.

Math. Model. Anal., 22(3):408–423, 2017.
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2.2 Exact transparent boundary conditions

Following [1], for differential equation (2.1) we can write the exact transparent
boundary conditions. To do this we factorize the Schrödinger equation (2.1)(

ux −
√

(−i)∂tu
)(

ux +
√

(−i)∂tu
)

= 0

and get the following boundary conditions

∂nu+ e−i
π
4D

1/2
t u = 0, x = a, b,

where ∂n is the normal derivative and

D
1/2
t u(x, t) =

1√
π

∂

∂t

∫ t

0

u(x, s)√
t− s

ds

is a nonlocal operator. There are many quadrature algorithms to approximate
the integral in this boundary condition.

It is important to note, that a similar factorization can be done also for
the discrete finite difference scheme (2.2) (see [1] for details), or for the high-
order accuracy Numerov type finite difference scheme (see, e.g. [16] for details).
Then specific discrete approximation algorithms are obtained and such finite
difference schemes have the same stability properties as the original schemes
formulated in the infinite domain.

A very simple and convenient approximation algorithm can be obtained if
a semi-discrete finite difference scheme is considered, when the Crank-Nicolson
approximation is applied only in time. Then after factorization, we get the
following transparent boundary conditions [1]:

∂nU
n+1 = −eiπ/4

√
2

τ

n+1∑
k=0

βkU
n+1−k,

where βk = (−1)kαk, α0 = 1, α2k =
k∏
j=1

(2j − 1)/2j = 2k−1
2k α2k−2, α2k+1 =

α2k, k ≥ 0:

(α0, α1, α2, α3, . . .) =

(
1, 1,

1

2
,

1

2
,

3

8
,

3

8
, . . .

)
.

All these boundary conditions are non-local and for the implementation of
them we must store the full history of the solution at the boundary points.
Since the coefficients of discrete transparent boundary conditions (see, e.g. βk)
decay very slowly it is impossible to reduce the complexity of the algorithm by
summing only a small number of terms.

3 Approximation by rational functions

A very interesting approach to construct local artificial boundary conditions is
based on the approximation of the transparent boundary condition

∂nu+ e−i
π
4D

1/2
t u = 0
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by rational functions. First, the Fourier transform is applied to get a spectral
representation:

∂nû+ e−i
π
4

+
√
iωû = 0,

where û(x, ω) = 1√
2π

∫ +∞
−∞ u(x, t)e−iωtdt. Then the Fourier symbol +

√
iω is

approximated by rational functions (see [17]):

+
√
iω ≈ Pm(iω)

Qm(iω)
= a0 +

m∑
k=1

akiω

iω + dk
,

where the stability of finite difference schemes leads to the restrictions on co-
efficients ak > 0, dk > 0, k = 0, . . . ,m.

The important advantage of this algorithm is that there exists an efficient
implementation of the inverse transform proposed by Lindmann in [8], which
leads to local boundary conditions. New functions

ϕ̂k(x, ω) =
1

iω + dk
û(x, ω)

are introduced for x = a, b and linear equations are obtained after simple
computations

û(x, ω) = iωϕ̂k(x, ω) + dkϕ̂k(x, ω), k = 1, . . . ,m.

Applying the inverse Fourier transform we get the initial value ODEs for
ϕk(x, t) [1, 8, 17]:

dϕk(x, t)

dt
+ dkϕk(x, t) = u (x, t) , ϕk(x, 0) = 0, x = a, b, k = 1, . . . ,m.

Then the approximate boundary conditions can be written as

∂nu = −e−iπ4
(( m∑

k=0

ak

)
u−

m∑
k=1

akdkϕk

)
, x = a, b. (3.1)

Below we formulate four algorithms to compute the coefficients ak, dk.
Let us denote the set of coefficients Sm(a, d) = (a0, a1, . . . , am, d1, . . . , dm),
satisfying the stability requirements aj ≥ 0, dj ≥ 0.

3.1 Padé coefficients

First, we apply a well known algorithm to compute the Padé approximation [12]
(Padé approximation is one of the approximations by rational functions). The
coefficients are defined by [17]

am0 = 0, amk =
1

m cos2
( (2k + 1)π

4m

) , dk = tan2

(
(2k + 1)π

4m

)
. (3.2)

Since the Padé approximation is based on a local information of the function it
is approximating, the convergence can be slow and a sufficiently large m should
be used. As a consequence, the memory requirements still can be quite large.

Math. Model. Anal., 22(3):408–423, 2017.
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3.2 Approximation of the Fourier symbol in the L2 norm

In this algorithm, we directly minimize the approximation error of the Fourier
symbol (FS) in the L2 norm [8,17]

RF = min
Sm(a,d)

1

ω̄

∫ ω̄

0

∣∣∣∣ +
√
iω − a0 −

m∑
k=1

akiω

iω + dk

∣∣∣∣2dω. (3.3)

We consider only a part of the integral for positive ω, since for negative values
of ω the values of square root and rational functions are equal to conjugate
values for positive ω. The selection of ω̄ requires a special analysis. In all
computations we use ω̄ = 100 without any proof of the optimality of such a
choice.

3.3 Approximation of a reflection coefficient

An interesting approach is proposed in [17]. There a reflection coefficient

RC(ω) =

−
√
ω − ia0 − i

m∑
k=1

ak(−ω)

−ω + dk
√
ω − ia0 − i

m∑
k=1

ak(−ω)

−ω + dk

,

ω ∈ R, ai > 0, dj > 0, i = 0, 1, . . . ,m, j = 1, 2, . . . ,m (3.4)

is minimized. The coefficients of the optimal rational function are obtained by
solving the following minimization problem

R = min
Sm(a,d)

(∫ T/2π

δt/2π

∣∣∣∣∣
√
r − a0r −

m∑
k=1

akr/(1 + dkr)

√
r + a0r +

m∑
k=1

akr/(1 + dkr)

∣∣∣∣∣
2

dr

1 + r2

)
, (3.5)

where r = − 1
ω and 1/(1 + r2) is the weight function. If m = 3, we get

seven coefficients: a0, a1, a2, a3, d1, d2, d3. It is noted in [17], that because δt is
small, the reflection coefficient was optimized in the interval [0, T/2π] and the
following values of coefficients were obtained:

a0 = 0.7269284, a1 = 2.142767, a2 = 5.742223, a3 = 46.58032,

d1 = 6.906263, d2 = 65.82243, d3 = 1124.376. (3.6)

3.4 Minimization of adaptive errors in the L2 and L∞ norms

In order to test the potential/limitations of the rational functions to approx-
imate the non-local transparent boundary conditions and to investigate the
robustness of the selected global optimization algorithms, we have included
one more strategy for the selection of the objective functions. Two representa-
tive benchmark problems with the known exact solutions are selected and the
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coefficients of rational functions are obtained by minimizing the errors of the
discrete solutions in the L2 and L∞ norms:

E2 = min
Sm(a,d)

(∫ T

0

∫ b

a

|u− ũ|2dxdt

)1/2

= min
Sm(a,d)

‖E‖2,

E∞ = min
Sm(a,d)

(
max

x∈[A,B], t∈[0,T ]
|u− ũ|

)
= min
Sm(a,d)

‖E‖∞,

where E = u− ũ.
We note that this technique adapts the coefficients to the selected bench-

mark problem. Thus the results for these objective functions may lack the
universality, but analysis of them can show the limits of the approach based on
rational functions.

In case of M problems with different solutions uj , j = 1, 2, . . . ,M we intro-
duce a coupled adaptive strategy

Ec∞ = min
Sm(a,d)

(
max

1≤j≤M

(
max

x∈[Aj ,Bj ], t∈[0,Tj ]
|uj − ũj |

))
. (3.7)

3.5 Global optimization

The formulated minimization problems (minimization of the reflection coeffi-
cient and minimization of the errors of approximations) are black box prob-
lems of global optimization [7, 13, 18]. Evaluation of values of these objective
functions requires numerical integration or even numerical solution of PDE
problems. Thus evaluation of the objective functions is computationally ex-
pensive. Moreover, properties of the objective functions of these problems are
not known, unimodality or convexity of the objective functions may not be
assumed and local optimization in the experimental investigation often results
in different solutions. Moreover, intervals of possible values for variables (co-
efficients) are not known and the optimal values of different coefficients may
differ by several orders of magnitude. Therefore, the search space may be very
large and standard deterministic covering methods for global optimization are
not applicable.

However, the initial investigation has shown that local optimization from
different starting points sometimes finishes with the same optimal solution
found. This substantiates the use of multistart strategy for estimating the
globally optimal solution [18]. Random starting points are generated and a lo-
cal optimization algorithm is applied from a number of random starting points.
Since the objective functions are black boxes analytical expressions for gradi-
ents are not available. Moreover, since the objective functions are computa-
tionally expensive, numerical estimation of the gradient is also too expensive.
Therefore, derivative-free methods for local optimization should be used. We
applied two algorithms in our experimental investigations: the Nelder-Mead
downhill simplex method [11] and the Powell’s method [14] available in Nu-
merical Recipes [15]. Let us mention that the downhill simplex method was
also used in [17].

Math. Model. Anal., 22(3):408–423, 2017.
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Since the objective functions of the attacked global optimization problems
are computationally expensive, experiments take considerable duration. Paral-
lel computing may be applied to make experiments shorter. Multistart strategy
for global optimization is favorable for parallelization. Separate runs of local
optimization are independent and therefore may be performed in parallel. An-
other level of parallelization may be the evaluation of values of the objective
function at different sample points. One more level is parallelization of numer-
ical integration or numerical solution of the modelling problem.

The coefficients are restricted to non-negative values, but the downhill sim-
plex method is a method for unconstrained optimization and sometimes nega-
tive values for the coefficients are computed. Therefore, we have modified the
general version of the method to include the non-negativity constraints (3.4).
After the reflection of a simplex is completed, the negative values of coeffi-
cients are changed to zero. When the expansion of a simplex is computed, if
the expansion point is not feasible the simplex is shrank instead of expansion.

4 Numerical experiments

In this section we present results of numerical experiments. Our main aim is
to estimate the accuracy of artificial boundary conditions by using results of
selected computational experiments. The most important question is to inves-
tigate if it is possible to find a universal set of coefficients of rational functions
which can be used for different cases of the one dimensional Schrödinger prob-
lems. As representative test problems we chose two examples presented in
papers [17,19].

Example 1. We use the explicit solution of (1.1) (see [17]):

u(t, x) =
exp (−iπ/4)√

4t− i
exp

(
ix2 − 6x− 36t

4t− i

)
.

The problem is solved in the domain [−5, 5] for t ∈ [0, 0.8]. It can be noted
that the solution has almost compact support in (−5, 5) at t = 0 and crosses
the boundary x = −5 for some t < 1. In order to avoid the influence of
discretization errors we take the uniform grid J ×N = 8000× 4000.

Example 2. We use the explicit solution of (1.1) (see [19]):

u(t, x) =
1

+
√

1 + it/α
exp

(
ik(x− x(0) − kt)− (x− x(0) − 2kt)2

4(α+ it)

)
,

where k = 100, α = 1/120, x(0) = 0.8 presented in [19]. In this case we compute
the numerical solutions in the domain [0, 1.5] for t ∈ [0, 0.04] and the uniform
grid J ×N = 12000× 4000 is used.

In all computations the finite difference scheme (2.2) is used and boundary
conditions are approximated by (3.1). It was checked that the error values due
to discretization are at least 10 times smaller than the errors due to boundary
conditions approximations.
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Comparison of different approaches. First, we obtain the coefficients of
rational functions by using different approaches. The main aim is to compare
the accuracy of approximations of the different objective functions. Second, we
analyze the influence of the selected universal objective functions to the accu-
racy of solutions of the initial-boundary value problem (2.1) for two benchmark
problems defined in Examples 1 and 2.

To solve the formulated global minimization problems local search from
random starting points is used. For problems (3.3), (3.5) we use up to 10000
points. For each parameter the exponential distribution is applied with aver-
ages equal to the values defined by (3.6).

In the cases of adaptive strategy, the evaluation of the objective functions
requires solution of the 1D non-stationary discrete problem for each sample
point. This step is computationally quite costly. So we have restricted to 100
runs of local optimization even in the case of parallel computations.

The integration in (3.3) and (3.5) is done using the Gauss-Lobatto quadra-
ture with adaptive refinement, the accuracy tolerance is equal to 10−12. Ac-
cording to [11], the following parameters are specified for the downhill simplex
algorithm: reflection coefficient α = 1, expansion coefficient γ = 2, contraction
coefficient (used for both – single point and full contractions) β = 0.7, the
tolerance parameter ε = 10−10 (for (3.5) we have used ε = 10−15).

In Table 1 we present optimal coefficients of the rational functions obtained
applying different objective functions. It follows from the presented results that
the coefficients vary a lot from one approach to another. We only note that
adaptive techniques in different norms (for the same test problem) give similar
coefficients. So it is hard to formulate any constructive conclusion about the
distribution of these coefficients.

Table 1. Coefficients obtained with different approaches

Approach a0 a1 a2 a3 d1 d2 d3

Refl. coef. [17](3.5) 0.727 2.14 5.74 46.6 6.91 65.8 1124
Padé [12](3.2) 0 0.357 0.667 4.98 0.0717 1 13.9
FS (3.3) 0.602 1.78 3.53 23.1 4.94 38.0 364
Adapt.(E∞) Ex. 1 1.01 2.11 3.30 24.5 10.4 51.3 413
Adapt.(E2) Ex. 1 1.07 2.11 3.48 26.9 10.9 53.5 470
Adapt.(E∞) Ex. 2 9.30 29.3 7.20 229 0.437 1.01 28847
Adapt.(E2) Ex. 2 11.3 25.1 4.64 210 0.434 13.7 25567
Adapt.(Ec

∞) 2.91 0 10.6 138 5.26 106 10329

The Padé coefficients presented in Table 1 are calculated by the explicit
formulas (3.2). It is well known that the Padé approximation can be not
accurate for small m but the accuracy is improved as m increases. Thus in
order to test the potential of the Padé approximation we take bigger m to
analyze the convergence rate. The results are presented in Table 2.

It follows from Table 2 that the convergence rate for Example 2 is sig-
nificantly smaller than for Example 1. So the required value of m may be
quite large depending on the problem and this can be computationally expen-
sive. Therefore, alternative techniques to compute coefficients for small m, e.g.

Math. Model. Anal., 22(3):408–423, 2017.
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Table 2. Padé test for two benchmark problems

Example 1 Example 2

m ‖E‖∞ ‖E‖2 m ‖E‖∞ ‖E‖2
3 0.179 0.174 3 0.882 1.02e-2
9 1.41e-2 1.40e-2 15 0.627 7.17e-3
15 1.46e-3 1.36e-3 90 7.58e-2 8.30e-4

m = 3, are needed.
In Table 1 values of the coefficients for the objective function defined by

the reflection coefficient are taken from [17]. Our computations using δt = 0,
as was recommended in [17], gave different optimal values of coefficients. So
we have investigated in detail the dependence of the optimal coefficients on the
parameter δt. The obtained results for Example 1 are presented in Table 3,
where the optimal values of R are given for different parameters δt ∈ [0, 0.05].

Table 3. Objective function (3.5), coefficients and errors for Example 1 are computed for
different values of δt

δt a0 a1 a2 a3 d1 d2 d3 ‖E‖∞

0 1.1222 5.0569 28.777 450.63 23.606 634.82 55501 0.02680
0.0001 1.0572 4.3927 21.001 241.94 19.496 414.70 20779 0.02175
0.001 0.9498 3.4808 13.074 119.18 14.118 216.49 6255.0 0.01455
0.01 0.7868 2.4402 6.9552 56.046 8.4327 88.517 1611.7 0.00690
0.02 0.7277 2.1419 5.6515 44.817 6.9153 65.204 1065.1 0.00516
0.03 0.6913 1.9755 4.9984 39.405 6.0958 54.207 837.17 0.00435
0.04 0.6648 1.8617 4.5805 36.007 5.5475 47.436 706.46 0.00389
0.05 0.6458 1.7859 4.3173 33.868 5.1828 43.260 629.42 0.00366

We see from these results that for δt = 0.02 the values of the coefficients
are almost identical to the values given in (3.6). Therefore, in all further cal-
culations we use the coefficients for the reflection coefficient R obtained with
δt = 0.02. It is interesting to note that application of ABCs with such coeffi-
cients enabled us to solve the benchmark problems with much better accuracy
than if the coefficients obtained with δt = 0 are used. More details are provided
in the last column of the table. As we see, the actual error becomes smaller
as δt increases, however, it cannot be taken as a rule, since it depends on the
example, i.e. initial conditions.

Using two selected universal (not depending on specific examples of solu-
tions) approaches (3.5) and (3.3) we minimize the functionals that indirectly
represent the errors due to artificial boundary conditions. However, these tech-
niques cannot guarantee that the actual errors of the discrete solutions will be
small. In order to estimate the suitability of the functionals (3.5) and (3.3), we
use the obtained coefficients to define ABCs and solve two benchmark problems
defined in Examples 1 and 2.

The problems (3.5) and (3.3) are global optimization problems. In our
experiments we select a fixed number of starting points and use a local opti-
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mization algorithm to descent to the minimum. Then the best local minimum
point is used as an approximation of the global minimum point. This strat-
egy is based on the assumption that a smaller value of the objective function
means also a smaller error of the discrete solution of the Schrödinger problem.
In order to analyze this assumption we have selected 7 random local minima
for each functional R and RF that were found during optimization. By using
these coefficients we have solved Examples 1 and 2 and computed the errors of
discrete solutions.

For Example 2 the L2 norm is scaled ‖E‖∗2 = ‖E‖2 /
√
T . The results

presented in Tables 4 and 5 show that for both examples the errors of dis-
crete solutions monotonically decrease as the values of the functionals become
smaller. But errors for Example 2 are quite large, so it is hard to make any
conclusion on the convergence in this case.

Table 4. Monotonicity analysis of local minima using the reflection coefficient R

Example 1 Example 2

R ‖E‖∞ ‖E‖2 ‖E‖∞ ‖E‖∗2

7.29e-06 3.39e-2 3.35e-2 0.712 4.08e-2
7.14e-06 3.68e-2 3.61e-2 0.685 3.92e-2
2.66e-09 1.01e-2 9.74e-3 0.507 2.89e-2
2.41e-09 9.77e-3 9.42e-3 0.505 2.88e-2
2.25e-09 9.57e-3 9.23e-3 0.505 2.87e-2
2.61e-10 5.71e-3 5.36e-3 0.422 2.40e-2
1.40e-10 5.16e-3 4.89e-3 0.452 2.57e-2

Table 5. Monotonicity analysis of local minima using the Fourier symbol RF

Example 1 Example 2

RF ‖E‖∞ ‖E‖2 ‖E‖∞ ‖E‖∗2

0.446 5.08e-2 4.62e-2 0.738 4.24e-2
0.161 2.53e-2 2.26e-2 0.746 4.28e-2
8.20e-2 1.46e-2 1.22e-2 0.726 4.16e-2
5.81e-2 1.25e-2 1.08e-2 0.712 4.08e-2
4.27e-2 6.89e-3 6.95e-3 0.702 4.02e-2
3.54e-2 5.87e-3 6.06e-3 0.694 3.98e-2
3.18e-3 2.17e-3 1.56e-3 0.636 3.64e-2

Next, we present the results obtained by using all different techniques to
define ABCs. The comparison of the obtained results (the optimization results
for the universal functionals R and RF and the solution errors in L∞ and L2

norms) is presented in Table 6. R and RF values for adaptive techniques are
presented for Example 2, since it gives the biggest values.

The following main conclusions can be done. First, the heuristic for solving
global optimization problems is quite robust. We have no guarantees that the
global optimization problem is solved exactly, however, the smallest values for
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Table 6. Values of all objective functions obtained with different approaches

Example 1 Example 2

Approach R RF ‖E‖∞ ‖E‖2 ‖E‖∞ ‖E‖∗2
Refl. coef. (3.5) 1.40e-10 2.15e-2 5.16e-3 4.89e-3 0.452 2.57e-2
FS (3.3) 4.62e-06 3.18e-3 2.18e-3 1.56e-3 0.636 3.64e-2
Adapt.(E∞) 0.106 1689 3.21e-4 2.75e-4 9.43e-3 6.13e-4
Adapt.(E2) 0.100 1255 7.19e-4 2.58e-4 1.53e-2 4.09e-4
Padé 2.06e-3 16.2 0.179 0.173 0.882 5.07e-2

all objective functions are obtained when the global optimization algorithm has
minimized the specified objective functional. So we have concluded that the
obtained computational results are sufficient to formulate our main qualitative
conclusions.

Second, considering both universal objective functions (reflection coefficient
and Fourier symbol), the accuracy of both ABCs is similar: the errors of dis-
crete solutions are small for Example 1 and much larger for Example 2. So
we conclude that the presented two techniques are not universal, there is no
guarantee that they are suitable for all initial conditions, at least with small
m = 3. Moreover, from Table 6 we see that both functionals R and RF obtain
big values when adaptively strategy is used to find the coefficients for Exam-
ple 2. Although m = 3 is small so this result was expected – adaptive error
minimization cannot guarantee small values of the universal functionals.

Third, the adaptive techniques for Example 2 defined coefficients leading
to sufficiently small errors of the discrete solution. So even for this example
an accurate approximation by rational functions is still possible. However, this
technique adapts the coefficients to the selected example and the obtained opti-
mal coefficients can give considerably bigger errors for other initial conditions.

Next we investigate the suitability of ABCs approximation by rational func-
tions technique in general case. We already saw that it is possible to find accu-
rate coefficients for different benchmarks separately. In Table 7 a cross-check
of adaptive techniques for different examples is done, i.e. errors of discrete
solutions are estimated for both examples using coefficients that were obtained
applying adaptive techniques for both benchmarks.

Table 7. Cross-check of the accuracy for different examples

Example 1 Example 2

Approach ‖E‖∞ ‖E‖2 ‖E‖∞ ‖E‖∗2

Example 1
Adapt.(E∞) 3.21e-4 2.75e-4 0.600 3.43e-2
Adapt.(E2) 7.19e-4 2.58e-4 0.596 3.40e-2

Example 2
Adapt.(E∞) 0.594 0.560 9.43e-3 6.13e-4
Adapt.(E2) 0.576 0.542 1.53e-2 4.09e-4

coupled Adapt.(Ec
∞) 4.44e-2 3.73e-2 4.44e-2 2.64e-3
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It follows from the results presented in Table 7, that the errors of the discrete
solutions are small when the specific norm for the same solution is used as an
objective function. The type of the norm is not very important in computation
of optimal coefficients for the given benchmark problem. At the same time
the errors of the discrete solution are big for the remaining test problem. In
order to test the approximation accuracy of the family of rational functions
with m = 3 we have used one more objective function (3.7), when a coupling
of the errors of both benchmark problems is considered. The results presented
in Table 7 show that this objective function enables us to find the coefficients
giving small enough errors for both benchmarks. Thus the coupled adaptive
strategy allows us to find an efficient compromise among two discrete solutions.

In overall, we see that all analysed approaches can be used for calculation
of coefficients of rational functions but only with some limitations.

5 Conclusions

Two test problems from the literature were used to investigate coefficients
of rational functions to approximate the exact transparent boundary condi-
tions. Two universal techniques for obtaining coefficients, approximation of
the Fourier symbol and minimization of the reflection coefficient, resulted in
small errors of the same order in the case of the first test problem. However,
these techniques gave big errors for the second test problem. This means that
these universal techniques do not suit all possible problems.

Minimization of the actual error gave a significant increase in the accuracy of
calculations. However, this technique is tuned to the selected test problem only.
The coupled adaptive technique to obtain the optimal values of coefficients
showed that it is possible to find values that suit both test problems with
the errors that are small enough for many modelling purposes. However, it is
unclear if such values exist in a general case with any initial conditions. It is
necessary to perform analysis using other test problems in order to generalize
the results.

One more possibility how to increase the accuracy of ABC based on rational
functions is to use the Laplace transform and instead of the Fourier symbol to
approximate the Laplace symbol, when s is the general complex time covariable.
It would be interesting to investigate this approach in the future.

It would also be useful to investigate advanced black box global optimiza-
tion algorithms instead of multistart used. Another research direction is multi-
level parallelization for obtaining coefficients in adaptive techniques what would
make computations faster but also might allow us to find better values.
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[13] R. Paulavičius and J. Žilinskas. Simplicial Global Optimization. Springer, New
York, 2014. https://doi.org/10.1007/978-1-4614-9093-7.

[14] M.J.D. Powell. An efficient method for finding the minimum of a function of sev-
eral variables without calculating derivatives. The Computer Journal, 7(2):155–
162, 1964. https://doi.org/10.1093/comjnl/7.2.155.

https://doi.org/10.1016/S0021-9991(03)00159-1
https://doi.org/10.1155/1998/38298
https://doi.org/10.1016/0165-2125(91)90053-Q
https://doi.org/10.1002/(SICI)1098-2426(199911)15:6<672::AID-NUM5>3.0.CO;2-J
https://doi.org/10.1002/(SICI)1098-2426(199911)15:6<672::AID-NUM5>3.0.CO;2-J
https://doi.org/10.3846/1392-6292.2010.15.409-430
https://doi.org/10.1016/0021-9991(75)90102-3
https://doi.org/10.1080/01630569708816790
https://doi.org/10.1119/1.1619141
https://doi.org/10.1093/comjnl/7.4.308
https://doi.org/10.1007/978-1-4614-9093-7
https://doi.org/10.1093/comjnl/7.2.155


On the Accuracy of Some ABCs for the Schrödinger Equation 423

[15] W.H. Press, B.P. Flannery, S.A. Teukolsky and W.T. Vetterling. Numerical
Recipes in C: The Art of Scientific Computing, Second Edition. Cambridge
University Press, 1992.
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