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Abstract. In the paper, an asymptotic analysis of G.F. Carrier’s mathematical
model of string oscillation is presented. The model consists of a system of two non-
linear second order partial differential equations and periodic initial conditions. The
longitudinal and transversal string oscillations are analyzed together when at the ini-
tial moment of time the system’s solutions have amplitudes proportional to a small
parameter. The problem is reduced to a system of two weakly nonlinear wave equa-
tions. The resonant interaction of periodic waves is analyzed. An uniformly valid
asymptotic approximation in the long time interval, which is inversely proportional
to the small parameter, is constructed. This asymptotic approximation is a solution
of averaged along characteristics integro-differential system. Conditions of appear-
ance of combinatoric resonances in the system have been established. The results of
numerical experiments are presented.
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1 The mathematical model

The linear string oscillation equation is

vtt − b2vxx = 0 , (1.1)

here x ∈ [0, l] is a coordinate, t ∈ [0,∞) – time, b > 0 – sound velocity, and
v(x, t) is the string transverse deviation from the equilibrium position which,
together with the initial and boundary conditions, makes the well-known small-
amplitude string fluctuation model (see, e. g., [30]).
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Equation (1.1) is obtained by introducing certain mathematical and physical
preconditions limiting the applicability of the model. For example, mathemat-
ical preconditions regarding the smallness of the function v(x, t): |v(x, t)| � 1,
analyticity or at least smoothing v(x, t) ∈ C2 ([0, l]× [0,∞)), physical precon-
ditions regarding string weightlessness, nontensility and absolute tensility. In
the opposite case, we should account for the effect of gravitational forces and
for the fact that the string’s length in the process of its motions may change,
therefore the Hooke tensility law does not work.

If we reject at least one above-mentioned or other ”obvious” precondition,
we shall obtain various generalizations of the linear wave equation (1.1) and of
the related model.

For example, upon rejecting the conditions of the small deviation and given
that v(x, t) ∼ 1, the equation of motion begins to depend on the first-order
derivative vx(x, t) and becomes nonlinear. We can show that in this case from
the Lagrangian function, corresponding to such an oscillating string

L =
1

2
ρAv2t − T (

√
1 + v2x − 1)

with the usual boundary conditions v(0, t) = v(l, t) = 0, there follows a more
complicated equation of motion

vtt =
b2vxx

(1 + v2x)
3/2

, b =
T

ρA
. (1.2)

Employing mechanical reasonings, this equation was obtained [22].

A broader context of modelling is presented in the monographs [12, 31].
The monograph [31] deals with the general properties of the mathematical
modelling whereas the monograph [12] helps us to find asymptotic solutions
of the strongly nonlinear systems of differential equations. The monograph is
dedicated to a very important fundamental problem: the inversion of Lagranges
theorem on the stability of equilibrium not a trivial task, over which researchers
had struggled for more than half a century.

The oscillation equations of the both mentioned models have their regions
of validity. Equation (1.2) is nonlinear, valid also in the case when the value
of the transversal deviations |v(x, t)| � 1. However, in the case transversal
deviations are too large, equation (1.2) becomes misleading: in case of large
deviations, the deflection of a string element may be not only transversal,
but also longitudinal. This means that large deviations are characterized by
two functions: transversal v(x, t) and longitudinal u(x, t). It is the idea that
has stimulated a number of authors to formulate the corresponding nonlinear
models of a fluctuating string not for one but for two functions – v(x, t) and
u(x, t) (see, e. g., [1, 2, 7, 21]).

For example, this attracted G.F.Carrier’s attention in [5,6] (see also [8,25]);
he has formulated a model of the nonlinear motion of a string, in which he
analyzes both transversal and longitudinal string oscillations, describing them
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by a system of two nonlinear second-order partial differential equations:
ρAutt − EAuxx − (EA− T )

(1 + ux)vxvxx − uxxv2x√
[(1 + ux)2 + v2x]

3
= 0 ,

ρAvtt − EAvxx + (EA− T )
(1 + ux)2vxx − (1 + ux)uxxvx√

[(1 + ux)2 + v2x]
3

= 0 ,
(1.3)

here ρ is the substance density, A – the transection area, E – the Young mod-
ulus of string, T – the initial tension. Differently from the classical rectilinear
motion, an element of a non-stimulated string is characterized by the spatial
axial coordinate x and the time moment t. Deviations of the stimulated string
element are characterized by the longitudinal u(x, t) and transverse v(x, t) dis-
placements. The string moves in the (u, v) plane. Such a note may be regarded
as a parametrical curve which depends not only on the spatial but also on the
time coordinate for which the radius-vector r = (u(x, t), v(x, t)).

What is the interrelation of the equations of motion (1.1), (1.2) and (1.3)?
In the absence of longitudinal oscillations, i.e. when u(x, t) ≡ ux (x, t) ≡
uxx (x, t) ≡ 0, system (1.3) degenerates into one equation which characterizes
only transverse oscillations v(x, t):

ρAvtt −
Tvxx

(1 + v2x)
3/2
− EA

[
vxx −

vxx

(1 + v2x)
3/2

]
= 0 . (1.4)

In case when the condition

v2x �
2

3

T

EA
(1.5)

is valid, the last term in equation (1.4) may be ignored, and this equation
transforms into equation (1.2). Indeed, when | v2x| � 1, using the series

(1 + v2x)3/2 = 1 +
3

2
v2x +O(v4x) , (1.6)

equation (1.4) may be written as follows:

ρAvtt −
Tvxx

(1 + v2x)
3/2
−

3
2EAvxxv

2
x

(1 + v2x)
3/2

= 0 .

The second term will be much larger than the third one if its numerator will
be significantly larger than the third term numerator, i.e.

T � 3

2
EAv2x , (1.7)

and it is from here that the condition (1.5) follows.

It is well known (see, e. g., [4]) that
T

EA
is a deformation or, in our case, the

relative lengthening of the string
∆l

l
. Condition (1.5) has a simple geometrical

interpretation:

v2x �
2

3

∆l

l
. (1.8)
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Inequality (1.8) and expansion (1.6) will be satisfied if ∆l < 3
2 l.

Let us summarize: when a swaying string lengthens more than 3/2 times,
the Carrier’s model (1.3) should be used. When the lengthening does not
exceed more than 3/2 of the string length but is rather large, e.g., ∆l ∼ l,
model (1.2) may be applied. Last but not least, when the condition ∆l � l
and correspondingly v2x � 1, equation (1.2) turns into the classical rectilinear
swaying equation (1.1). Note that the presented limitations of the application
of the models are valid in the bounded region of changing the independent
variables (x, t) ∈ [0, l] ×

[
0, t0

]
, when the constants l, t0 do not depend on

the asymptotic relations (1.5), (1.7), etc. The more subtle asymptotic analysis
performed in this paper shows that when a large (x, t) region of variable changes
is analyzed, transition to a simpler model may be groundless even at small
oscillation amplitudes.

Coming back to system (1.3), let us note that when at the initial moment
of time t = 0 the system solutions have small amplitudes (proportional to the
small parameter ε), the problem is reduced to a system of two nonlinear wave
equations. In this paper, we construct an asymptotic approximation uniformly
valid in the long time interval t ∼ ε−1 and determine the appearance conditions
of the resonant wave interactions.

2 Analysis of the model by the small parameter method

Suppose that at the initial moment of time t = 0 the following conditions are
satisfied:

u(x, 0) = ε̃u0 (x) , ut (x, 0) = ε̃u1 (x) ,
v(x, 0) = ε̃v0 (x) , vt (x, 0) = ε̃v1 (x) , 0 < ε̃� 1.

(2.1)

We shall search for the system (1.3) solution in the form u = ε̃ũ, v = ε̃ṽ.
Substituting u, v in (1.3) and selecting the terms of ε̃ power-series expansions,
we obtain:

ε̃ (ρAũtt − EAũxx)− ε̃2(EA− T )

×
(
ṽxṽxx + ε̃

(
ũxxṽ

2
x − 2ũxṽxṽxx +O (ε̃)

))
= 0,

ε̃ (ρAṽtt − T ṽxx)− ε̃2(EA− T ) (ũxxṽx + ũxṽxx

− ε̃

(
ũ2xṽxx −

3

2
ṽxxṽ

2
x + 2ũxṽxũxx +O (ε̃)

))
= 0. (2.2)

Let us note that

a2 = E/ρ, b2 = T/(ρA), ε = ε̃(b2 − a2).

By omitting members of the O
(
ε̃3
)

order and neglecting the sign (̃ ), we receive
the asymptotic integration problem{

utt − a2uxx = −εvxvxx,
vtt − b2vxx = −ε(vxuxx + uxvxx)

(2.3)



Uniformly Valid Asymptotics for Carrier’s Mathematical Model 341

with the initial conditions corresponding to (2.1). When in system (2.3) ε = 0,
we obtain a couple of two independent travelling waves (see, e. g., [30]):

u(x, t) =
1

2
(u0 (x+ at) + u0 (x− at)) +

1

2a

∫ x+at

x−at
u1 (ξ) dξ,

v(x, t) =
1

2
(v0 (x+ bt) + v0 (x− bt)) +

1

2b

∫ x+bt

x−bt
v1 (ξ) dξ. (2.4)

Functions (2.4) are obtained also from the linear model (1.1). However,
when ε > 0, function (2.4) will be close to the solution of the system (2.3), in
the general case only in a short time interval t� O

(
ε−1
)
.

The system (2.1)–(2.3) has a classical (continuously differentiable with re-
spect to the variables t ir x) solution u(t, x; ε), v(t, x; ε) in the time interval

t ∈
[
0, τ

0

ε

]
, here τ0 is a constant. We are constructing an asymptotic solution

U(t, x; ε), V (t, x; ε) uniformly valid in the indicated interval: ∀µ > 0 ∃εµ > 0
such, that for all ε ∈ (0, εµ] is true next estimation

max
t∈

[
0, τ

0

ε

]
,x∈R

|U(t, x; ε)− u(t, x; ε)|+ |V (t, x; ε)− v(t, x; ε)| < µ. (2.5)

At a certain moment of time t = τ1

ε , there may appear the discontinuous
derivatives ut, ux, vt, vx (gradient catastrophe) is constructed and its asymp-
totic approximation does not describe the solution. This means that the time

interval under analysis t ∈
[
0, τ

0

ε

]
and τ0 < τ1. Estimation (2.5) is an analog

of the well known in asymptotic analysis N.N. Bogoliubov’s theorem [24].
The aspects of mathematical substantiation of asymptotic approximations

constructed in the paper have been analyzed [13,14].

3 Construction of the uniformly valid asymptotics

Let us rewrite system (2.3) in the Riemann invariants rj of the linear part of
the system. Note that the asymptotic method does not use the quasi-linear
system invariants which may be constructed by the methods of [9] [10].

r1 = ut − aux, r2 = ut + aux, r3 = vt − bvx, r4 = vt + bvx.

Then we obtain

∂rj
∂t
± a∂rj

∂x
= − ε

4b2
(r4 − r3) (r4x − r3x) , j = 1, 2,

∂rj
∂t
± b∂rj

∂x
= − ε

4ab
((r4 − r3) (r2x − r1x)

+ (r2 − r1) (r4x − r3x)) , j = 3, 4.

(3.1)

We shall analyze system (3.1) when functions (2.1) are 2π-periodic:

rj (0, x; ε) =

+∞∑
kj=−∞

r
(0)
jkj
eikjx. (3.2)

Math. Model. Anal., 22(3):337–351, 2017.
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If to looking for the asymptotic solution of (3.1) as a regular small parameter
ε power series expansion

rj (t, x; ε) = rj0 (t, x) + εrj1 (t, x) +O
(
ε2
)
, (3.3)

we shall see that in the general case (3.3) we will have the secular terms εt (see,
e. g., [26]). Therefore, approximation (3.3) may be used only when the values
εt are small, i. e. t � ε−1, or in a short time t interval. On the other hand,
equations (3.1) have a classical (diferentiated) solution when t ∈

[
0, O

(
ε−1
)]

,
i. e. in a long time interval.

Let us note that in papers [5, 6] concerning the model (1.3) the author
analyzed the asymptotics, but they had secular terms.

It is a non-trivial problem to construct an asymptotic solution uniformly
valid in a long time interval t ∈

[
0, O

(
ε−1
)]

. Such asymptotics

rj(x, t; ε) = Rj(τ, yj) +O(ε)

is found as a solution of the following system averaged along the characteristics
[15,16]:

∂Rj
∂τ

= − 1

4b2
〈(R4(τ, y4)−R3(τ, y3))(
∂R4(τ, y4)

∂y4
− ∂R3(τ, y3)

∂y3

)〉
j

, j = 1, 2,

∂R3

∂τ
= − 1

4ab

〈(
R4(τ, y4)

(
∂R2(τ, y2)

∂y2
− ∂R1(τ, y1)

∂y1

)
+(

(R2(τ, y2)−R1(τ, y1))
∂R4(τ, y4)

∂y4

))〉
3

,

∂R4

∂τ
=

1

4ab

〈(
R3(τ, y3)

(
∂R2(τ, y2)

∂y2
− ∂R1(τ, y1)

∂y1

)
+(

(R2(τ, y2)−R1(τ, y1))
∂R3(τ, y3)

∂y3

))〉
4

.

(3.4)

Here, τ = εt is a slow time, y1 = x− at, y2 = x+ at, y3 = x− bt, y4 = x+ bt
are the fast characteristic variables, y = (y1, y2, y3, y4). The operators 〈· · · 〉j
averaging along characteristics are described as follows:

〈f (τ, y)〉1 =

lim
T→∞

1

T

∫ T
0
f (τ, y1, y1 + (λ1 − λ2) s, y1 + (λ1 − λ3) s, y1 + (λ1 − λ4) s) ds,

〈f (τ, y)〉2 =

lim
T→∞

1

T

∫ T
0
f (τ, y2 + (λ2 − λ1) s, y2, y2 + (λ2 − λ3) s, y2 + (λ2 − λ4) s) ds,

〈f (τ, y)〉3 =

lim
T→∞

1

T

∫ T
0
f (τ, y3 + (λ3 − λ1) s, y3 + (λ3 − λ2) s, y3, y3 + (λ3 − λ4) s) ds,

〈f (τ, y)〉4 =

lim
T→∞

1

T

∫ T
0
f (τ, y4 + (λ4 − λ1) s, y4 + (λ4 − λ2) s, y4 + (λ4 − λ3) s, y4) ds.

Here, λ1 = a, λ2 = −a, λ3 = b, λ4 = −b.
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When all numbers
λi−λj
λk−λj are irrational, the right sides of system (3.4) will be

equal to zero and the solutions are expressed by formulas (2.4), i. e. travelling
by independent waves at the velocity λj . In the opposite case, the right sides
of system (3.4) may not equal zero, and in this case the solution of this system
depends on the slow time τ . In this paper, we shall limit ourselves to the case
when a and b are integer numbers.

We shall obtain an integral differential system which we integrate from 0 to
2π. Sometimes such averaging is called internal [15], and this is its essential dif-
ference as compared with various partial derivatives averaging schemes [23,24]
which may be called the external averaging. The systems obtained by internal
averaging often remain without a subsequent study and left in the literature as
a certain theoretical result of the asymptotic analysis [3, 28]. Let us note that
system (3.4) does not directly depend on the small parameter ε and thus has no
problems of asymptotic integration. Therefore, the problem may be successfully
solved by numerical methods [15,16]. Let us note some papers [11,20,27,29] in
which, like in our work, the method of two scales and averaging methods are
applied, however, the Fourier analysis is performed without directly construct-
ing the averaging system. In our paper, for the definite equations (1.3), we
have applied the general method of averaging along characteristics the weakly
nonlinear hyperbolic systems. The constructed averaging system allows finding
uniformly valid asymptotic approximations of a polynomial form by applying
the methods of our earlier work [17]. On the other hand, the theoretical analysis
of the obtained averaged system (see [18,19]) allows determining the conditions
of appearing combinatoric resonances.

4 Analysis of the averaged system

We shall analyze the solution of system (3.4) by the Fourier series:

Rj (τ, yj) =

+∞∑
kj=−∞

Rjkj (τ) eikjyj . (4.1)

The functions Rjkj (τ) (3.2) satisfy the initial conditions Rjkj (0) = r
(0)
jkj

. When

the right sides of system (3.4) are equal to zero, correspondingly the functions

Rjkj (τ) ≡ r(0)jkj , i. e. do not depend on τ . Otherwise we shall have the resonant

wave interaction and the functions Rjkj (τ) will describe the slowly changing
wave amplitude.

Let us denote the sets of resonant harmonics:

Rj =

{
kj ∈ Z \ {0} :

dRjkj (τ)

dτ
6≡ 0

}
.

The resonant wave interaction in the system does not appear if R1 = R2 =
R3 = R4 = ∅. The sets Rj are interdependent and are empty only in case

when the parameters of the problem a =
√

E
ρ and b =

√
T
ρA meet certain

requirements. Suppose that the sets R3 and R4 have no such harmonics k3, k4

Math. Model. Anal., 22(3):337–351, 2017.
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for whom

k3 (a∓ b) = k4 (a± b) (4.2)

is valid. In this case, we shall have R1 = R2 = ∅. On the other hand, the sets
R3,4 will be empty, if they and the sets R1,2 have no such harmonics for which

k1,2 (2b) = k3,4 (a± b) (4.3)

is valid.
Note also that for resonances to appear the following relations among all

harmonics depending to the set Rj are necessary:

k1,2 = k3 + k4, k3,4 = k4,3 + k1,2. (4.4)

Let us note that the relations (4.3), (4.4) imply that the corresponding
coefficients of the Fourier Rjkj (τ) should not be equal to zero.

5 Numerical experiments

In practice, we limit ourselves to the first Fourier lines (4.1) harmonics |kj | ≤ K
and look for the functions Rjkj (τ) by the following approximations:

Rjkj (τ) ≈ R(0)
jkj

+R
(1)
jkj
τ +R

(2)
jkj
τ2 + · · ·+R

(N)
jkj

τN . (5.1)

We find the polynomial coefficients by the method of undetermined coefficients.
The same results we obtain by successive iterations.

5.1 Example 1

We shall analyze the problem when a = 1, b = 3 and the initial conditions are
as follows:

R1 (0, y1) = R2 (0, y2) = 0,
R3 (0, y3) = sin 2y3 + sin 4y3 + 2 cos 2y3 + cos 4y3,
R4 (0, y4) = 3 sin 2y4 + sin 4y4 + 5 cos 2y4 + cos 4y4.

We shall present the calculated data using the computer algebra system Maple
coefficients (5.1):

R1 (τ, y1) =

(
2

3
τ − 11

216
τ3 +

227

311040
τ5 +

12463

313528320
τ7
)

cos 6y1

+

(
−1

6
τ +

11

864
τ3 − 227

1244160
τ5 +

12463

1254113280
τ7
)

sin 6y1,

R2 (τ, y2) =

(
1

4
τ − 1

432
τ3 − 11

622080
τ5 +

23

67184640
τ7
)

cos 6y2

+

(
− 1

12
τ +

1

1296
τ3 +

11

1866240
τ5 − 23

201553920
τ7
)

sin 6y2,
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R3 (τ, y3) =

(
2 +

1

72
τ2 − 19

62208
τ4 +

181

134369280
τ6
)

cos 2y3

+

(
1 +

1

144
τ2 − 19

124416
τ4 +

181

268738560
τ6
)

sin 2y3

+

(
1− 17

72
τ2 +

85

10368
τ4 +

17

414720
τ6
)

cos 4y3

+

(
1− 17

72
τ2 +

85

10368
τ4 +

17

414720
τ6
)

sin 4y3,

R4 (τ, y4) =

(
5 +

5

144
τ2 − 25

4608
τ4 +

1889

5971968
τ6
)

cos 2y4

+

(
3 +

1

48
τ2 − 5

1536
τ4 +

1889

9953280
τ6
)

sin 2y4

+

(
1− 5

144
τ2 +

5

124416
τ4 +

179

53747712
τ6
)

cos 4y4

+

(
1− 5

144
τ2 +

5

124416
τ4 +

179

53747712
τ6
)

sin 4y4.

We see that the sets R1,2 = {−6, 6}, R3,4 = {−4,−2, 2, 4}. Thus, con-
ditions (4.2), (4.3) are satisfied: 2k3 = 4k4, 6k3,4 = 2k1,2 or 6k3,4 = 4k1,2.
Besides, all harmonics satisfy conditions (4.4): ±6 = ±4± 2, ±4 = ±6∓ 2 and
±2 = ∓4± 6.

Figure 1. Graphs of example 1 functions R1, R2, R3, R4

Figure 1 presents graphs of the functions Rj (τ, y), j = 1, 2, 3, 4 when τ = 0
and τ = 0.9, and y1 = y2 = y3 = y4 = y are taken. At the initial time moment
τ = 0, the functions R1 and R2 are absent, and at τ = 0.9 there appear waves,
their amplitudes depending on τ . The resonant interactions of waves cause also
the dependence of the amplitudes of waves R3, R4 on the slow time τ . The
amplitudes slowly change, however, at τ = 0.9 in the graph the new waves R3,
R4 are clearly seen.

Math. Model. Anal., 22(3):337–351, 2017.
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5.2 Example 2

Let us take the same values as in Fig. 1: a = 1, b = 3, and in the initial
conditions let us take the non-zero functions R1, R2:

R1 (0, y1) = sin 3y1 + 5 cos 3y1,

R2 (0, y2) = 4 sin 3y2 + 8 cos 3y2,

R3 (0, y3) = sin 2y3 + sin 4y3 + 2 cos 2y3 + cos 4y3,

R4 (0, y4) = 3 sin 2y4 + sin 4y4 + 5 cos 2y4 + cos 4y4.

The calculated coefficients of polynoms (5.1) are presented in Table 1.

Table 1. The polynomial coefficients at τ in a degree.

τ0 τ1 τ2 τ3 τ4 τ5

R1

cos 3y1 5 0.0217 -0.0005
sin 3y1 1 0.0043 -0.0001
cos 6y1 0.6667 -0.0818 0.0080
sin 6y1 -0.1667 0.0204 -0.0020

R2

cos 3y2 8 0.2361 -0.0196
sin 3y2 4 0.1181 -0.0098
cos 6y2 0.25 -0.0061 0.0001
sin 6y2 -0.0833 0.0020 0.394 · 10−6

R3

cos y3 0.1667 -0.0057 -0.0002
sin y3 2.1667 -0.0740 -0.0032
cos 2y3 2 0.0764 -0.0001
sin 2y3 1 -0.0382 -4.823 · 10−6

cos 4y3 1 -0.2361 0.0301
sin 4y3 1 -0.2361 0.0301

R4

cos y4 0.1250 -0.0014 -0.803 · 10−7

sin y4 0.4583 -0.0052 -0.294 · 10−6

cos 2y4 5 -0.6597 -0.0046
sin 2y4 3 -0.3958 -0.0028
cos 4y4 1 -0.0347 0.0011
sin 4y4 1 -0.0347 0.0011

We see that the sets Rj in this case have more elements:

R1,2 = {−6,−3, 3, 6}, R3,4 = {−4,−2,−1, 1, 2, 4}.

This means that not only the transverse oscillations induced the longitudinal
ones as in example 1, but also the longitudinal oscillations induced a resonance
(not only amplitude) effect on the transverse ones. This effect caused the first
harmonic – the basic tone – of the transverse oscillations.

The constructed approximations of the Riemann invariants allow to write
down the approximations of the required functions u, v, i.e. wave profile ap-
proximations:

u(x, t; ε) ≈ 1

2a

∫
(R2(εt, x+ at)−R1(εt, x+ at)) dx

=
(

1.3333 + 0.0394 (εt)
2 − 0.0033 (εt)

4
)

sin 3(x+ t)
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−
(

0.6667 + 0.0197 (εt)
2 − 0.0016 (εt)

4
)

cos 3(x+ t)

−
(

0.8333 + 0.0036 (εt)
2 − 0.0001 (εt)

4
)

sin 3(x− t)

+
(

0.1667 + 0.0007 (εt)
2
)

cos 3(x− t)

+
(

0.0208 (εt)− 0.0005 (εt)
3
)

sin 6(x+ t)

+
(

0.0069 (εt)− 0.0002 (εt)
3
)

cos 6(x+ t)

−
(

0.0556 (εt) + 0.0068 (εt)
3

+ 0.0007 (εt)
5
)

sin 6(x− t)

−
(

0.0139 (εt) + 0.0017 (εt)
3

+ 0.0002 (εt)
5
)

cos 6(x− t),

v(x, t; ε) ≈ 1

2b

∫
(R4(εt, x+ bt)−R3(εt, x+ bt)) dx

=
(

0.0208 (εt)− 0, 0002 (εt)
3
)

sin(x+ 3t)

−
(

0.0764 (εt)− 0.0009 (εt)
3
)

cos(x+ 3t)

−
(

0.0278 (εt)− 0, 0009 (εt)
3
)

sin(x− 3t)

+
(

0.3611 (εt)− 0.0123 (εt)
3 − 0.0005 (εt)

5
)

cos(x− 3t)

+
(

0.4167− 0.0550 (εt)
2 − 0.0004 (εt)

4
+ 0.0002 (εt)

6
)

sin 2(x+ 3t)

+
(

0.2500 + 0.0330 (εt)
2

+ 0.0002 (εt)
4 − 0.0001 (εt)

6
)

cos 2(x+ 3t)

−
(

0.1667− 0.0064 (εt)
2
)

sin 2(x− 3t)

+
(

0.0833− 0.0032 (εt)
2
)

cos 2(x− 3t)

+
(

0.0417− 0.0014 (εt)
2
)

sin 4(x+ 3t)

−
(

0.04167− 0.0014 (εt)
2
)

cos 4(x+ 3t)

−
(

0.0417− 0.0098 (εt)
2 − 0.0013 (εt)

4
+ 0.0001 (εt)

6
)

sin 4(x− 3t)

+
(

0.0417− 0.0098 (εt)
2

+ 0.0013 (εt)
4 − 0.0001 (εt)

6
)

cos 4(x− 3t).

The Figures 2–5 present the graphs of the functions u and v at different mo-
ments of the slow time τ = εt. Each graph contains three values of the fast
time t: t = 10τ , t = 100τ , t = 1000τ .

6 Conclusions

The system constructed by means of internal averaging along characteristics
allows finding asymptotic solutions, elucidating their properties, determining
the resonance-appearing conditions.

Math. Model. Anal., 22(3):337–351, 2017.
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Figure 2. Profiles of waves u, v at time moment τ = 0

Figure 3. Profiles of waves u, v at time moment τ = 0.3

The small-amplitude periodic oscillations in the Carrier system for a non-
resonance case are described by independent waves travelling to different sides

with the velocities a =
√

E
ρ by transverse and b =

√
T
ρA by longitudinal waves.

In the resonance case, wave amplitudes depend on the slow time τ , and the
periodic functions describing the waves have the harmonics which have been
absent at the initial moment of time. The resonant interaction of transverse
and longitudinal waves may appear only if relations (4.2), (4.3) and (4.4) among
the harmonics and the velocities a, b are valid.

If at the initial moment of time the transverse oscillations contain no har-
monics satisfying the relation (4.2), no resonance appears in the system. This
means that the longitudinal oscillations alone cannot arouse the transversal
ones, but the transverse oscillations may induce the longitudinal ones in the
presence of (4.2).

In this case, the longitudinal oscillations, together with the transversal, ones
may induce new harmonics of the transverse vibrations (overtones) of (4.2).
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Figure 4. Profiles of waves u, v at time moment τ = 0.6

Figure 5. Profiles of waves u, v at time moment τ = 0.9

Note that all conclusions are valid for the first asymptotic approximations
(2.2). By presenting in the system (2.2) terms of the higher order of the small
parameter ε, we may construct the second asymptotic approximation and ana-
lyze the harmonics which appear not only because of combinatoric resonances
(4.2),(4.3),(4.4) but also because of the system’s nonlinearities. It is obvious
that these effects will be of a higher ε order, i. e. they will be weaker.
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350 P. Mǐskinis, A. Krylovas and O. Lavcel-Budko

[3] R. Arora. Asymptotical solutions for a vibrationally relaxing gas. Mathemati-
cal Modelling and Analysis, 14(4):423–434, 2009. https://doi.org/10.3846/1392-
6292.2009.14.423-434.

[4] G.K. Batchelor. An Introduction to Fluid Dynamics. Cam-
bridge Mathematical Library. Cambridge University Press, 1967.
https://doi.org/10.1017/CBO9780511800955.

[5] G.F. Carrier. On the non-linear vibration problem of the elastic string. Quarterly
of applied mathematics, 3:157–165, 1945. https://doi.org/10.1090/qam/12351.

[6] G.F. Carrier. A note on the vibrating string. Quarterly of applied mathematics,
7:97–101, 1949. https://doi.org/10.1090/qam/28511.

[7] L.-Q. Chen. Analysis and control of transverse vibrations of axi-
ally moving strings. Applied Mechanics Reviews, 58(2):91–116, 2005.
https://doi.org/10.1115/1.1849169.

[8] L.-Q. Chen and H. Ding. Two nonlinear models of a transversely
vibrating string. Archive of Applied Mechanics, 78(5):321–328, 2008.
https://doi.org/10.1007/s00419-007-0164-7.

[9] E.V. Ferapontov and K.R. Khusnutdinova. The Haantjes tensor and double
waves for multi-dimensional systems of hydrodynamic type: a necessary condi-
tion for integrability. Proceedings of the Royal Society A, 462:1197–1219, 2006.
https://doi.org/10.1098/rspa.2005.1627.

[10] E.V. Ferapontov and D.G. Marshall. Differential-geometric approach to the inte-
grability of hydrodynamic chains: the Haantjes tensor. Mathematische Annalen,
339(1):61–99, 2007. https://doi.org/10.1007/s00208-007-0106-2.

[11] E.R. Gutierrez, P.L. Silva Dias and C. Raupp. Asymptotic approach for the
nonlinear equatorial long wave interactions. Journal of Physics: Conference
Series, 285(1):012020, 2011.

[12] V.V. Kozlov and S.D. Furta. Asymptotic Solutions of Strongly Nonlinear Sys-
tems of Differential Equations. Springer Monographs in Mathematics. Springer-
Verlag, Berlin, Heidelberg, 2013.

[13] A. Krylovas. Justification of the method of internal averaging along character-
istics of weakly linear systems. I. Lithuanian Mathematical Journal, 29(4):721–
732, 1989.

[14] A. Krylovas. Justification of the method of internal averaging along characteris-
tics of weakly nonlinear systems. II. Lithuanian Mathematical Journal, 30(1):35–
43, 1990. https://doi.org/10.1007/BF00966457.
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ematical model of nonlinear oscillations of absolutely elastic inextensible weight-
less string. Nonlinear Analysis: Modelling and Control, 15(3):307–323, 2010.
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