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Abstract. The main motivation of this study is to propose an optimal scheme with
an inverse interpolatory rational function error corrector in a general way that can be
applied to any existing optimal multi-point fourth-order iterative scheme whose first
sub step employs Newton’s method to further produce optimal eighth-order iterative
schemes. In addition, we also discussed the theoretical and computational properties
of our scheme. Variety of concrete numerical experiments and basins of attraction
are extensively treated to confirm the theoretical development.
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1 Introduction

The conceptualization and construction of higher-order multi-point solution
techniques has always been a paramount importance in the field of numerical
analysis that provides a more accurate and efficient approximate solution ξ of
nonlinear equation of the form

f(x) = 0,
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where f : C→ C is an analytic function in a region containing ξ. This topic has
attracted the attention of many researchers from the worldwide, since Traub
[19] initiated the qualitative as well as the quantitative analysis of iterative
methods. In 2012, Petković et al. [11] gathered up and updated the state of
the art of multi-point methods.

Due to the advancement of digital computer, advanced computer arith-
metics and symbolic computation, a special attention has been paid to the
development of optimal eighth-order iterative methods, which nowadays con-
verge very fast towards the required root. In addition,we can reach our desired
accuracy within a very small number of iterations.

In the literature, we can easily find that a large number of optimal eighth-
order methods have been proposed by various researchers in [5, 8, 9, 13, 15,
16, 17, 18, 20]. Most of them are extensions of Newton’s method or Newton-
like method at the expense of additional functional evaluations or increased
number of sub-steps of the original methods. However, there are a few number
of optimal schemes which are applicable to any iterative method of particular
order to further obtain higher-order methods. According to our knowledge, very
recently, Sharma et al. [13] proposed an optimal scheme which is applicable to
every optimal fourth-order method whose first sub step should be Newton to
further extend eighth-order convergence. However, they randomly consider the
third sub step in their proposed scheme without the justification of this step.

Nowadays, a constructive development of optimal schemes of eighth-order
which are applicable to every fourth-order iterative method/family of iterative
methods with Newton’s method applied to the first sub-step iteration rather
than the usual development dependent on particular fourth-order methods be-
comes a more interesting and challenging task in the filed of numerical analysis.

In order to develop a new scheme, it is quite often to approximate functions.
Several types of approximations are available in the literature, for example, by
use of Functional approach, Sampling approach, Geometric approach, Weight
function approach, Adomain approach, Composition approach and Rational
function approach. Every approach has some advantages and disadvantages
because it is dependent on the problem under consideration. The choice of
suitable approximation approach can save considerable amount of computa-
tion. Rational function approach is one of the most important techniques in
numerical analysis for approximating the function or finding the next approxi-
mation.

In general, the number of tangency conditions to be discussed in Section 2
are equal to the number of undetermined constants. Further, we will get an
improved method with higher-order convergence as we increase the number of
undetermined constants in the rational function(for the details, see Jarratt and
Nudds [7]).

Therefore, in this manuscript we pursue to develop a generic optimal eighth-
order scheme which will be applicable to every fourth-order optimal method
or family of methods whose first sub -step employs Newton’s method. The
derivation of the proposed scheme is based on the concept of the rational ap-
proximations. The beauty of the proposed scheme is that it is applicable to
every optimal scheme of fourth-order whose first sub-step employs Newton’s
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method. The efficiency of the methods is tested on a number of numerical ex-
amples and it is found that our proposed methods perform better than existing
optimal methods of the same order. Moreover, we also investigate the dynam-
ics of the listed simple root finders in the complex plane using the basins of
attraction which give important information about convergence and stability
of the listed methods. The study of dynamics of these methods plays a role in
understanding their convergence behavior of rather global character in terms
of periodic, quasi-periodic or chaotic orbits.

2 Development of eighth-order optimal schemes

In this section, we will propose an optimal eighth-order family of iterative
methods. We begin the development by considering a general fourth-order
scheme in the following way: yn =xn −

f(xn)

f ′(xn)
,

zn =φ4(xn, yn).

(2.1)

We first apply the classical Newton’s method to the third sub-step in order to
get an eighth-order method as follows:

xn+1 =zn −
f(zn)

f ′(zn)
,

which is not optimal in the sense of Kung-Traub conjecture [8] due to the
additional use of f ′(zn). In order to avoid the use of f ′(zn), we introduce a
function Ω(x) satisfying the tangency conditions

Ω(xn) = f(xn), Ω′(xn) = f ′(xn), Ω(yn) = f(yn), Ω(zn) = f(zn). (2.2)

We now choose a second-order rational function Ω(x) of the form

Ω(x) = Ω(xn) +
(x− xn) + a1

a2(x− xn)2 + a3(x− xn) + a4
, (2.3)

where parameters ai(1 ≤ i ≤ 4) will be determined in terms of f(xn), f ′(xn),
f(yn), f(zn) by means of the above tangency conditions (2.2). Then the third
sub-step iteration will be replaced by

xn+1 = zn −
f(zn)

Ω′(zn)
, (2.4)

which no longer requires f ′(zn). Hence, equations (2.1) and (2.4) would yield
an optimal eighth-order method. One should note that Ω(x) in (2.2) plays a
important role leading to the development of an eighth-order optimal method.

Nevertheless, we in this paper seek a different third sub-step iteration of
the form:

xn+1 = xn −Wf (xn, yn, zn), (2.5)

Math. Model. Anal., 22(3):321–336, 2017.
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where Wf can be regarded as an error correction term to be called naturally
as ”error corrector”. This kind of form of a third sub-step iteration is more
useful in the error analysis as well as in the study of dynamics via basins of
attraction. One way of finding such a third sub-step iteration with a feasible
error corrector is to apply the Inverse Function Theorem [1] to (2.3). That is to
say, since Ω′(ξ) 6= 0 (otherwise, f(x) would possess ξ as a multiple root), there
exists a unique function τ(x) satisfying Ω(τ(x)) = x in some neighborhood of
τ(ξ). As a result, we use such an inverse function τ(x) to develop the desired
third sub-step iteration in the form of (2.5) rather than directly using Ω(x) in
(2.3).

After applying the Inverse Function Theorem to (2.3), we obtain the desired
third sub-step iteration as the following rational function by means of τ(x) as
follows:

x = xn +
τ(x)− τ(xn) + a1

a2
(
τ(x)− τ(xn)

)2
+ a3

(
τ(x)− τ(xn)

)
+ a4

, (2.6)

where ai(1 ≤ i ≤ 4) are free disposable parameters and can be determined by
imposing the following tangency conditions

τ(xn) = f(xn), τ ′(xn) = f ′(xn), τ(yn) = f(yn), τ(zn) = f(zn). (2.7)

One should note that the rational function on the right side of (2.6) is regarded
as an error corrector. Indeed, the desired third sub-step iteration (2.6) is ob-
tained using the inverse interpolatory function approach meeting the tangency
constraints (2.7). Clearly, the third sub-step iteration (2.6) looks more suit-
able than (2.4) in the error analysis. It remains us to determine parameters
ai(1 ≤ i ≤ 4) in (2.6).

By applying the first two tangency conditions, we obtain

a1 = 0, a4 = f ′(xn).

Again, with the help of last two tangency conditions and the above values of
a1 and a4, we have the following two independent relations

a2
(
f(yn)− f(xn)

)2
+ a3

(
f(yn)− f(xn)

)
+ f ′(xn)− f [xn, yn] = 0,

a2
(
f(zn)− f(xn)

)2
+ a3

(
f(zn)− f(xn)

)
+ f ′(xn)− f [xn, zn] = 0,

which further yield

a2 =
(
f ′(xn)(f(zn)− f(yn)) + f [xn, zn](f(yn)− f(xn)) + f [xn, yn]

× (f(xn)− f(zn)
)
/
(
f(yn)− f(xn))(f(yn)− f(zn))(f(xn)− f(zn)

)
,

a3 =
−a2(f(yn)− f(xn))2 − f ′(xn) + f [xn, yn]

f(yn)− f(xn)
, (2.8)

where f [·, ·] is a forward divided difference of order one.
In order to find the next approximation xn+1, we assume that the above

rational function (2.6) meets the x – axis at x = xn+1. Then, we obtain

τ(xn+1) = 0,
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which further yields

xn+1 = xn −
f(xn)

a2f(xn)2 − a3f(xn) + f ′(xn)
. (2.9)

Finally, by using expressions (2.6) and (2.9), we get
yn =xn −

f(xn)

f ′(xn)
,

zn =φ4(xn, yn),

xn+1 = xn −
f(xn)

a2f(xn)2 − a3f(xn) + f ′(xn)
,

(2.10)

where a2 and a3 are defined earlier in expression (2.8). In the following The-
orem 1, we demonstrate that the order of convergence will reach the optimal
eighth-order convergence without using any more functional evaluations. It is
interesting to observe that only a single coefficient A0 in φ4(xn, yn) contributes
to its role in the construction of the desired asymptotic error constant as can
be seen in Theroem 1.

Theorem 1. Let f : C → C have a simple zero ξ and be an analytic function
in the region containing ξ. Further, assume that φ4(xn, yn) is any optimal
scheme of order four with A0 as its asymptotic error constant and initial guess
x = x0 is sufficiently close to ξ for guaranteed convergence. Then, the iterative
scheme defined by (2.10) has an optimal eighth-order convergence and satisfies
the following error equation

en+1 =A0c2
(
2c32 − 3c3c2 + c4

)
e8n +O(e9n),

where en = xn − ξ and cj = f(j)(ξ)
j!f ′(ξ) for j = 2, 3, . . . , 8.

Proof. The Taylor’s series expansion of the function f(xn) and f ′(xn) around
x = ξ with the assumption f ′(ξ) 6= 0 leads us to:

f(xn) = f ′(ξ)[en+c2e
2
n+c3e

3
n+c4e

4
n+c5e

5
n+c6e

6
n+c7e

7
n+c8e

7
n+O(e9n)] (2.11)

f ′(xn) = f ′(ξ)[1 + 2c2en + 3c3e
2
n + 4c4e

3
n + 5c5e

4
n + 6c6e

5
n

+ 7c7e
6
n + 8c8e

7
n + 9c9e

8
n +O(e9n)], (2.12)

respectively.
By using the above expressions (2.11) and (2.12) in the first sub step, we

have

yn − ξ = c2e
2
n + (2c3 − 2c22)e3n + (4c32 − 7c3c2 + 3c4)e4n + (20c3c

2
2 − 8c42 − 6c23

− 10c4c2 + 4c5)e5n + (16c52 − 52c3c
3
2 + 28c4c

2
2 + (33c23 − 13c5)c2 − 17c3c4

+ 5c6)e6n − 2
(
16c62 − 64c3c

4
2 + 36c4c

3
2 + 9(7c23 − 2c5)c22 + (8c6 − 46c3c4)c2

− 9c33 + 6c24 + 11c3c5 − 3c7
)
e7n +

(
64c72 − 304c3c

5
2 + 176c4c

4
2 + (408c23

− 92c5)c32 + (44c6 − 348c3c4)c22 + (−135c33 + 118c5c3 + 64c24 − 19c7)c2

+ 75c23c4 − 31c4c5 − 27c3c6 + 7c8

)
e8n +O(e9n).

Math. Model. Anal., 22(3):321–336, 2017.
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The following expansion of f(yn) about a point x = ξ with the help of Taylor
series yields

f(yn) =f ′(ξ)

[
c2e

2
n + (2c3 − 2c22)e3n + (5c32 − 7c3c2 + 3c4)e4n − 2(6c42 − 12c3c

2
2

+ 5c4c2 + 3c23 − 2c5)e5n + {28c52 − 73c3c
3
2 + 34c4c

2
2 + (37c23 − 13c5)c2

− 17c3c4 + 5c6}e6n +H1e
7
n +H2e

8
n +O(e9n)

]
,

where H1 and H2 are constant functions of c2, c3, . . . , c8.
Since φ4(xn, yn) is an optimal fourth-order optimal scheme, the scheme

will satisfy the following error equation

zn − ξ = A0e
4
n +A1e

5
n +A2e

6
n +A3e

7
n +A4e

8
n +O(e9n),

where A0 6= 0.
Now, we can expand the function f(zn) about a point z = ξ with the help

of Taylor series expansion, which is given as follows

f(zn)=f ′(ξ)
[
A0e

4
n+A1e

5
n +A2e

6
n +A3e

7
n + (A2

0c2 +A4)e8n +O(e9n)
]
. (2.13)

With the help of expressions (2.11) – (2.13), we have

f(xn)

a2f(xn)2−a3f(xn)+f ′(xn)
=en−A0c2

(
2c32 − 3c3c2 + c4

)
e8n +O(e9n). (2.14)

Finally, by inserting above expression (2.14), in the last sub step of the proposed
scheme (2.10), we get

en+1 =A0c2(2c32 − 3c3c2 + c4)e8n +O(e9n). (2.15)

This reveals that the proposed scheme (2.10) reaches an optimal eighth-order
convergence in the sense of Kung-Traub conjecture. This completes the proof.
ut

Remark 1. In general, one naturally expects that the asymptotic error constant
of the proposed scheme (2.10) may be dependent on c2, c3, c4, c5, c6, c7, c8 and
A0, A1, A2, A3, A4. Nevertheless, it is undoubtedly interesting to observe that
the asymptotic error constant shown in (2.15) appears as a simple expression,
being dependent only on c2, c3, c4 and A0. This simplicity clearly reflects that
our current approach using the inverse interpolatory function with the tangency
conditions plays a key role in the development of an optimal family of eighth-
order methods.

3 Numerical experiments

In this section, we shall check the effectiveness and validity of our theoretical
results which we have proposed in Section 2. For this purpose, we shall consider
a concrete variety of nonlinear equations, which are given as follows:

f1(x) = exp
(
−x2 + x+ 2

)
+ x3 − cos(x+ 1) + 1; [18] ξ = −1,
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f2(x) = sin−1(x2 − 1)− x

2
+ 1; [4] ξ = 0.59481096839836917752,

f3(x) = log
(
x2 + x+ 2

)
− x+ 1; [11] ξ = 4.15259073675715827499,

f4(x) = cos(x)− x; [5] ξ = 0.73908513321516064165,

f5(x) = x5 + x4 + 4x2 − 15; [16] ξ = 1.34742809896830498151,

f6(x)=x exp
(
x2
)
− sin2(x)+3 cos(x) + 5; [9] ξ = −1.20764782713091892701.

We shall verify the theoretical order of convergence of the proposed meth-
ods on the basis of the results obtained from | xn+1−xn

(xn−xn−1)8
| and computational

order of convergence. In Table 1, we displayed the number of iteration indexes
(n), approximated zeros (xn), absolute residual error of the corresponding func-
tion (|f(xn)|), error in the consecutive iterations |xn+1− xn|, | xn+1−xn

(xn−xn−1)8
|, the

asymptotic error constant η = lim
n→∞

| xn+1−xn

(xn−xn−1)8
| and ρ. In order to calculate

the computational order of convergence ρ, we use the following formula

ρ = log |(xn+1 − xn)/η|/ log |xn − xn−1|, n = 1, 2, 3.

We calculate the computational order of convergence, asymptotic error constant
and other constants up to several number of significant digits (minimum 1000
significant digits) to minimize the round off error.

Table 1. Convergence behavior of methods PM18 and PM28 on f1(x) –f6(x)

Cases f(x) n xn |f(xn)| |xn+1 − xn| |
xn+1−xn

(xn−xn−1)8
| η ρ

PM18 f1

0 −0.8 1.3 2.0(−1)
1 −0.99999997763 1.3(−7) 2.2(−8) 0.0087394782 0.0034013 7.41365
2 −1.00000000000 1.3(−63) 2.1(−64) 0.0034012941 8.00000
3 −1.00000000000 8.8(−512) 1.5(−512) 0.0034012933 8.00000

PM18 f2

0 1 5.0(−1) 4.1(−1)
1 0.5948090837283 2.0(−6) 1.9(−6) 0.00259392681 0.00008837 4.25920
2 0.5948109683984 1.5(−50) 1.4(−50) 0.00008836552 8.0000
3 0.5948109683984 1.4(−403) 1.4(−403) 0.00008836711 8.00000

PM18 f3

0 3.2 5.4(−1) 9.5(−1)
1 4.152590944848 1.3(−7) 2.1(−7) 3.0690368(−7) 7.9649(−8) −19.77
2 4.152590736757 1.7(−61) 2.8(−61) 7.9649402(−8) 8.0000
3 4.152590736757 1.8(−492) 3.0(−492) 7.9649424(−8) 8.00000

PM28 f4

0 0.5 3.8(−1) 2.4(−1)
1 0.73908514888 2.6(−8) 1.6(−8) 0.00146696579 0.00055131 7.31607
2 0.73908513322 3.3(−66) 2.0(−66) 0.00055130498 8.00000
3 0.73908513322 2.3(−529) 1.4(−529) 0.00055130501 8.00000

PM28 f5

0 1.2 4.7 1.5
1 1.347429011193 3.4(−5) 9.1(−7) 4.087317765 2.1745982 7.67037
2 1.347428098968 3.9(−47) 1.0(−48) 2.174589401 8.00000
3 1.347428098968 1.1(−382) 3.0(−384) 2.174598218 8.00000

PM28 f6

0 −1.3 2.2 9.2(−2)
1 −1.20764783189 9.7(−8) 4.8(−9) 0.8989533433 0.13905535 7.21652
2 −1.20764782713 7.4(−67) 3.6(−68) 0.1390553883 8.0000
3 −1.20764782713 8.8(−540) 4.3(−514) 0.1390553493 8.00000

It is straight forward to say that our methods have the small asymptotic
error constant which confirm the theoretical results.

Math. Model. Anal., 22(3):321–336, 2017.
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We consider also the following test functions:

f7(x) = tan−1 x; [2], x0 = 0.5, ξ = 0,

f8(x) = x3 + sinx− 1; [11] x0 = 0.4,

ξ = 0.70569369763018399372425969776447061,

f9(x) = x3 − 30x+ 5; [2] x0 = −0.4,

ξ = 0.16682141791816451151054900720209898,

f10(x) = 10xe−x
2

− 1; [11] x0 = 1.1,

ξ = 1.6796306104284499406749203388379704,

f11(z) = z4 + (5 + 2i)z +
√

5i+ 1; [11] z0 = 0.5 + 1.6i,

ξ = 0.7674379412974 · · ·+ 1.7131311525356 . . . i

Table 2. Comparison of residual error on the test examples f7(x) –f11(x)

f(x) |f(xn)| CM8 LM8 SM8 TM8 SA8 PM18 PM28

f7

|f(x1)| 1.2(−5) 1.2(−4) 4.0(−5) 1.2(−4) 4.0(−5) 3.0(−6) 5.6(−6)

|f(x2)| 1.1(−46) 9.4(−38) 1.8(−50) 3.4(−35) 7.0(−42) 1.7(−63) 1.7(−60)

|f(x3)| 1.1(−415) 1.5(−335) 3.0(−549) 1.6(−312) 1.0(−372) 2.7(−693) 3.8(−660)

f8

|f(x1)| 9.4(−6) 3.4(−5) 1.2(−3) 6.4(−4) 4.7(−6) 3.2(−7) 2.9(−5)

|f(x2)| 2.5(−44) 1.9(−39) 7.0(−28) 4.8(−28) 2.1(−47) 2.4(−57) 1.9(−40)

|f(x3)| 6.0(−353) 2.0(−313) 8.6(−222) 5.4(−221) 3.6(−378) 2.7(−458) 6.8(−322)

f9

|f(x1)| 3.2(−7) 2.8(−7) 1.0(−7) 3.0(−7) 2.6(−7) 1.0(−9) 1.1(−9)

|f(x2)| 4.1(−69) 1.4(−69) 9.9(−74) 2.2(−69) 6.6(−70) 8.4(−91) 1.1(−90)

|f(x3)| 3.1(−564) 5.0(−568) 6.9(−602) 1.7(−566) 1.1(−570) 1.9(−739) 2.3(−738)

f10

|f(x1)| 3.3(−3) 2.1(−3) 6.0(−4) 2.1(−3) 3.0(−3) 1.6(−4) 1.6(−4)

|f(x2)| 3.1(−23) 2.0(−24) 2.1(−31) 1.4(−23) 2.5(−24) 1.7(−34) 9.9(−34)

|f(x3)| 1.5(−183) 1.7(−192) 5.0(−251) 4.8(−185) 5.9(−193) 3.2(−274) 2.0(−267)

f11

|f(x1)| 7.6(−3) 2.4(−2) 4.8(−2) 6.3(−1) 1.7(−4) 1.3(−3) 1.7(−2)

|f(x2)| 1.2(−26) 2.8(−22) 8.0(−21) 4.5(−10) 1.9(−41) 2.5(−33) 1.1(−23)

|f(x3)| 3.5(−217) 1.0(−181) 5.1(−171) 3.4(−83) 5.6(−337) 3.1(−271) 3.0(−193)

As we mentioned in the above paragraph that we calculate the values of
all the constants and functional residuals up to several number of significant
digits but due to the limited paper space, we display the value of xn and ρ
up to 15 and 6 significant digits, respectively. In addition, we also display
| xn+1−xn

(xn−xn−1)8
| and η up to 10 significant digits. Moreover, absolute residual error
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in the function |f(xn)| and error in the consecutive iterations |xn+1 − xn| are
displayed up to 2 significant digits with exponent power which are mentioned
in Tables 1, 2 and 3. Furthermore, the approximated zeros up to 30 significant
digits are also displayed in Table 1 although minimum 1000 significant digits
are available with us.

Now, we want to see the comparison of our methods with the other exist-
ing optimal methods of the same order. Therefore, we consider some other
nonlinear functions which are displayed above.

We consider the following methods.

(i) Let us consider an optimal family of fourth-order methods proposed by
Behl et al. [3]. Then, we obtain the following optimal family of eighth-order
methods with the help of our proposed scheme (2.10), which is given by



yn =xn −
f(xn)

f ′(xn)
, zn = xn −

f(xn)

f ′(xn)

×

[
(b21 + b1b2 − b22)f(xn)f(yn)− b1(b1 − b2){f(xn)}2(

b1f(xn)− b2f(yn)
)(

(2b1 − b2)f(yn)− (b1 − b2)f(xn)
)] ,

xn+1 = xn −
f(xn)

a2f(xn)2 − a3f(xn) + f ′(xn)
,

where b1, b2 ∈ R such that b1 neither equal to 0 nor b2. For a computational
point of view, let us consider b1 = 1 and b2 = 1

10 in the above scheme, denoted
by (PM18).

(ii) Next, we shall choose another optimal family of fourth-order methods
proposed by Behl et al. in [2]. Then, we further yield another new optimal
family of eighth-order methods, which is given by



yn =xn −
f(xn)

f ′(xn)
,

zn =xn −
f(xn)

f ′(xn)

[
1 +

f(yn)

f(xn) + f(yn)
+ (α+ 2)

(
f(yn)

f(xn) + f(yn)

)2

+
H ′′′(1)

6

(
f(yn)

f(xn) + f(yn)

)3 ]
,

xn+1 = xn −
f(xn)

a2f(xn)2 − a3f(xn) + f ′(xn)
,

where α,H ′′′(1) ∈ R. Let us consider α = −1 and H ′′′(1) = −9 in the above
scheme, denoted by (PM28).

Now, we will compare them with the optimal families of eighth-order meth-
ods which were proposed by Cordero et al. in [5], Li and Wang in [9], Soleymani
et al. in [16], Thukral in [17] and Sharma and Arora [14], which are respectively
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Table 3. Comparison of error in the consecutive iterations on the test examples
f7(x) –f11(x)

f |xn+1−xn| CM8 LM8 SM8 TM8 SA8 PM18 PM28

f7

|x2 − x1| 1.2(−5) 1.2(−4) 4.0(−5) 2.2(−4) 4.0(−5) 3.0(−6) 5.6(−6)
|x3 − x2| 1.1(−46) 9.4(−38) 1.8(−50) 3.4(−35) 7.0(−42) 1.7(−63) 1.7(−60)
|x4 − x3| 1.1(−415) 1.5(−335) 3.0(−549) 1.6(−312) 1.0(−372) 2.7(−693) 3.8(−660)

f8

|x2 − x1| 4.2(−6) 1.5(−5) 5.3(−4) 2.8(−4) 2.1(−6) 1.4(−7) 1.3(−5)
|x3 − x2| 1.1(−44) 8.5(−40) 3.1(−28) 2.1(−28) 9.3(−48) 1.1(−57) 8.5(−41)
|x4 − x3| 2.7(−353) 8.8(−314) 3.8(−222) 2.4(−221) 1.6(−378) 1.2(−458) 3.0(−322)

f9

|x2 − x1| 1.1(−8) 9.5(−9) 3.4(−9) 1.0(−8) 8.8(−9) 3.4(−11) 3.5(−11)
|x3 − x2| 1.4(−70) 4.7(−71) 3.3(−75) 7.3(−71) 2.2(−71) 2.8(−92) 3.8(−92)
|x4 − x3| 1.0(−565) 1.7(−569) 2.3(−603) 5.8(−568) 3.5(−572) 6.4(−741) 7.7(−740)

f10

|x2 − x1| 1.2(−3) 7.5(−4) 2.2(−4) 7.7(−4) 1.1(−3) 1.6(−4) 5.8(−5)
|x3 − x2| 1.1(−23) 7.3(−25) 7.6(−32) 5.1(−24) 9.1(−25) 1.7(−34) 3.6(−34)
|x4 − x3| 5.6(−184) 6.3(−193) 1.8(−251) 1.8(−185) 2.1(−193) 1.2(−274) 7.4(−268)

f11

|x2 − x1| 3.6(−4) 1.1(−3) 2.3(−4) 2.9(−2) 8.1(−6) 6.4(−5) 8.0(−4)
|x3 − x2| 5.5(−28) 1.3(−23) 3.8(−22) 2.1(−11) 9.2(−43) 1.2(−34) 5.1(−25)
|x4 − x3| 1.7(−218) 4.9(−183) 2.4(−172) 1.6(−84) 2.7(−338) 1.5(−272) 1.4(−194)

defined as follows:

yn =xn −
f(xn)

f ′(xn)
, zn = xn −

f(xn)− f(yn)

f(xn)− 2 f(yn)

f(xn)

f ′(xn)
,

un =zn −
f(zn)

(
f(xn)−f(yn)
f(xn)−2f(yn) + f(zn)

2(f(yn)−2f(zn))

)
2

f ′(xn)
,

xn+1 =un −
3(b2 + b3)f(zn) (un − zn)

f ′(xn) (b2 (−xn + yn) + b1 (un − zn) + b3 (−xn + zn))
,

(3.1)


yn =xn −

f(xn)

f ′(xn)
, zn = yn −

f(xn)f(yn)

f ′(xn)f(xn)− 2f ′(xn)f(yn)
,

xn+1 =zn −
f(zn)

(
(f(xn)−f(yn))2
(f(xn)−2f(yn))2 + f(zn)

f(yn)−af(zn) + 4f(zn)
f(xn)+bf(zn)

)
f ′(xn)

,

(3.2)



yn =xn −
f(xn)

f ′(xn)
, zn = yn −

(2f(xn)− f(yn)) f(yn)

f ′(xn) (2f(xn)− 5f(yn))
,

xn+1 =zn −
f(zn)

(
f(zn)

2

f(xn)2
− 3f(yn)

3

2f(xn)3
− 31f(yn)

4

4f(xn)4
− f(yn)

2+f(zn)
2

f ′(xn)2

)
−f ′(xn) + 2f [zn, xn]

−
f(zn)

(
f(yn)

2+f(zn)
2

f ′(xn)2
+ f(yn)

2+f(yn)f(zn)+f(zn)
2

f(yn)2

)
−f ′(xn) + 2f [zn, xn]

,

(3.3)
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yn =xn −

f(xn)

f ′(xn)
, zn = xn −

f(xn)2 + f(yn)2

f ′(xn)f(xn)− f ′(xn)f(yn)
,

xn+1 =zn−
f(zn)

(
4f(zn)
f(xn)

− 2f(yn)
2

f(xn)2
− 6f(yn)

3

f(xn)3
+

(f(xn)
2+f(yn)

2)
2

f(xn)2(f(xn)−f(yn))2
+ f(zn)

f(yn)

)
f ′(xn)

(3.4)
and 

yn =xn −
f(xn)

f ′(xn)
, zn = yn −

f(yn)

2f [yn, xn]− f ′(xn)
,

xn+1 =zn −
f [zn, yn]

f [zn, xn]

f(zn)

2f [zn, yn]− f [zn, xn]
.

(3.5)

We shall call the above expression (3.1) (for b1 = 1, b2 = 1, b3 = 2), expression
(3.2) (for a = 0, b = 0), expression (3.3), expression (3.4) and expression (3.1),
by CM8, LM8 SM8, TM8 and SA8, respectively.

For better comparisons of our proposed methods with other existing ones,
we have given two types of comparison tables in each test function. First one
is related to absolute residual error in the corresponding function (|f(xn)|)
displayed in Table 2. The other one is related to absolute error between the
two consecutive iterations |xn+1 − xn| in Table 3. Further, we consider the
approximated zero of test functions when the exact zero is not available, which
is corrected up to 1000 significant digits to calculate |xn−ξ|. For the computer
programming, all computations have been performed using the programming
package Mathematica 9 with multiple precision arithmetic. Further, the no-
tation of a(±b) implies a× 10(±b) in the following Tables 2–3.

It is worthy to note from Table 2 that the minimum residual errors belong
to our methods in all the test problems except the last one. So, we can say that
our methods give a more accurate approximate zero of the involved function
as compare to other existing methods. In addition, from Table 3 our methods
have minimum error in the consecutive iterations corresponding to the test
functions f7-f11, except the last test problem. Hence, we confirm that our
methods converge faster towards required zero of the corresponding function
as compared to other existing methods.

4 Attractor basins in the complex plane

In order to see the comparison of iterative methods, one can take into account
their convergence orders, the numerical stability, CPU time, minimum number
of iterations required to attain the desired accuracy, computational order of
convergence, asymptotic error constants, absolute residual error in the function
by using the same number of functional evaluations, etc. However, the main
drawback of these types of comparisons is that they generally start with one
initial guess which is chosen at random regardlessly of many other possible
choices of initial guesses.

Therefore, we here investigate the dynamics of the listed simple root finders
in the complex plane using basins of attraction which gives important informa-
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tion about convergence and stability of the method. To start with, let us recall
some basic concepts which are related to basins of attractions. Let φ : C→ C
be a rational map on the Riemann sphere. The orbit of a point z ∈ C under φ
is defined

{z, φ(z), φ2(z), . . . , φn(z), . . . },

which consists of successive images of z by the rational map φ. The dynamic
behavior of the orbit of a point of φ would be characterize by its asymptotic
behavior. We first introduce some notions of a point in the orbit under φ: a
point z0 ∈ C is known as a fixed point of φ, if φ(z0) = z0. In addition, z0 is
known as a periodic point of period m > 1, if φm(z0) = z0, where m is smallest
such integer. Further, if z0 is a periodic point of period m then it is a fixed
point for φm. Moreover, there are mainly four types of fixed points of a map
φ, which are based on the magnitude of the derivative.

A fixed point z0 is known as: (a) attracting point if |φ′(z0)| < 1, (b) repelling
point if |φ′(z0)| > 1, (c) neutral or parabolic point if |φ′(z0)| = 1, (d) super-
attracting point if |φ′(z0)| = 0.

Basins of attraction. If ξ is a root of f(x), then the basin of attraction of
ξ, is the collection of those initial approximations x0 which converge to ξ. It is
mathematically defined as follows:

B(ξ) = {z0 ∈ C : φn(z0)→ ξ as n→∞}.

Arthur Cayley was the first person who considered the concept of the basins
of attraction for Newton’s method in 1879. Initially, he considered this concept
for the quadratic polynomial. After some time, he also considered cubic poly-
nomials, but was unable to find an obvious division for the basins of attraction
as he earlier defined for the quadratic equations. In the early of 20th century,
the French mathematicians Gaston Julia and Pierre Fatou started to under-
stand the nature of complex cubic polynomials. The Julia set of a nonlinear
map φ(z), called J(φ), is the closure of the set of its repelling fixed points and
establishes the borders between the basins of attraction. On the other hand,
the complement of J(φ) is known as the Fatou set F (φ). In simple words, the
basins of attraction of any fixed point belongs to the Fatou set F (φ) and the
boundaries of these basins of attraction belong to the Julia set J(φ). For the
details of these concepts please see [6, 10, 12]. The aim herein is to use the
basins of attraction as another way for characterizing initial approximations
converging to the desired root ξ for the listed iteration algorithms. That is to
say, the basins of attraction play a role representing a valuable dynamics of the
iteration schemes under consideration.

In order to achieve a vivid description from a dynamical point of view,
we consider a rectangle D = [−3, 3] × [−3, 3] ∈ C with a 400 × 400 grid,
and we assign a color to each point z0 ∈ D according to the simple root at
which the corresponding iterative method starting from z0 converges, and we
mark the point as black if the method does not converge. In this section, we
consider the stopping criterion for convergence to be less than 10−4 wherein
the maximum number of full cycles for each method is considered to be 200.
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In this way, we distinguish the attraction basins by their colors for different
methods. For concrete examples of dynamics of the listed methods behind the
basins of attraction, we present several test problems described below.

Test problem 1. Let p1(z) = (z4 + 1), and it has simple zeros

{−0.707107− 0.707107i, −0.707107 + 0.707107i, 0.707107− 0.707107i,

0.707107 + 0.707107i}.

It is straight forward to see from Figures 1 – 2 that our methods, namely PM18,
PM28 and method SA8 are the best methods in terms of less chaotic behavior
to obtain the solutions when we compare them with among listed methods.
Further, they also have the largest basins for the solution and are faster in
comparison to all the mentioned methods except SA8.

(a) CM8 (b) LM8 (c) SM8 (d) TM8

Figure 1. The methods for test problem 1.

(a) SA8 (b) PM18 (c) PM28

Figure 2. The methods for test problem 1.

Test problem 2. Let p2(z) = (z3 + 2z − 1), and it has simple zeros

{−0.0992186− 2.24266i, −0.0992186 + 2.24266i, 0.198437}.

Based on Figures 3 – 4, it is observed that method PM18 and SA8 are the
best methods because they have almost zero non convergent points, larger
and brighter basins of attraction in comparison to the methods namely, CM8,
SM8 and TM8. In addition, with no doubts method LM8 has less number
of divergent points as compared to our method PM18 but larger basins of
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(a) CM8 (b) LM8 (c) SM8 (d) TM8

Figure 3. The methods for test problem 2.

(a) SA8 (b) PM18 (c) PM28

Figure 4. The methods for test problem 2.

attraction belongs to our method PM18. Hence, methods PM18 and SA8 are
the best methods among the listed methods.

Test problem 3. Let p3(z) = (z5 − z), has simple zeros

{−1, 0, −i, i, 1}.

Figures 5 – 6 confirm that methods PM18 and PM28 have almost zero diver-
gent points as compared to the other mentioned methods except method SA8.
In addition, larger and brighter basins of attraction belongs to our methods in
comparison to other methods namely, CM8, LM8, SM8 and TM8. Moreover,
our methods don’t show chaotic behavior on the boundaries as LM8, SM8 and
SA8.

(a) CM8 (b) LM8 (c) SM8 (d) TM8

Figure 5. The methods for test problem 3.
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(a) SA8 (b) PM18 (c) PM28

Figure 6. The methods for test problem 3.

5 Concluding remarks

In the earlier studies, several scholars proposed higher-order derivative free
extensions of any particular existing methods like Ostrowski’s method or King’s
method, etc. However, we contribute further to the development of the theory
of iteration processes and propose a new optimal eighth-order scheme in a
general way. The beauty of the proposed scheme is that it is capable to produce
several new interesting eighth-order schemes from any optimal fourth-order
scheme whose first sub step employs Newton’s method. The derivation of the
proposed scheme is based on inverse interpolatory approach. The proposed
scheme is optimal in the sense of classical Kung-Traub conjecture. We also
compare our methods with the existing robust methods of the same order on
a series of numerical examples. The results in Table 2 and 3 overwhelmingly
support that the minimum residual errors and minimum error in the consecutive
iterations belongs to our methods. In addition, Table 2 also confirms that
the simple asymptotic error constants belongs to our methods. Moreover, the
study of dynamics of our methods also reflects that our proposed methods
are comparable to or superior over the listed methods in most of current test
problems. Such comparable or superior performance of our methods may be due
to the inherent structure of our method with simple asymptotic error constants
and inverse interpolatory approach. The future work based on the inverse
interpolatory rational approach shall be devoted to a development of a new
optimal higher-order scheme.
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