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Abstract. We consider a backward ill-posed problem for an axis-symmetric frac-
tional diffusion equation which is described in polar coordinates. A closed form
solution of the inverse problem is obtained. However, this solution blows up. For
numerical stability, a general regularization principle is presented for constructing
regularization methods. Several numerical examples are conducted for showing the
validity and effectiveness of the proposed methods.

Keywords: ill-posedness, regularization, fractional diffusion equation, closed form solution.

AMS Subject Classification: 65R35; 47A52.

1 Introduction

Recently, much attention is attracted to the anomalous diffusion phenomena
[3]. The forward problems for fractional diffusion equations have been widely
investigated. However, inverse problems connected with fractional diffusion are
not studied enough in spite of the significance. Since Cheng and Yamamoto [1]
opened up a path to the field of the inverse problem for fractional diffusion
equations, the work on this topic mushroomed. These inverse problems can be
divided into several categories: (1) Numerical differentiation problems,e.g., [10,
16,17], (2) Inverse source problems, e.g., [14,24], (3) Backward time-fractional
diffusion problems, e.g., [11, 20, 21, 22], (4) Inverse coefficient problems, e.g.,
[5, 9, 15], (5) Inverse order problems, e.g., [4, 12], (6) Inverse Sturm-Liouville
problems, e.g., [6].

The difficulty of inverse problem for fractional diffusion equations lies in
the ill-posedness and the fractional derivative. For more details on the in-
verse problems, the readers can refer to a recent survey [7] and the references
therein. However, the works on inverse problems are considered in the Carte-
sian coordinates. For backward time-fractional diffusion problems, Dou and
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Hon [2] presented a fundamental solution method combined classical regular-
ization methods, Liu [13, 22] considered two quasi-reversibility regularization
methods. Yang and Liu [23] proposed a Fourier method.

In this article, we consider an axis-symmetric fractional diffusion equation.
Let f(t) ∈ C[a, b] be a time-dependant function, 0 < α < 1 is the order
of a fractional derivative and the Caputo fractional derivative is defined as
follows [18]

tD
α
∗ u(x, t) =

1

Γ (1− α)

∫ t

0

∂u(x, η)

∂η

dη

(t− η)α
.

A two-parameter Mittag-Leffler function is defined as

Eα,β =

∞∑
k=0

zk

Γ (αk + β)
, α > 0, β > 0, z ∈ C.

The forward axis-symmetric fractional diffusion problem now can be ex-
pressed as follows:

tD
α
∗ u(r, t) = κ(

∂2u(r, t)

∂r2
+

1

r

∂u(r, t)

∂r
), 0 < r < R, 0 < t < T, (1.1)

subject to the following boundary and initial conditions

u(R, t) = 0, 0 < t < T, lim
r→0

u(r, t) bounded, 0 < t < T,

u(r, 0) = f(r), 0 < r < R. (1.2)

Inverse Problem: we want to recover the solution u(r, t) ∈ L2((0, R), ρ)
with 0 ≤ t < T from the final time data u(r, T ) := g(r) ∈ L2((0, R), ρ) where
L2((0, R), ρ) denotes the Hilbert space of squares Lebesgue measurable functions
with weight ρ(r) = r/R2 defined on (0,R).

The aim of this work is to investigate mathematically and numerically the
ill-posedness nature of the backward identification problem. Under the setting
of a radial diffusion geometry, the solution is explicitly constructed as an infinite
series in terms of the eigenfunctions. Due to the “amplifying factor”, small
perturbation of the data can lead to large error in the solution. Based on
the observation on the ill-posedness nature, we give a general regularization
principle for numerical stable solution.

2 The closed form solution

First we solve the forward problem by the separation of variables. For this
purpose, the analytical solution of problem (1.1)–(1.2) is assumed as

u(r, t) =

∞∑
i=1

ϕi(r)qi(t), i = 1, 2, · · · ,∞, (2.1)

where ϕi(r) are called eigenfunctions. Substituting equation (2.1) into equation
(1.1), we can obtain the Bessel differential equation and fractional differential
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equation. In fact, the eigenfunctions ϕi(r) are the solutions of Bessel differential
equations:

d2ϕ

dr2
+

1

r

dϕ

dr
+ λϕ = 0,

the boundary conditions are limr→0 ϕ(r) bounded and ϕ(R) = 0. And λ is the
separation constant.

Considering the boundary condition, we can calculate the separation con-
stant λi = (µiR )2, where the µi, i = 1, 2, · · · ,∞ are the positive zeros of the
the zero-order Bessel function of the first kind J0(µ), the eigenfunctions ϕi are
ϕi(r) = J0(µi

r
R ) which is a complete orthogonal basis in L2((0, R), ρ).

Now the analytical solution (2.1) of the problem is rewritten as

u(r, t) =

∞∑
i=1

qi(t)J0(µi
r

R
), i = 1, 2, · · · ,∞.

First the orthogonality relationship holds∫ 1

0

xJ0(µix)J0(µjx)dx =

{
0, i 6= j,
J2
1 (µj)/2, i = j,

i.e., ∫ R

0

r

R2
J0(µi

r

R
)J0(µj

r

R
)dr =

{
0, i 6= j,
J2
1 (µj)/2, i = j.

From the above equation, we can easily conclude that the function qi(t) satisfies
the following fractional differentiation equation:

tD
α
∗ qi(t) = −κ

(
µi/R

)2
qi(t)

and the initial condition qi(0) = fi, where fi is

fi =
2

R2J2
1 (µi)

∫ R

0

rJ0(µi
r

R
)f(r)dr.

Solving the fractional differentiation equation, we can easily get the solution

qi(t) = Eα,1(−κ
(
µi/R

)2
tα)fi.

Now, finally we have the analytic solution for the forward problem (1.1)–(1.2):

u(r, t) =

∞∑
i=1

J0(µi
r

R
)Eα,1(−κ(

µi
R

)2tα)fi, i = 1, 2, · · · ,∞. (2.2)

Now we turn to solving the inverse problem. From (2.2), we have the
equality:

g(r) := u(r, T ) =

∞∑
i=1

J0(µi
r

R
)Eα,1(−κ(

µi
R

)2Tα)fi, i = 1, 2, · · · ,∞. (2.3)
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Using the orthogonality relationship, we have

gi = Eα,1
(
− κ
(
µi/R

)2
Tα
)
fi, i = 1, 2, · · · ,∞,

where gi = 2
R2J2

1 (µi)

∫ R
0
rJ0(µi

r
R )g(r)dr.

Therefore, the solution for the inverse problem is given by

u(r, t) =

∞∑
i=1

J0(µi
r

R
)
Eα,1(−κ(µiR )2tα)

Eα,1(−κ(µiR )2Tα)
gi, i = 1, 2, · · · ,∞. (2.4)

Remark 1. If α = 1, in fact E1,1(−κ(µiR )2tα) = exp(−κ(µiR )2t) and
E1,1(−κ(µiR )2Tα) = exp(−κ(µiR )2T ), then the solution for the inverse problem
is given by

u(r, t) =

∞∑
i=1

J0(µi
r

R
) exp(κ(

µi
R

)2(T − t))gi, i = 1, 2, · · · ,∞.

Since µi →∞ as i→∞, we have exp(κ(µiR )2(T−t))→∞ for T > t. Therefore
the backward identification problem is an ill-posed problem.

Remark 2. If we consider the similar problem which is formulated in the case
of Cartesian coordinate:

tD
α
∗ u(x, t) = uxx(x, t), 0 < x < R, 0 < t < T

with boundary conditions u(0, t) = u(R, t) = 0 and final condition u(x, T ) =
g(x). The solution for the inverse problem is given by

u(x, t) =

∞∑
n=1

sin(
nπ

R
x)
Eα,1(−κ(nπ/R)2tα)

Eα,1(−κ(nπ/R)2Tα)
gn, n = 1, 2, · · · ,∞,

where gn is the sine Fourier coefficients. Comparing this expression with
(2.4), we can see that the problems in the two cases have almost the same
ill-posedness.

In this paper, we are more interested in finding the inverse solution u(r, 0)
in (2.4). Here noting that Eα,1(0) = 1 we write the inverse solution as

u(r, 0) =

∞∑
i=1

J0(µi
r

R
)

1

Eα,1(−κ(µiR )2Tα)
gi, i = 1, 2, · · · ,∞. (2.5)

In order to show the instability of the solution, we need a lemma from [13].

Lemma 1. Assume that 0 < α0 < α1 < 1, then there exist constants C2 >
C1 > 0 depending only on α0, α1, such that

C1

Γ (1− α)

1

1− x
≤ Eα,1(x) ≤ C2

Γ (1− α)

1

1− x
, ∀x ≤ 0,

these estimates are uniform for all α ∈ [α0, α1].
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From Lemma 1, we can conclude that

Γ (1− α)

C2
(1 + κ(

µi
R

)2Tα) ≤ 1

Eα,1(−κ(µiR )2Tα)
≤ Γ (1− α)

C1
(1 + κ(

µi
R

)2Tα).

Because µi →∞ as i→∞, we have

1

Eα,1(−κ(µiR )2Tα)
= O(κ(

µi
R

)2Tα)

with a fixed α which is far away from 1.
Therefore, from (2.5) we can see that a small perturbation in the data g can

cause a large change in the solution u(r, 0). In the case of fractional derivative,
the backward identification problem is mildly ill-posed. From above analysis,
we know that the ill-posedness of the backward identification problem is caused
by the factor 1

Eα,1(−κ(
µi
R )2Tα)

. We call K(r, µi) = 1
Eα,1(−κ(

µi
R )2Tα)

amplifying

factor of the problem.

3 A regularization principle and its applications

Motivated by the filter methods [19], we can approximate the amplifying factor
stably and thus stabilize the ill-posed problem. By introducing a regularization
parameter α̃, we propose a general principle for constructing the stabilized
amplifying factor Kα̃(r, µi) which approaches the amplifying factor K(r, µi):

A general principle for constructing Kα̃(r, µi):
(1) for every µi, limα̃→0Kα̃(r, µi) = K(r, µi);
(2) for every α̃ > 0, there exists a constant C(α̃) which is dependent on α̃

such that |Kα̃(r, µi)| ≤ C(α̃) for all µi;
(3) there exists constant c > 0 such that |Kα̃(r, µi)| ≤ cK(r, µi) for all α̃

and µi.
The first condition guarantees the approximation property. The last two

conditions guarantee the stabilization of the approximation problem.
Based on the principle, we can construct several specific regularization

methods. For examples, we list some of them:
Method 1. The first stabilized amplifying factor Kα(r, µi) is given by

Kα̃(r, µi) =
1

Eα,1(−κ(µi/R)2Tα)
χ 1
α̃
,

where χ 1
α̃

is the characteristic function, i.e., χ 1
α̃

= 1 if µi ≤ 1
α̃ and χ 1

α̃
= 0 if

µi >
1
α̃ .

Method 2. The second stabilized amplifying factor Kα̃(r, µi) is given by

Kα̃(r, µi) =
Eα,1(−κ(µi/R)2Tα)

E2
α,1(−κ(µi/R)2Tα) + α̃

.

Correspondingly, we write these two regularization solutions as follows:

Math. Model. Anal., 22(3):311–320, 2017.
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Solution 1. The first regularization solution uα̃(r, 0) is given by

uα̃(r, 0) =

∞∑
i=1

J0(µi
r

R
)

1

Eα,1(−κ(µi/R)2Tα)
χ 1
α̃
gi.

This method is known as spectral cut-off method. In practical computation,
we use

uM (r, 0) =

M∑
i=1

J0(µi
r

R
)

1

Eα,1(−κ(µi/R)2Tα)
gi,

where M is the regularization parameter.
Solution 2. The second regularization solution uα̃(r, 0) is given by

uα̃(r, 0) =

∞∑
i=1

J0(µi
r

R
)

Eα,1(−κ(µi/R)2Tα)

E2
α,1(−κ(µi/R)2Tα) + α̃

gi.

Remark 3. Motivated by the recently-developed fractional Tikhonov regulariza-
tion methods [8], it is interesting to give some fractional regularization methods,
e,g. the fractional Tikhonov method. This method is given by modifying the
amplifying factor as

Kα̃(r, µi) =
Eα,1(−κ(µi/R)2Tα)

Eγα,1(−κ(µi/R)2Tα) + α̃

with 1 ≤ γ ≤ 2.

4 Numerical examples

Now we give some numerical examples to test the proposed regularization prin-
ciple. In this section, M1 and M2 represent Method 1, Method 2 , respectively.
First we solve the forward problem with some specified function f(r) to simu-
late the final value u(r, T ) := g(r) by (2.2), then we add artificial random noise
to g(r) for generating the noisy data gδ(r).

To avoid the “inverse crime”, we use two different grid configurations of
f(r) for solving forward and backward problems. For the forward problem, we
specify the value f(r) at a coarse grid {rj}, j = 0, . . . ,M1 to get g(r) at the
coarse grid. After generating the noisy data gδ(r), by interpolation, we can
get the values of gδ(r) at a finer gird {rj}, j = 0, . . . ,M2. Then we solve the
backward problem by regularization methods to get the values of f(r) at the
finer gird {rj}, j = 0, . . . ,M2.

In the examples, we take R = 1, T = 1,M1 = 100,M2 = 400. We replace
∞ in the solutions with a large integer M̃ (i.e., we truncate the series) in M1,
M2 and (2.2). However in M2, the integer M plays the role of regularization
parameter. The discrete version of noisy data g(r) is generated as follows:

gδj = gj + max gjδ rand(length(g))j , j = 1, . . . ,M2,

where gj are the exact data and max gj denotes the maximum of the exact data
gj , rand(length(g))j is a random number, δ is the noise level.
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Example 1. Consider the initial data f(r) = e−r
2

sin(2πr). Figure 1 (a) shows
the results for the computed g(r) and Figure 1(b) shows the computed f(r)
by (2.5) with α = 0.5 and δ = 1%. We can see that the solution given by
(2.5) is unstable solution for computation because the ill-posedness of problem.
Therefore the regularization method is necessary.
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Figure 1. Example 1: (a) the input data g(t), (b) the direct computational result with
noisy data

When α = 0.5 and δ = 1%, we use the regularization methods M1 and M2
to construct the approximation. The results are displayed in Figure 2 (a) and
(b). From them it is easy to see that the presented methods are effective.
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Figure 2. Example 1: (a) results by M2 with α̃ = 1 ∗ 10−7, (b) Result by M1 with
M = 10.

Example 2. In Example 1, the exact solution are too smooth. In this example,
we consider a hard example, i.e., the initial data is given by

f(t) =

{
1, if 0.25 ≤ t ≤ 0.75,

0, else.
(4.1)

We find the methods are still effective. First Figure 3 (a) and (b) show the
reconstruction results for M1 with a fixed fractional order α = 0.1,M = 10 and
different noise levels. From these figures we see that the results worsen as the
noise becomes larger.
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Figure 3. Example 2. Method 1 with different noisy levels: (a) result by M1 with
δ = 0.01, (b) result by M1 with δ = 0.03.

Figure 4 (a), (b) and (c) show the results with different fractional orders
α with a fixed noise level δ = 1%, α̃ = 1 ∗ 10−6. The larger α is, the worse
reconstruction result is. This is because the degree of ill-posedness increases as
the fractional order α increases. And the degree of ill-posedness becomes the
largest at α = 1.
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Figure 4. Example 2 (a) M2 with fractional order α = 0.1, (b) M2 with different
fractional order α = 0.5, (c) M2 with different fractional order α = 0.9.
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