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1 Introduction

We consider the following Calderon–Zygmund singular integral operator [10]

(Ku)(x) ≡ v.p.
∫
Rm

K(x− y)u(y)dy, x ∈ Rm, (1.1)

in the Lebesgue space L2(Rm) and its discrete analogue of the following type

(Kdud)(x̃) ≡
∑

ỹ∈hZm

Kd(x̃− ỹ)ud(ỹ)hm, x̃ ∈ hZm, (1.2)

in the space L2(hZm) ≡ l2 of functions ud of a discrete variable x̃ ∈ hZm.
We recall [10] that that a symbol σ(ξ) of the operator K is the Fourier

transform of its kernel in principal value sense

σ(ξ) = lim
ε→0,N→ +∞

∫
ε<|x|<N

K(x)eix·ξdx,
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and such symbol is called an elliptic symbol if

inf
ξ
|σ(ξ)| > 0.

Our main goal is the following. Starting from the operator (1.1) we intro-
duce the discrete operator (1.2) acting in infinite dimensional space so that
it preserves basic properties of the operator (1.1) related to an ellipticity and
invertibility [18, 19, 20, 21, 22]. Further to obtain computational algorithms we
would like to construct finite dimensional analogue of the operator (1.2) pre-
serving same properties, and to obtain results on comparison of these operators
and solutions of corresponding equations.

1.1 Some previous approaches and studies

In books [2, 3, 5, 6, 14, 15, 17] authors present studies on convolution equations,
one-dimensional singular integral equations and multidimensional weakly sin-
gular integral equations related to approximate solution of these equations.

As usual there are the following questions in these studies: 1) to find an
approximate equation desirable in a finite-dimensional (N -dimensional) space
so that under enough large N this approximate equation will be uniquely solv-
able in an appropriate space; 2) to obtain an error estimate between exact
solution of an initial equation and exact solution of approximate equation in
dependence on N . As far as we know these questions were investigated fully for
one-dimensional singular integral equations on smooth curves L in a complex
plane C [8, 15]

a(t)u(t) +
b(t)

πi
v.p.

∫
L

u(τ)

t− τ
dτ = v(t), t ∈ L,

convolution equations with integrable kernel K(x) on a straight line

a(x)u(x) +

∫ +∞

−∞
K(x− y)u(y)dy = v(x), x ∈ R,

and some their multidimensional analogues [2, 3, 5] and for multidimensional
integral equations with a weak singularity

a(x)u(x) +

∫
D

K(x, y)u(y)dy = v(x), x ∈ D ⊂ Rm,

where D is a domain with a smooth boundary ∂D and the kernel K(x, y)
satisfies the estimate

|K(x, y)| ≤ c

|x− y|m−α
, 0 < α ≤ 1;

last equations are generated by compact integral operators in appropriate
spaces [17].

An algebraic approach based on a local principle for studying certain fi-
nite approximations for integral operators was used in many papers, and its
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development for last years is presented in books for example [2, 3, 6]. But this
method of C∗-algebras permits to prove a solvability of approximating equation
but it can’t help for obtaining an error estimate for solutions of these equa-
tions. Moreover concrete applications of the method are related as a rule to
one-dimensional singular integral operators and equations.

For an error estimate there are some computational results [9,12,13,16], and
a lot of results are related to special equations for applied problems (see for
example [7]). Multidimensional case is more complicated because there is no
such advanced theory similar classical Riemann boundary value problem [4,11].

We would like to note that in general there are no valuable results for
approximate solution of multidimensional singular integral equations with Cal-
deron – Zygmund operators although such equations in distinct form arise in
many problems of partial differential equations and mathematical physics [10].
In our opinion a direct digitization is more convenient for computer calculations
than other methods, and we try to use and justify this approach.

2 Discrete spaces and transformations

2.1 Definitions and notations

We accept the following conventions and notations. The kernel K(x) is a dif-
ferentiable function on the unit sphere in Rm,K(0) ≡ 0, and Kd is a restriction
of the kernel K on lattice points hZm. Let h be a size of a “spatial quant“,
N be a size of our “Universe“. These parameters will be tend to zero and
infinity respectively. For the operator (1.1) we’ll use the following reduction.
First we replace the operator (1.1) by the discrete operator (1.2), and second
we approximate this series by a special finite sum∑

ỹ∈hZm∩QN

Kd,N (x̃− ỹ)ud(ỹ)hm, x̃ ∈ hZm ∩QN . (2.1)

For Kd,N in the formula (2.1) we suggest a following construction. If Kd

is a restriction of the continual kernel K on lattice points hZm then we take a
restriction of the Kd on points hZm ∩QN , where

QN = {x ∈ Rm : x = (x1, · · · , xm), max
1≤k≤m

|xk| ≤ N}

and denote by Kd,N its periodic continuation on the whole hZm.
We would like to justify a following sequence of transformations, “contin-

ual“ operator (1.1) −→ “infinite discrete“ operator (1.2) −→ “finite discrete“
operator (2.1) with corresponding estimates on h and N . The comparison of
(1.1) and (1.2) was given in papers’ series [18,19,20,21,22], and here we consider
a comparison between (1.2) and (2.1).

Let’s denote by PN the restriction operator hZm −→ hZm ∩ QN , and the
space L2(hZm ∩QN ) is denoted by l2N so that PN is a projector l2 → l2N .

Definition 1. Approximation rate of operators Kd and Kd,N is called the
following operator norm

||Kd,NPN − PNKd||l2→l2N .
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It is non-trivial to obtain an estimate for the operator norm, but we’ll
give an estimate for an individual element assuming the existence of some its
properties. More precisely we’ll suppose that the element ud is a restriction of
the function u which has Hölder property in Rm and u(x) = o(|x|γ), |x| → ∞,
with some γ > 0.

We will obtain a “weak estimate“ for approximation rate but enough for
our purposes. We assume additionally that a function ud is a restriction on
hZm of continuous function with certain estimates [20, 21]. Let’s define the
discrete space Ch(α, β) as a functional space of discrete variable x̃ ∈ hZm with
finite norm

||ud||Ch(α,β) = ||ud||Ch
+ sup
x̃,ỹ∈hZm

|x̃− ỹ|α

(max{1 + |x̃|, 1 + |ỹ|})β
.

It means that the function ud ∈ Ch(α, β) satisfies the following estimates

|ud(x̃)− ud(ỹ)| ≤ c |x̃− ỹ|α

(max{1 + |x̃|, 1 + |ỹ|})β
,

|ud(x̃)| ≤ c

(1 + |x̃|)β−α
, ∀x̃, ỹ ∈ hZm, α, β − α > m, 0 < α < 1.

Let us note that under required assumptions Ch(α, β) ⊂ L2(hZm), and
these discrete space are discrete analogue of corresponding subspaces of con-
tinuous functions [1].

Theorem 1. For operators Kd and Kd,N the following estimate

||Kd,NPNud − PNKdud||l2N ≤ C N
m+2(α−β)

holds, where constant C doesn’t depend on N,h.

Proof. Let us write

(PNKd −Kd,NPN )ud = PNKdPNud −Kd,NPNud + PNKd(I − PN )ud,

where I is an identity operator in L2(hZm).
First two summands have annihilated, and we need to estimate only the

last summand. We have

||PNKd(I − PN )ud|| ≤ C||(I − PN )ud||

because norms of operators Kd are uniformly bounded, and for the last norm
taking into account above estimates we can write

||(I − PN )ud||2 ≤ C
∑

x̃∈hZm\QN

|ud(x̃)|2hm ≤ C
∑

x̃∈hZm\QN

hm

(1 + |x̃|)2(β−α)
≤

and further

C

∫
Rm\QN

|x|2(α−β)dx.

The last integral using spherical coordinates gives the estimate Nm+2(α−β)

which tends to 0 under n→∞ if β > α+m/2. ut
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Remark 1. Similar theorem was obtained in [19,20] for the space Ch(α, β).

This theorem plays a key role for obtaining an estimate for approximate
solution of an multidimensional singular integral equation with the operator
(1.1) and permits to use fast Fourier transform for evaluating a numerical
solution. Some test calculations were given in [20].

2.2 Discrete Fourier transform

We define the discrete Fourier transform for a function ud of a discrete variable
x̃ ∈ hZm as the series

ũd(ξ) =
∑

x̃∈hZm

e−ix·ξud(x̃)hm, ξ ∈ ~Tm,

where ~ = h−1/(2π).
This discrete Fourier transform has same properties like standard contin-

ual Fourier transform, particularly for a discrete convolution of two discrete
functions ud, vd

(ud ∗ vd)(x̃) ≡
∑

ỹ∈hZm

ud(x̃− ỹ)vd(ỹ)hm

we have the well known multiplication property

(Fd(ud ∗ vd))(ξ) = (Fdud)(ξ) · (Fdvd)(ξ).

If we apply this property to the operator Kd we obtain

(Fd(Kdud))(ξ) = (FdKd)(ξ) · (Fdud)(ξ).

Let us denote (FdKd)(ξ) ≡ σd(ξ) and give the following

Definition 2. The function σd(ξ), ξ ∈ ~Tm, is called a periodic symbol of the
operator Kd.

We will assume below that the symbol σd(ξ) ∈ C(~Tm) therefore we have
immediately the following

Property 1. The operator Kd is invertible in the space L2(hZm) iff σd(ξ) 6=
0,∀ξ ∈ ~Tm.

Definition 3. A continuous periodic symbol is called an elliptic symbol if
σd(ξ) 6= 0,∀ξ ∈ ~Tm.

So we see that an arbitrary elliptic periodic symbol σd(ξ) corresponds to an
invertible operator Kd in the space L2(hZm).

Remark 2. It was proved earlier that operators (1.1) and (1.2) for cases D =
Rm, D = Rm+ are invertible or non-invertible in spaces L2(Rm), L2(Rm+ ) and
L2(hZm), L2(hZm+ ) simultaneously [18,22].
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2.3 Finite discrete Fourier transform

Definition 4. For a function ud,N ∈ l2N its finite discrete Fourier transform is
defined by the formula

ũd,N (ξ̃) =
∑

x̃∈hZm∩QN

eix̃·ξ̃ud,N (x̃)hm, ξ̃ ∈ ~Zm ∩QN .

Definition 5. A symbol of the operator Kd,N is called the function σd,N (ξ̃)

of a discrete variable ξ̃ ∈ ~Zm ∩QN defined by the formula

σd,N (ξ̃) =
∑

x̃∈hZm∩QN

eix̃·ξ̃Kd,N (x̃)hm, ξ̃ ∈ ~Zm ∩QN .

3 Comparison between infinite and finite discrete opera-
tors

Theorem 2. If the operator Kd is invertible in the space l2 then the operator
Kd,N is invertible in the space l2N for enough large N .

Proof. Let the function∑
x̃∈Qd

N

Kd,N (x̃)eix̃·ξhm, ξ ∈ ~Tm

is a segment of the Fourier series∑
x̃∈hZm

Kd(x̃)eix̃·ξhm, ξ ∈ ~Tm

and according our assumptions this is continuous function on ~Tm. Therefore
values of the partial sum coincide with values of σd,N in points ξ̃ ∈ RdN ≡
~Zm ∩QN . Besides these partial sums are continuous functions on ~Tm. ut

3.1 Some auxiliary results

Lemma 1. The norm of operator Kd; l
2 → l2 doesn’t depend on h

For the proof see [19].

Lemma 2. The norm of operator Kd,N : l2N → l2N doesn’t depend on N,h.

Proof. Using the Theorem 2 and the property that the norm of the operator
Kd,N is equivalent to max

ξ∈~Zm∩QN

|σd,N (ξ)| (see also [10]) we obtain the required

assertion. ut
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4 Correlation between N, h and location of x̃

The proved Theorem 1 is a very rough estimate. It is possible to obtain more
exact error estimate for finite discrete solution taking into account a location
of the point x̃ and relations between parameters N and h.

We consider three types of equations

Ku = v, (4.1)

Kdud = Pdv ≡ vd, (4.2)

where Pd is a restriction operator which given continuous function v defined
on Rm maps to a collection of its values on Zm, and

Kd,Nud,N = vd,N ≡ PNvd (4.3)

and would like to have an estimate for nearness of their solutions.
Let us denote by r(x̃) the distance between x̃ ∈ hZm ∩QN .

Theorem 3. Let vd ∈ Ch(α, β). Then ∀x̃ ∈ Zm ∩QN the following estimate

|ud(x̃)− ud,N (x̃)| ≤ c1

{
Nα−β ln(1 + c2N/h), if r(x̃) ∼ N−1,
Nα−β , in other cases

holds, c1, c2 are constants non-depending on h,N .

Proof. Assuming N is enough large so that both operators Kd and Kd,N are
invertible in spaces l2 and l2N respectively let us consider the difference

ud(x̃)− ud,N (x̃) = (K−1d vd)(x̃)− (K−1d,Nvd,N )(x̃) =
(
(K−1d vd)(x̃)

− (K−1d vd,N )(x̃)
)

+
(
(K−1d vd,N )(x̃)− (K−1d,Nvd,N )(x̃)

)
= I1 + I2,

where

I1 = (K−1d vd)(x̃)− (K−1d vd,N )(x̃),

I2 = (K−1d vd,N )(x̃)− (K−1d,Nvd,N )(x̃).

We’ll consider summands separately and give pointwise estimates for them. For

I2(x̃) = (K−1d vd,N )(x̃)− (K−1d,Nvd,N )(x̃)

we have I2(x̃) = 0 because this difference is not zero for points from hZm \QN
only, so we need to estimate I1(x̃) only.

First we need to say some words on a structure of operators K−1d and K−1d,N
which we have constructed for operators Kd : l2 → l2 and Kd,N : l2N → l2N .
Lemma 1 [19] implies that the norm of the operator Kd doesn’t depend on
h. Also we have an analogue assertion for the operator Kd,N (Lemma 2).
Moreover the operator K−1d is generated by Calderon–Zygmund operator with
symbol σ−1(ξ) and corresponding kernel K−1(x), so that the kernel K−1d (x̃) of
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the discrete operator K−1d is a restriction of the kernel K−1(x) on the lattice
hZm.

Further the operator K−1d,N is constructed by the same way. We take the

discrete kernel K−1d (x̃) then we take its restriction on QN and a periodic con-

tinuation on a whole hZm. A symbol of a such operator will be σ−1d,N (ξ̃), and
we conserve all required properties.

Let us start to estimate I1(x̃).

I1(x̃) =
∑

ỹ∈hZm

K−1d (x̃− ỹ) [vd(ỹ)− vd,N (ỹ)]hm

=
∑

ỹ∈hZm\QN

K−1d (x̃− ỹ)vd(ỹ)hm

and we need to estimate the last sum only.
1) r(x̃) ∼ N−1. Here taking into account that |x̃− ỹ| ≥ h we obtain

|x̃− ỹ| ∼ |x̃− ỹ|+ h.

We’ll represent I1(x̃) as a sum I1(x̃) = I11(x̃) + I12(x̃), where

I11(x̃) =
∑

ỹ∈A∩(hZm\QN )

K−1d (x̃− ỹ)vd(ỹ)hm,

I12(x̃) =
∑

ỹ∈B∩(hZm\QN )

K−1d (x̃− ỹ)vd(ỹ)hm

and for ỹ ∈ A ∩ (hZm \QN ) we have r(ỹ) ∼ N−1, for ỹ ∈ B ∩ (hZm \QN ) we
assume that r(ỹ)� N−1. Then

|I11(x̃)| ≤
∑

ỹ∈A∩(hZm\QN )

(|x̃− ỹ|+ h)−m(1 + |ỹ|)α−βhm

and for enough small h we have

|I11(x̃)| ≤ c
∫
DN (x̃)

(|x̃− y|+ h)−m(1 + |y|)α−βdy,

where DN (x̃) is a ball with a center in x̃ and radius ∼ N . Using spherical
coordinates with a center in x̃ we obtain

|I11(x̃)| ≤ c1Nα−β
∫ c2N

0

dt

t+ h

and thus
|I11(x̃)| ≤ c1Nα−β ln(1 + c2N/h).

For I12(x̃) we use another estimate. We write

|I12(x̃)| ≤
∑

ỹ∈B∩(hZm\QN )

(|x̃− ỹ|+ h)−m(1 + |ỹ|)α−βhm

=
∑

ỹ∈B∩(hZm\QN )∩{|ỹ|≤c|x̃|}

(|x̃− ỹ|+ h)−m(1 + |ỹ|)α−βhm

Math. Model. Anal., 22(3):300–310, 2017.
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+
∑

ỹ∈B∩(hZm\QN )∩{|ỹ|>c|x̃|}

(|x̃− ỹ|+ h)−m(1 + |ỹ|)α−βhm

= I121(x̃) + I122(x̃).

For I121(x̃) we have |x̃− ỹ| ∼ |x̃|, and

|I121(x̃)| ≤ c|x̃|−m
∫

|x̃|≤|y|≤c|x̃|

(1 + |y|)α−βdy ∼ |x̃|α−β ,

consequently |I121(x̃)| ≤ cNα−β . For I122(x̃) we have |x̃− ỹ| ∼ |ỹ|, and then

|I122(x̃)| ≤ c
∫
|y|>N

(1 + |y|)α−β−mdy ∼ |Ñ |α−β .

2) r(x̃) ∼ N . Here we have |x̃− ỹ| ∼ N . Thus

|I1(x̃)| =
∣∣ ∑
ỹ∈hZm\QN

K−1d (x̃− ỹ)vd(ỹ)hm
∣∣ ≤ ∑

ỹ∈hZm\QN

|K−1d (x̃− ỹ)||vd(ỹ)|hm

≤ cN−m
∑

ỹ∈hZm\QN

(1 + |ỹ|)α−βhm.

Since we are interested in small h the last sum can be dominated by the fol-
lowing integral ∫

Rm\QN

|y|α−βdy

and calculations with spherical coordinates give the estimate for β − α > 0

|I1(x̃)| ≤ cNα−β .

3) r(x̃) ∼ 1. So we have the following estimate

|I1(x̃)| =
∣∣ ∑
ỹ∈hZm\QN

K−1d (x̃− ỹ)vd(ỹ)hm
∣∣ ≤ ∑

ỹ∈hZm\QN

|K−1d (x̃− ỹ)||vd(ỹ)|hm

≤ c
∑

ỹ∈hZm\QN

(1 + |ỹ|)α−β−mhm,

because |x̃ − ỹ| ∼ 1 + |ỹ|. Since we are interested in small h the last sum can
be dominated by the following integral∫

Rm\QN

|y|α−β−mdy

and calculations with spherical coordinates give the estimate for β − α > 0

|I1(x̃)| ≤ cNα−β .

ut
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5 Conclusions

Our considerations give a certain algorithm for solving a simplest singular inte-
gral equation in a whole space Rm, and also in Rm+ taking into account authors’
conclusions in [21,22]. The error estimate for finite discrete solutions shows that
varying N,h we can obtain a necessary sharpness. Collecting all authors’ re-
sults [18, 19, 20, 21, 22] related to equations (4.1), (4.2), (4.3) we conclude that
there is a certain correspondence between solvability of these equations and
their solutions.
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