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Abstract. In this paper, we prove the existence of attractor for a new mechanochem-
ical model with Neumann boundary conditions on a bounded domain of space dimen-
sion n ≤ 3. Based on the regularity estimates for the semigroups and the classical
existence theorem of global attractors, we prove that the mechanochemical model
possesses a global attractor and Hk attractor.
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1 Introduction

In this paper, we study the following mechanochemical model

∂φ

∂t
= ∆φ+ αφ− φ3 − εφψ, (1.1)

∂ψ

∂t
= −λ(∆+ 1)2ψ − γψ + gψ2 − ψ3 − ε

2
φ2 (1.2)

for (x, t) ∈ Ω×(0,∞), where Ω ⊂ Rn(n ≤ 3) is a bounded domain with smooth
boundary, and all the parameters are arbitrarily given positive constants.

It was Morales, Rojas, Torres and Rubio [10] who first derived the system
(1.1)-(1.2), which is to model ternary mixtures by using the theory of pattern
formation and of polyelectrolytes, with mean-field approximations. Recently,
Morales, Rojas, Oliveros and Hernández derived a new mechanochemical model
based on Coupled Ginzburg-Landau and Swift-Hohenberg equations in biolog-
ical patterns of marine animals [9]. The new model was proposed to describe
some cellular interactions in three out layers of animal (such as the fish) ma-
rine skin. φ(x, t) represents the concentration difference of at least two pigment,
and ψ(x, t) is the difference of dermal cellular densities of at least two types of
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cells. The
−→
Jφ = −∇φ is the flux of pigment concentration difference φ in the

epidermis, and
−→
Jψ = 2λ∇ψ+ λ∇∆ψ is the density of cell flux ψ of the dermis.

The system (1.1)-(1.2) is supplemented by the zero flux boundary condition,

−→
Jφ · ν = 0,

−→
Jψ · ν = 0, x ∈ ∂Ω,

where ν is the outward unit normal to ∂Ω, that is

∂φ

∂ν
= 0, 2λ

∂ψ

∂ν
+ λ

∂∆ψ

∂ν
= 0, x ∈ ∂Ω (b1)

and the natural boundary condition

∂ψ

∂ν
= 0, x ∈ ∂Ω. (b2)

It follows from (b2) that (b1) can be replaced by

∂∆ψ

∂ν
(x, t) = 0, x ∈ ∂Ω.

Hence, we consider the Neumann boundary conditions

∂φ

∂ν
(x, t) =

∂∆ψ

∂ν
(x, t) =

∂ψ

∂ν
(x, t) = 0, t > 0, x ∈ ∂Ω (1.3)

and the initial condition

φ(x, 0) = φ0, ψ(x, 0) = ψ0, x ∈ Ω. (1.4)

The dynamic properties of the reaction-diffusion system (1.1)-(1.2), such as
the global asymptotical behaviors of solutions and existence of global attractors
are important. During the past years, many authors had paid much attention
to the higher order equation ( [1, 4, 6, 7, 16]) or the reaction-diffusion systems
( [2, 3, 11]). You ( [17, 18, 19]) had proved the existence of global attractor for
some Gray-Scott type systems. The main difficulties for treating the problem
(1.1)-(1.2) are caused by the nonlinearity of low order terms, and linear higher
order terms are not homogeneous. The source type nonlinear low terms and
Neumann boundary conditions can not make us use Poincaré type inequality
directly, thanks to strong absorptive terms −φ3 and −ϕ3, which guarantees the
existence of a global solution and will not blow up.

The paper is arranged as follows. In Section 2, some notations and the
main results are stated. We present some estimates in Section 3, and then we
prove that problem (1.1)-(1.4) possesses global attractors on L2(Ω) × H2(Ω)
in Section 4. Based on this result, we prove the existence of global attractors
for problem (1.1)-(1.4) in Hk (k ≥ 0) space in Section 5.

2 Statement of main results

We first introduce the following abbreviations.
The notation (·, ·) for L2-inner product will also be used for the notation

of duality pairing between dual spaces, ‖·‖ = ‖·‖L2 . We use the same letter C
to denote different positive constants, and C(·, ·, ·) to denote positive constants
depending on the quantities appearing in the parenthesis.

Math. Model. Anal., 22(2):252–269, 2017.
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Theorem 1. For any positive parameters α, λ, γ, g, ε, any (φ0, ψ0)T ∈ L2(Ω)×
H2(Ω), and n ≤ 3, there exists a global attractor A in the phase space L2(Ω)×
H2(Ω) for the solution semiflow {S(t)}t≥0 on L2(Ω) × H2(Ω) generated by
system (1.1)-(1.2) with the Neumann boundary conditions (1.3).

The basic theory of infinite dimensional dynamical systems and global at-
tractors can be seen in [11, 15] and references therein. A few definitions are
listed for clarity.

Definition 1. Let {S(t)}t≥0 be a semiflow on a real Banach space X. A
bounded subset B0 of X is called an absorbing set in X for this semiflow, if
for any bounded subset B ⊂ X there is some finite time t0 ≥ 0 depending on
B such that S(t)B ⊂ B0 for all t ≥ t0.

Definition 2. Let {S(t)}t≥0 be a semiflow on a real Banach space X whose
norm-induced metric is denoted by d(·, ·). A subset A of X is called a global
attractor for this semiflow, if the following properties are satisfied:

(H1) A is a nonempty, compact, invariant set in the sense that S(t)A=A

for any t ≥ 0.
(H2) A attracts any bounded set B of X with respect to the Hausdorff

distance,

dist(S(t)B,A) = sup
x∈B

inf
y∈A

d(S(t)x, y)→ 0, as t→∞.

Definition 3. A semiflow on a real Banach space X is asymptotically compact
if for any bounded sequence un in X and any sequence tn ⊂ (0,∞) with tn →
∞, there exist subsequences unk of un and tnk of tn, such that lim

k→∞
S(tnk)unk

exists in X.

Lemma 1. ( [15]) Let {S(t)}t≥0 be a semiflow on a real Banach space X. If
the following properties are satisfied:

(1) there exists a bounded absorbing set B0 ⊂ X for {S(t)}t≥0,
(2) {S(t)}t≥0 is asymptotically compact on X,
then there exists a global attractor A for {S(t)}t≥0 in X, which is given by

A = ω(B0) :=
⋂
τ≥0

ClX
⋃
t≥τ

(S(t)B0). (2.1)

Let us write (1.1)-(1.2) as an evolution problem
∂u

∂t
+Au = F (u), t > 0,

u(0) = u0,

where u = (φ, ψ)T , H := L2(Ω)× L2(Ω),

F (u) =

(
F1(φ, ψ)
F2(φ, ψ)

)
=

(
αφ− φ3 − εφψ
−2λ∆ψ − (γ + λ)ψ + gψ2 − ψ3 − ε

2φ
2

)
: D(A

1
2 )→ H,



Asymptotic Dynamics of a New Mechanochemical Model 255

and

A =

(
−∆ 0

0 λ∆2

)
: D(A)→ H.

F (u) and the operator A is considered on the Hilbert space L2 with dense
domain

D(A) = {u ∈ H2(Ω)×H4(Ω) :
∂φ

∂ν
=
∂∆ψ

∂ν
=
∂ψ

∂ν
= 0, on ∂Ω},

D(A
1
2 ) = {u ∈ H1(Ω)×H2(Ω) :

∂φ

∂ν
=
∂ψ

∂ν
= 0, on ∂Ω}.

Let

E := {u ∈ H1(Ω)×H1(Ω) :
∂φ

∂ν
=
∂ψ

∂ν
= 0, on ∂Ω},

E1 := {u ∈ L2(Ω)×H2(Ω) :
∂ψ

∂ν
= 0, on ∂Ω},

E2 := {u ∈ H1(Ω)×H3(Ω) :
∂φ

∂ν
=
∂ψ

∂ν
=
∂∆ψ

∂ν
= 0, on ∂Ω}.

In order to prove the existence of solutions, we shall show A is sectorial,
F (u) is locally Lipschitz continuous as the operation between the space D(A1/2)
and L2 × L2, denoting by 〈·, ·〉 the scalar product in L2 and

T := A+ δ0Γ, Γ :=

(
1 0
0 1

)
.

where δ0 > 0 is taken sufficient large. For any u = (φ, ψ)T , v =
(
φ, ψ

)T
,

{u, v} ∈ D(A), noticing Γ is symmetric we find that

〈Tu, v〉 =

∫
Ω

(
−∆φφ+ λ∆2ψψ

)
dx+

∫
Ω

δ0u
TΓvdx

=

∫
Ω

(
∇φ∇φ+ λ∆ψ∆ψ

)
dx

∫
Ω

δ0u
TΓvdx

=

∫
Ω

(
−φ∆φ+ ψλ∆2ψ

)
dx+

∫
Ω

δ0v
TΓudx = 〈u, Tv〉,

which proves the symmetry of A. Next, since Γ is positive definite, the operator
A is bounded below, that is, for each u ∈ D(A),

〈Tu, u〉 =

∫
Ω

(
−∆φφ+ λ∆2ψψ

)
dx+

∫
Ω

δ0u
TΓudx

=

∫
Ω

((∇φ)2 + λ(∆ψ)2)dx+

∫
Ω

δ0u
TΓudx ≥ δ0〈u, u〉.

A is self-adjoint and bounded below, which means that A is itself sectorial. We
prove the local Lipschitz continuity of nonlinear function F (u)

∀ u, v ∈ U ⊂ D
(
A1/2

)
, ‖F (u)− F (v)‖L2 ≤ KU‖u− v‖D(A1/2).

Math. Model. Anal., 22(2):252–269, 2017.
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Notice H2 ↪→ L∞ and H1 ↪→ L6 for n ≤ 3.
We find by differentiation that, for ∀u, v ∈ U ⊂ D

(
A1/2

)
‖F1(u)− F1(v)‖L2

= ‖
(
α− φ2 − φφ− φ2

) (
φ− φ

)
+ εψ

(
φ− φ

)
+ εφ

(
ψ − ψ

)
‖L2

≤ ‖
(
α− φ2 − φφ− φ2

) (
φ− φ

)
‖L2 + ‖εψ

(
φ− φ

)
‖L2 + ‖εφ

(
ψ − ψ

)
‖L2

≤ C
(
|α|+ ‖φ‖2L6 + ‖φ‖2L6 + ‖ψ‖L∞

)
‖φ− φ‖L6 + ε‖φ‖L2‖ψ − ψ‖L∞

≤ C‖φ− φ‖H1 + C‖ψ − ψ‖H2 ≤ KU‖u− v‖D(A1/2)

and

‖F2(u)− F2(v)‖L2 = ‖ − 2λ∆
(
ψ − ψ

)
− (γ + λ)

(
ψ − ψ

)
+ g

(
ψ + ψ

) (
ψ − ψ

)
+
(
−ψ2 − ψψ − ψ2

) (
ψ − ψ

)
− ε

2

(
φ+ φ

) (
φ− φ

)
‖L2

≤ C
(
‖ψ‖2L6 + ‖ψ‖2L6

)
‖φ− ψ‖L6 + 2λ‖ψ − ψ‖H2

+ C
(
‖φ‖2L4 + ‖φ‖2L4

)
‖φ− φ‖L4 ≤ KU‖u− v‖D(A1/2).

The general theory of ( [5]) guarantees the existence of a local solution for
system (1.1)-(1.2). The priori estimate Lemma 2-Lemma 5 implying the local
solution can be a global one for t. Moreover, the family of operators S(t)t≥0
forms a strongly continuous semigroup on the space D(A1/2), which has the
property

u ∈ C([0, Tmax);H1 ×H2) ∩ C1((0, Tmax);H1 ×H2) ∩ L2([0, Tmax);L2 × L2).

3 Absorbing sets

Lemma 2. For any given R > 0 there exists a constant M1(R) > 0 such that if
the initial data u0 = (φ0, ψ0)T ∈ H and ‖u0‖2H ≤ R, then S(t)u0 = (φ, ψ)T ∈ H
for all t ≥ 0, and

‖S(t)u0‖2H ≤M1(R), for t ≥ 0.

Proof. Taking the inner products 〈(1.1),2φ〉, and 〈(1.2),2ψ〉, then summing
up the resulting equalities and by the Neumann boundary conditions, we get

d

dt

(
‖φ‖2 + ‖ψ‖2

)
+ 2‖∇φ‖2 + 2λ

∫
Ω

[(∆+ 1)ψ]2dx

= 2α‖φ‖2 + 2g

∫
Ω

ψ3dx− 3ε

∫
Ω

φ2ψdx− 2‖φ‖4L4 − 2‖ψ‖4L4 − 2γ‖ψ‖2,

that is

d

dt

(
‖φ‖2 + ‖ψ‖2

)
+ κ

(
‖φ‖2 + ‖ψ‖2

)
+ 2‖∇φ‖2 + 2λ

∫
[(∆+ 1)ψ]2dx

≤ 2Λ(φ, ψ), (3.1)
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where

Λ(φ, ψ) =−
∫ (√

2

2
φ2 − 3

√
2

4
ψ

)2

dx+

(
9ε2

8
+
κ

2

)
‖ψ‖2 +

κ

2
‖φ‖2 − 1

2
‖φ‖4L4

− γ‖ψ‖2 + g‖ψ‖3L3 − ‖ψ‖4L4 .

The Young inequalities yield

κ

2
‖φ‖2 ≤ κε1

4
‖φ‖4L4 +

κ

4ε1
|Ω|, g‖ψ‖3L3 ≤ gε2‖ψ‖4L4 + gε−32 |Ω|,(

9ε2

8
+
κ

2

)
‖ψ‖2 ≤

(
9ε2

8
+
κ

2

)
ε3
2
‖ψ‖4L4 +

(
9ε2

8
+
κ

2

)
1

2ε3
|Ω|,

where ε1, ε2, ε3 are arbitrarily positive constants. Hence, we have

Λ(φ, ψ) ≤
(
gε2 +

(
9ε2

8
+
κ

2

)
ε3
2
− 1

)
‖ψ‖4L4 −

∫ (√
2

2
φ2 − 3

√
2

4
ψ

)2

dx

− γ‖ψ‖2 +

(
κε1
4
− 1

2

)
‖φ‖4L4 +

(
κ

4ε1
+ gε−32 +

(
9ε2

8
+
κ

2

)
1

2ε3

)
|Ω|.

We take ε1 = 1
2 , ε2 = 1

2g , ε3 = 1
(9ε2/8+κ/2) and 0 < κ ≤ 2, then

Λ(φ, ψ) ≤
(
κ

4ε1
+ gε−32 +

(
9ε2

8
+
κ

2

)
1

2ε3

)
|Ω| ≡ 1

2
C∗ (κ, g, ε, |Ω|) . (3.2)

From (3.1) and (3.2), we obtain

d

dt

(
‖φ‖2 + ‖ψ‖2

)
+ κ

(
‖φ‖2 + ‖ψ‖2

)
≤ C∗ (κ, g, ε, |Ω|) , for t ∈ [0, Tmax),

then, applying the Gronwall inequality, we deduce that(
‖φ‖2 + ‖ψ‖2

)
≤ e−κt

(
‖φ0‖2 + ‖ψ0‖2

)
+
C∗

κ
, for t ∈ [0, Tmax).

Let M1 be the constant M1 = C∗

κ + 1. The proof is completed. ut

Lemma 3. For any given R > 0 there exists a constant M2(R) > 0 such that if
the initial data u0 = (φ0, ψ0)T ∈ E and ‖u0‖2E ≤ R, then S(t)u0 = (φ, ψ)T ∈ E
for all t ≥ 0, and

‖S(t)u0‖2E ≤M2(R), for t ≥ 0.

Proof. Take the inner products 〈(1.1),−2∆φ〉, and 〈(1.2),−2∆ψ〉. Then sum
up the resulting equalities

d

dt

(
‖∇φ‖2 + ‖∇ψ‖2

)
= −2‖∆φ‖2 − 6

∫
Ω

φ2(∇φ)2dx+ 2α‖∇φ‖2

− 2‖∇∆ψ‖2 − 2(γ + λ)‖∇ψ‖2 − 6

∫
Ω

ψ2(∇ψ)2dx+ 4g

∫
Ω

ψ(∇ψ)2dx

+ 4λ‖∆ψ‖2 − 2ε

∫
Ω

φ∇φ∇ψdx+ 2ε

∫
Ω

ψφ∆φdx,

Math. Model. Anal., 22(2):252–269, 2017.
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that is

d

dt

(
‖∇φ‖2 + ‖∇ψ‖2

)
+ κ2

(
‖∇φ‖2 + ‖∇ψ‖2

)
≡ Λ2(φ, ψ), (3.3)

where

Λ2(φ, ψ) =−
∫
Ω

(√
6φ∇φ+

ε∇ψ√
6

)2

dx−
∫
Ω

(
√

6ψ∇ψ +

√
6

3
g∇ψ

)2

dx

+ (2α+ κ2) ‖∇φ‖2 +

(
κ2 +

ε2

6
+

2

3
g2 − 2γ − 2λ

)
‖∇ψ‖2

− 2‖∆φ‖2 − 2λ‖∇∆ψ‖2 + 2ε

∫
Ω

ψφ∆φdx+ 4λ‖∆ψ‖2.

Then, applying the Nirenberg inequality (n ≤ 3), we deduce that

‖∆ψ‖ ≤ C1‖∇∆ψ‖1/2‖ψ‖1/2 + C2‖ψ‖,
‖φ‖L4 ≤ C1‖∆φ‖3/8‖φ‖5/8 + C2‖φ‖,
‖ψ‖L4 ≤ C1‖∇∆ψ‖1/4‖ψ‖3/4 + C2‖ψ‖,
‖∇φ‖ ≤ C1‖∆φ‖1/2‖φ‖1/2 + C2‖φ‖,
‖∇ψ‖ ≤ C1‖∇∆ψ‖1/3‖ψ‖2/3 + C2‖ψ‖.

Using the Young inequality and Lemma 2, we have

2ε

∫
Ω

ψφ∆φdx ≤ 1

4
‖∆φ‖2 + C(ε)‖φ‖4L4 + C(ε)‖ψ‖4L4

≤ 1

2
‖∆φ‖2 +

λ

2
‖∇∆ψ‖2 + C(ε),

4λ‖∆ψ‖2 ≤ λ

4
‖∇∆ψ‖2 + C(λ), (2α+ κ2)‖∇φ‖2 ≤ 1

2
‖∆φ‖2 + C(α, κ2)

and (
κ2 +

ε2

6
+

2

3
g2 − 2γ − 2λ

)
‖∇ψ‖2 ≤ λ

4
‖∇∆ψ‖2 + C (κ2, ε, g, γ, λ) .

Summing up the resulting equalities, we have

Λ2(φ, ψ) ≤−
∫
Ω

(√
6φ∇φ+

ε∇ψ√
6

)2

dx−
∫
Ω

(
√

6ψ∇ψ +

√
6

3
g∇ψ

)2

dx

− ‖∆φ‖2 − λ‖∇∆ψ‖2 + C∗2 (α, γ, g, λ, κ2, ε, |Ω|) . (3.4)

From (3.3) and (3.4), we find that

d

dt

(
‖∇φ‖2 + ‖∇ψ‖2

)
+ κ2

(
‖∇φ‖2 + ‖∇ψ‖2

)
≤ C∗2 (α, γ, g, λ, κ2, ε, |Ω|) ,
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then, applying the Gronwall inequality, we deduce that

(
‖∇φ‖2 + ‖∇ψ‖2

)
≤ e−κ2t

(
‖∇φ0‖2 + ‖∇ψ0‖2

)
+
C∗2
κ2
, for t ∈ [0, Tmax).

Let M2 be the constant M2 =
C∗2
κ2

+ 1. The proof is completed. ut

Lemma 4. For any given R > 0 there exists a constant M3(R) > 0 such that if
the initial data u0 = (φ0, ψ0)T ∈ E1 and ‖u0‖E1

≤ R, then S(t)u0 = (φ, ψ)T ∈
E1 for all t ≥ 0, and

‖S(t)u0‖2E ≤M3(R), for t ≥ 0.

Proof. Taking the inner products 〈(1.1),2φ〉, and 〈(1.2),2∆2ψ〉, by the Neu-
mann boundary conditions, we get

d

dt
‖φ‖2 = −2‖∇φ‖2 + 2α‖φ‖2 − 2‖φ‖4L4 − 2ε

∫
Ω

φ2ψdx,

d

dt
‖∆ψ‖2 = −2λ‖∆2ψ‖2 + 4λ‖∇∆ψ‖2 − 2(λ+ γ)‖∆ψ‖2

+ 2α

∫
Ω

ψ2∆2ψdx− 2

∫
Ω

ψ3∆2ψdx− ε
∫
Ω

φ2∆2ψdx.

Then summing up the resulting equalities, we see that

d

dt

(
‖φ‖2 + ‖∆ψ‖2

)
+ κ3

(
‖φ‖2 + ‖∆ψ‖2

)
=− 2‖∇φ‖2 + (2α+ κ3)‖φ‖2 − 2‖φ‖4L4 − 2ε

∫
Ω

φ2ψdx− 2λ‖∆2ψ‖2

+ 4λ‖∇∆ψ‖2 − 2
(
λ+ γ − κ3

2

)
‖∆ψ‖2 + 2α

∫
Ω

ψ2∆2ψdx

− 2

∫
Ω

ψ3∆2ψdx− ε
∫
Ω

φ2∆2ψdx ≡ Λ3(φ, ψ). (3.5)

By the Nirenberg inequalities, we get

‖φ‖4L4 ≤ C1‖∇φ‖3/4‖φ‖1/4 + C2‖φ‖,
‖∇∆ψ‖ ≤ C1‖∆2ψ‖3/4‖ψ‖1/4 + C2‖ψ‖,
‖ψ‖L4 ≤ C1‖∆2ψ‖3/16‖ψ‖13/16 + C2‖ψ‖,
‖ψ‖L6 ≤ C1‖∆2ψ‖1/4‖ψ‖3/4 + C2‖ψ‖.

Using the Young inequalities, Lemma 2 and above inequalities, we obtain

2ε

∫
Ω

φ2ψdx ≤ ‖φ‖4L4 + ε‖ψ‖2 ≤ ‖∇φ‖2 + C(ε), (3.6)

2α

∫
Ω

ψ2∆2ψdx ≤ λ

4
‖∆2ψ‖2 + C(λ, α)‖ψ‖4L4 ≤

λ

2
‖∆2ψ‖2 + C(λ, α, |Ω|)
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and

2

∫
Ω

ψ3∆2ψdx ≤ λ

4
‖∆2ψ‖2 + C(λ)‖ψ‖6L6 ≤

λ

2
‖∆2ψ‖2 + C(λ, |Ω|).

Similarly, we have

ε

∫
Ω

φ2∆2ψdx ≤ λ

4
‖∆2ψ‖2 + C(ε)‖φ‖4L4 ,≤

λ

8
‖∆2ψ‖2 +

1

2
‖∇φ‖2 + C(ε, |Ω|),

2
(
λ+ γ − κ3

2

)
‖∆ψ‖2 ≤ λ

8
‖∆2ψ‖2 + C (λ, κ3, γ, |Ω|) . (3.7)

From (3.5) and (3.6)-(3.7), we obtain

Λ3(φ, ψ) ≤− λ

4
‖∆2ψ‖2 − 1

2
‖∇φ‖2 + C∗3 (γ, ε, λ, α, κ3, |Ω|)

≤C∗3 (γ, ε, λ, α, κ3, |Ω|) ,

that is

d

dt

(
‖φ‖2 + ‖∆ψ‖2

)
+ κ3

(
‖φ‖2 + ‖∆ψ‖2

)
≤ C∗3 .

Applying the Gronwall inequality, we deduce that(
‖φ‖2 + ‖∆ψ‖2

)
≤ e−κ3t

(
‖φ0‖2 + ‖∆ψ0‖2

)
+ C∗3/κ3, for t ∈ [0, Tmax).

Taking M3 = C∗3/κ3 + 1, the proof is completed. ut

4 Asymptotic compactness

Lemma 5. For any given R > 0 there exists a constant M4(R) > 0 such that if
the initial data u0 = (φ0, ψ0)T ∈ E2 and ‖u0‖2E2

≤ R, then S(t)u0 = (φ, ψ)T ∈
E2 for all t ≥ 0, and

‖S(t)u0‖2E2
≤M4(R), for t ≥ 0.

Proof. Take the inner products 〈(1.1),−2∆φ〉, and 〈∆(1.2),−2∆2ψ〉. By the
Neumann boundary conditions, we get

d

dt
‖∇φ‖2 = −2‖∆φ‖2 + 2α‖∇φ‖2 − 6

∫
Ω

φ2(∇φ)2dx+ 2ε

∫
Ω

φψ∆φdx,

d

dt
‖∇∆ψ‖2 = −2λ‖∇∆2ψ‖2 + 4λ‖∆2ψ‖2 − 2(λ+ γ)‖∇∆ψ‖2

+ 4g

∫
Ω

ψ∇ψ∇∆2ψdx− 6

∫
Ω

ψ2∇ψ∇∆2ψdx− 2ε

∫
Ω

φ∇φ∇∆2ψdx.
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Then summing up the resulting equalities, we see that

d

dt

(
‖∇φ‖2 + ‖∇∆ψ‖2

)
+ κ4

(
‖∇φ‖2 + ‖∇∆ψ‖2

)
= −2‖∆φ‖2

+ (2α+ κ4) ‖∇φ‖2 − 6

∫
Ω

φ2(∇φ)2dx+ 2ε

∫
Ω

φψ∆φdx− 2λ‖∇∆2ψ‖2

+ 4λ‖∆2ψ‖2 − 2
(
λ+ γ − κ4

2

)
‖∇∆ψ‖2 + 4g

∫
Ω

ψ∇ψ∇∆2ψdx

− 6

∫
Ω

ψ2∇ψ∇∆2ψdx− 2ε

∫
Ω

φ∇φ∇∆2ψdx ≡ Λ4(φ, ϕ). (4.1)

Using the Nirenberg inequalities (n ≤ 3), we obtain

‖∇φ‖ ≤ C1‖∆φ‖1/2‖φ‖1/2 + C2‖φ‖,
‖φ‖L∞ ≤ C1‖∆φ‖3/4‖φ‖1/4 + C2‖φ‖,
‖∇∆ψ‖ ≤ C1‖∇∆2ψ‖3/5‖ψ‖1/4 + C2‖ψ‖,
‖∆2ψ‖ ≤ C1‖∇∆2ψ‖4/5‖ψ‖1/4 + C2‖ψ‖.

From Lemma 3, and noticing H1(Ω) ↪→ L4(Ω) for n ≤ 3, we deduce that

2ε

∫
Ω

ψφ∆φdx ≤ 1

4
‖∆φ‖2+C(ε)‖φ‖4L4 + C(ε)‖ψ‖4L4 ≤

1

2
‖∆φ‖2 + C(ε), (4.2)

4λ‖∆2ψ‖2 ≤ λ

4
‖∇∆2ψ‖2 + C(λ, |Ω|),

2
(
λ+ γ − κ4

2

)
‖∇∆ψ‖2 ≤ λ

4
‖∇∆2ψ‖2 + C (λ, γ, κ4, |Ω|) ,

4g

∫
Ω

ψ∇ψ∇∆2ψdx ≤ λ

4
‖∇∆2ψ‖2 + C(λ)‖ψ‖4L4 + C(λ)‖∇ψ‖4L4

≤ λ

4
‖∇∆2ψ‖2 + C(λ, g, |Ω|).

Similarly, we obtain

6

∫
Ω

ψ2∇ψ∇∆2ψdx ≤ λ

8
‖∇∆2ψ‖2 + C‖ψ‖8L8 + C‖∇ψ‖ ≤ λ

4
‖∇∆2ψ‖2 + C,

2ε

∫
Ω

φ∇φ∇∆2ψdx ≤ λ

4
‖∇∆2ψ‖2 + C(λ, ε)‖φ‖2L∞‖∇φ‖2

≤ λ

4
‖∇∆2ψ‖2 + ‖∆φ‖+ C(λ, ε, |Ω|). (4.3)

From (4.1) and (4.2)-(4.3), we obtain

Λ4(φ, ϕ) ≤ −3

4
‖∆φ‖2 − 3

4
‖∇∆2ψ‖2 + C∗4 (λ, ε, α, κ4, |Ω|) ,

that is

d

dt

(
‖∇φ‖2 + ‖∇∆ψ‖2

)
+ κ4

(
‖∇φ‖2 + ‖∇∆ψ‖2

)
≤ C∗4 .
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Applying the Gronwall inequality, we deduce that

(
‖∇φ‖2+‖∇∆ψ‖2

)
≤ e−κ4t

(
‖∇φ0‖2 + ‖∇∆ψ0‖2

)
+
C∗4
κ4
, for t ∈ [0, Tmax).

Taking M4 = C∗4/κ4 + 1, the proof is completed. ut

We now finish the proof of Theorem 1.

Proof. [Proof of Theorem 1] First, by Lemma 4, the solution semiflow S(t)t≥0
of reaction-diffusion system (1.1)-(1.2) has a bounded absorbing set B0 in E1.
Second, according to Lemma 5 and due to that Sobolev imbedding E2 ↪→ E1 is
compact, this solution semiflow S(t)t≥0 is asymptotically compact in E1, then
by Lemma 1, there exists a global attractor A for S(t)t≥0 in E1, which is given
by (2.1). ut

5 The Hk global attractor

In order to consider the global attractor for the system (1.1)-(1.2) in Hk space,
we introduce the definition as follows:

H = L2(Ω), H 1
2

=

{
u ∈ H2(Ω),

∂u

∂n
|∂Ω = 0

}
,

H1 =

{
u ∈ H4(Ω),

∂u

∂n
|∂Ω =

∂∆u

∂n
|∂Ω = 0

}
.

In this paper, we used to assume that the linear operator

L = −λ∆2 : H1 → H

is a sectorial operator, which generates an analytic semigroup etL, and L in-
duces the fractional power operators and fractional order spaces as follows

Lα = (−L)α : Hα → H, (i = 1, 2), α ∈ R,

where Hα = D (Lα) is the domain of Lα. By the semigroup theory of linear
operators, Hβ ⊂ Hα is a compact inclusion for any β > α. For details of the
space Hα see [8].

Then, we have the following lemma on the existence of global attractor
which is equivalent to Lemma 1 and the proof is similar to [12,13,14].

Lemma 6. Assume that (φ(t), ψ(t)) = S(t)(φ0, ψ0) ((φ0, ψ0)) ∈ H×H), t ≥ 0)
is a solution of (1.1) and S(t) the semigroup generated by (1.1). Assume further
that Hα is the fractional order space generated by L and

(1) For some α ≥ 0, there is a bounded set B ⊂ Hα+ 1
4
× Hα+ 3

4
, which

means that for any (φ0, ψ0) ∈ Hα+ 1
4
×Hα+ 3

4
, there exists t0 ≥ 0 such that

(φ(t), ψ(t)) ∈ B, ∀ t > t0;
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(2) There is a β > α, such that for any bounded set U ⊂ Hβ+ 1
4
× Hβ+ 3

4
,

there are T > 0 and C > 0,

‖u(t, u0)‖H
β+1

4
×H

β+3
4

≤ C, ∀t > T and (φ0, ψ0) ∈ U.

Then (1.1) has a global attractor A ⊂ Hα+ 1
4
×Hα+ 3

4
which attracts any bounded

set of Hα+ 1
4
×Hα+ 3

4
in the Hα+ 1

4
×Hα+ 3

4
norm.

For sectorial operators, we also have the following lemma which is important
for this paper and can be founded in [12,13,14].

Lemma 7. Assume that L is a sectorial operator which generates an analytic
semigroup T (t) = etL. If all eigenvalues λ of L satisfy Reλ < −λ0 for some
real number λ0 > 0, then for Lα (L = −L) we have

(1) T (t) : H → Hα is bounded for all α ∈ R and t > 0;
(2) T (t)Lαx = LT (t)x, ∀x ∈ Hα;
(3) For each t > 0, LαT (t) : H → H is bounded, and

‖LαT (t)‖ ≤ Cαt−αe−δt,

where some δ > 0 and Cα > 0 is a constant depending only on α;
(4) The Hα−norm can be defined by ‖x‖Hα = ‖Lαx‖H .

The main result of this paper is given by the following theorem, which
provides the existence of global attractors of Eq.(1.1) in any kth space Hk.

Theorem 2. Assume that Ω denotes an open bounded domain in R3, then for
any k ≥ 0, the initial-boundary value problem (1.1)-(1.2) has a global attractor
A in Hk × Hk+2, and A attracts any bounded subset of Hk × Hk+2 in the
Hk ×Hk+2-norm.

By Lemma 6, in order to prove Theorem 2, we first prove the following lemma.

Lemma 8. For any σ ≥ 0, the solution (φ, ψ) of (1.1)-(1.2) is uniformly
bounded in Hσ+ 1

4
×Hσ+ 3

4
, i.e. for any bounded set U ⊂ Hσ+ 1

4
×Hσ+ 3

4
, there

exists C > 0 such that

‖(φ, ψ)‖H
σ+1

4
×H

σ+3
4

≤ C, ∀t > 0, (φ0, ψ0) ∈ U ⊂ Hσ+ 1
4
×Hσ+ 3

4
, σ ≥ 0.

Proof. For any (φ0, ψ0) ∈ L2(Ω) ×H2(Ω), the solutions (φ, ψ) of (1.1)-(1.2)
can be expressed as

φ(t, φ0) = etL1φ0 +

∫ t

0

e(t−τ)L1F1(φ, ψ)dτ,

ψ(t, ψ0) = etL2ψ0 +

∫ t

0

e(t−τ)L2F2(φ, ψ)dτ,

where L1 = ∆,L2 = −λ∆2. By Theorem 1, there exists attractor in the phase
space L2×H2. Using the same way, it is not difficult to prove that there exists
attractor in H1 ×H3, which means (φ, ψ) ∈ H 1

4
×H 3

4
.
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Step1. We shall prove that for any bounded set
U ⊂ Hσ+ 1

4
×Hσ+ 3

4

(
0 ≤ σ < 1

4

)
, there exists C > 0 such that

‖(φ, ψ)‖H
σ+1

4
×H

σ+3
4

≤ C, (φ0, ψ0) ∈ U ⊂ Hσ+ 1
4
×Hσ+ 3

4
, 0 ≤ σ < 1

4
. (5.1)

We claim that F2 : H 1
4
×H 1

2
→ H is bound. Based on Lemma 5 and embedding

theorem H1 ↪→ L6 for n ≤ 3, we have

‖F2(φ, ψ)‖H = ‖−2λ∆ψ − (γ + λ)ψ + gψ2 − ψ3 − ε

2
φ2‖H

≤ C
(
‖∆ψ‖L2 + ‖ψ‖2L4 + ‖ψ‖3L6 + ‖φ‖2L4

)
≤ C

(
‖ψ‖2H 1

2

+ ‖φ‖2H 1
4

)
≤ C,

where C depends on λ, γ, g, ε, |Ω| but independent of φ0 and ψ0. Hence, we
obtain

‖ψ(t, ψ0)‖H
σ+3

4

=
∥∥∥etL2ψ0 +

∫ t

0

e(t−τ)L2F2(φ, ψ)dτ
∥∥∥
H
σ+3

4

≤ ‖ψ0‖H
σ+3

4

+
∥∥∥∫ t

0

e(t−τ)L2F2(φ, ψ)dτ
∥∥∥
H
σ+3

4

≤ ‖ψ0‖H
σ+3

4

+

∫ t

0

‖(−L2)σ+
3
4 e(t−τ)L2‖ · ‖F2(φ, ψ)‖Hdτ

≤ ‖ψ0‖H
σ+3

4

+ C

∫ t

0

(t− τ)−(σ+ 3
4 )e−δ(t−τ)dτ

≤ ‖ψ0‖H
σ+3

4

+ C

∫ t

0

τ−βe−δτdτ

≤ C‖(φ0, ψ0)‖H
σ+1

4
×H

σ+3
4

,

(
0 ≤ σ < 1

4

)
, (5.2)

where β = σ + 3
4 and 0 ≤ β < 1.

Similarly, we claim that F1 : H 1
4
×H 1

4
→ H is bound. Based on Lemma 5

and embedding theorem H1 ↪→ L6 , H1 ↪→ L4 for n ≤ 3, we have

‖F1(φ, ψ)‖H = ‖αφ− φ3 − εφψ‖H

≤ C
(
‖φ‖L2 + ‖ψ‖2L4 + ‖φ‖3L6 + ‖φ‖2L4

)
≤ C

(
‖ψ‖2H 1

4

+ ‖φ‖2H 1
4

)
≤ C,

where C depends on α, ε, |Ω| but independent of φ0 and ψ0. Hence,

‖φ(t, φ0)‖H
σ+1

4

=
∥∥∥etL1φ0 +

∫ t

0

e(t−τ)L1F1(φ, ψ)dτ
∥∥∥
H
σ+1

4

≤ ‖φ0‖H
σ+1

4

+
∥∥∥∫ t

0

e(t−τ)L1F1(φ, ψ)dτ
∥∥∥
H
σ+1

4

≤ ‖φ0‖H
σ+1

4

+

∫ t

0

‖(−L1)2σ+
1
2 e(t−τ)L1‖ · ‖F1(φ, ψ)‖Hdτ
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≤ ‖φ0‖H
σ+1

4

+

∫ t

0

τ−2σ−
1
2 e−δτdτ

≤ C‖(φ0, ψ0)‖H
σ+1

4
×H

σ+3
4

, (0 ≤ σ < 1/4) , (5.3)

where 0 ≤ 2σ + 1
2 < 1. From (5.2)-(5.3), then (5.1) is proved.

For σ = 1/8, we have φ ⊂ H3/8, this meaning φ ⊂ H3/2(Ω)(for fractional
order Sobolev space). By the embedding theorems of fractional order spaces,
we deduce that

φ(t.x) ⊂ H3/2 ↪→ C0(Ω) ∩H1(Ω). (5.4)

Step2. We shall prove that for any bounded set U⊂Hσ+ 1
4
×Hσ+ 3

4

(
1
4 ≤ σ <

1
2

)
,

there exists C > 0 such that

‖(φ, ψ)‖H
σ+1

4
×H

σ+3
4

≤ C, (φ0, ψ0) ∈ U ⊂ Hσ+ 1
4
×Hσ+ 3

4
,

1

4
≤ σ < 1

2
. (5.5)

We claim that F2 : H 1
4
×H 3

4
→ H 1

4
is bound. Based on Lemma 5 and embed-

ding theorem H3 ↪→ L∞ for n ≤ 3, we have

‖F2(φ, ψ)‖H 1
4

= ‖∇
(
−2λ∆ψ − (γ + λ)ψ + gψ2 − ψ3 − ε

2
φ2
)
‖H

= ‖−2λ∇∆ψ − (γ + λ)∇ψ + 2g∇ψψ − 3ψ2∇ψ − εφ∇φ)‖H
≤ C{‖∇∆ψ‖2L2 +

(
‖ψ‖4L∞ + 1

)
‖∇ψ‖2L2 + sup

Ω
|φ|2‖∇φ‖2L2}

≤ C
(
‖ψ‖2H 3

4

+ ‖φ‖2H 1
4

)
≤ C,

where we used (5.4).

‖ψ(t, ψ0)‖H
σ+3

4

=
∥∥∥etL2ψ0 +

∫ t

0

e(t−τ)L2F2(φ, ψ)dτ
∥∥∥
H
σ+3

4

≤ ‖ψ0‖H
σ+3

4

+
∥∥∥∫ t

0

e(t−τ)L2F2(φ, ψ)dτ
∥∥∥
H
σ+3

4

≤ ‖ψ0‖H
σ+3

4

+

∫ t

0

‖(−L2)σ+
1
2 e(t−τ)L2‖ · ‖F2(φ, ψ)‖H 1

4

dτ

≤ ‖ψ0‖H
σ+3

4

+ C

∫ t

0

(t− τ)−(σ+ 1
2 )e−δ(t−τ)dτ

≤ ‖ψ0‖H
σ+3

4

+ C

∫ t

0

τ−(σ+ 1
2 )e−δτdτ

≤ C‖(φ0, ψ0)‖H
σ+1

4
×H

σ+3
4

, (1/4 ≤ σ < 1/2) , (5.6)

where 0 ≤ σ + 1
2 < 1.

Similarly, we claim that F1 : H 1
4
×H 1

4
→ H 1

4
is bound.

‖F1(φ, ψ)‖H 1
4

= ‖∇
(
αφ− φ3 − εφψ

)
‖H
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≤ C
(
‖∇φ‖2L2 + ‖φ‖4L∞‖∇φ‖2L2 + ‖φ‖2L∞‖∇ψ‖2L2 + ‖ψ‖2L∞‖∇φ‖2L2

)
≤ C

(
‖ψ‖2H 1

4

+ ‖φ‖2H 1
4

)
≤ C,

where C depends on α, ε, |Ω| but independent of φ0 and ψ0. Therefore

‖φ(t, φ0)‖H
σ+1

4

=
∥∥∥etL1φ0 +

∫ t

0

e(t−τ)L1F1(φ, ψ)dτ
∥∥∥
H
σ+1

4

≤ ‖φ0‖H
σ+1

4

+
∥∥∥∫ t

0

e(t−τ)L1F1(φ, ψ)dτ
∥∥∥
H
σ+1

4

≤ ‖φ0‖H
σ+1

4

+

∫ t

0

‖(−L1)2σe(t−τ)L1‖ · ‖F1(φ, ψ)‖H 1
4

dτ

≤ ‖φ0‖H
σ+1

4

+

∫ t

0

τ−2σe−δτdτ

≤ C‖(φ0, ψ0)‖H
σ+1

4
×H

σ+3
4

, (1/4 ≤ σ < 1/2) , (5.7)

where 0 ≤ 2σ < 1. From (5.6)-(5.7), then (5.5) is proved. ut

Lemma 9. For any σ > 0, (1.1)-(1.2) has a bounded absorbing set in Hσ+ 1
4
×

Hσ+ 3
4
. That is, for any bounded set U ⊂ Hσ+ 1

4
×Hσ+ 3

4
there are T > 0 and a

constant C > 0 independent of φ0 and ψ0, such that

‖(φ, ψ)‖H
σ+1

4
×H

σ+3
4

≤ C, ∀t > T, (φ0, ψ0) ∈ U ⊂ Hσ+ 1
4
×Hσ+ 3

4
, σ ≥ 0. (5.8)

Proof. Step1. We shall show that for any 0 ≤ σ < 1
4 , (1.1)-(1.2) has a bounded

absorbing set in Hσ+ 1
4
×Hσ+ 3

4
. The solution (φ, ψ) can be expressed as

φ(t, φ0) = e(t−T )L1φ(T, φ0) +

∫ t

T

e(t−τ)L1F1(φ, ψ)dτ,

ψ(t, ψ0) = e(t−T )L2ψ(T, ψ0) +

∫ t

T

e(t−τ)L2F2(φ, ψ)dτ.

On the other hand, note that

‖etL1‖ ≤ Ce−dλ1t, ‖etL2‖ ≤ Ce−dλ
2
1t,

where λ1 > 0 is the first eigenvalue of the equation

−∆u = λu, u|∂Ω = 0.

By assertion (1) of lemma 7, for any given T > 0 and 0 ≤ σ < 1
4 , we have

‖e(t−T )Liψ(T, ψ0)‖Hσ → 0, i = 1, 2, as t→∞.

Using assertion (3) of lemma 7, we have

‖ψ(t, ψ0)‖H
σ+3

4

=
∥∥∥e(t−T )L2ψ(T, ψ0) +

∫ t

T

e(t−τ)L2F2(φ, ψ)dτ
∥∥∥
H
σ+3

4
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≤ ‖e(t−T )L2ψ(T, ψ0)‖H
σ+3

4

+
∥∥∥∫ t

T

e(t−τ)L2F2(φ, ψ)dτ
∥∥∥
H
σ+3

4

≤ ‖e(t−T )L2ψ(T, ψ0)‖H
σ+3

4

+

∫ t

T

‖(−L2)σ+
3
4 e(t−τ)L2‖ · ‖F2(φ, ψ)‖Hdτ

≤ ‖e(t−T )L2ψ(T, ψ0)‖H
σ+3

4

+ C

∫ t

T

(t− τ)−(σ+ 3
4 )e−δ(t−τ)dτ

≤ ‖e(t−T )L2ψ(T, ψ0)‖Hβ + C

∫ t

T

τ−βe−δτdτ ≤ C,

where β = σ+ 3
4 , 0 ≤ β < 1, C > 0 is a constant independent of ψ0. Similarly,

we have

‖φ(t, φ0)‖H
σ+1

4

=
∥∥∥e(t−T )L1φ(T, φ0) +

∫ t

T

e(t−τ)L1F1(φ, ψ)dτ
∥∥∥
H
σ+1

4

≤ ‖e(t−T )L1φ(T, φ0)‖H
σ+1

4

+
∥∥∥∫ t

T

e(t−τ)L1F1(φ, ψ)dτ
∥∥∥
H
σ+1

4

≤ ‖e(t−T )L1φ(T, φ0)‖H
σ+1

4

+

∫ t

T

‖(−L1)2σ+
1
2 e(t−τ)L1‖ · ‖F1(φ, ψ)‖Hdτ

≤ ‖e(t−T )L1φ(T, φ0)‖H
σ+1

4

+

∫ t

T

τ−2σ−
1
2 e−δτdτ ≤ C,

where 0 ≤ 2σ + 1
2 < 1, C > 0 is a constant independent of φ0.

Step2. We shall show that for any 1
4 ≤ σ < 1

2 , (1.1)-(1.2) has a bounded
absorbing set in Hσ ×Hσ+ 3

4
.

‖ψ(t, ψ0)‖H
σ+3

4

=
∥∥∥e(t−T )L2ψ(T, ψ0) +

∫ t

T

e(t−τ)L2F2(φ, ψ)dτ
∥∥∥
H
σ+3

4

≤ ‖e(t−T )L2ψ(T, ψ0)‖H
σ+3

4

+
∥∥∥∫ t

T

e(t−τ)L2F2(φ, ψ)dτ
∥∥∥
H
σ+3

4

≤ ‖e(t−T )L2ψ(T, ψ0)‖H
σ+3

4

+

∫ t

T

‖(−L2)σ+
1
2 e(t−τ)L2‖ · ‖F2(φ, ψ)‖H 1

4

dτ

≤ ‖e(t−T )L2ψ(T, ψ0)‖H
σ+3

4

+ C

∫ t

T

(t− τ)−(σ+ 1
2 )e−δ(t−τ)dτ

≤ ‖e(t−T )L2ψ(T, ψ0)‖H
σ+3

4

+ C

∫ t

T

τ−(σ+ 1
2 )e−δτdτ

≤ ‖e(t−T )L2ψ(T, ψ0)‖H
σ+3

4

+ C,

where C > 0 is a constant independent of ψ0.

‖φ(t, φ0)‖H
σ+1

4

=
∥∥∥e(t−T )L1φ(T, φ0) +

∫ t

T

e(t−τ)L1F1(φ, ψ)dτ
∥∥∥
H
σ+1

4

≤ ‖e(t−T )L1φ(T, φ0)‖H
σ+1

4

+
∥∥∥∫ t

T

e(t−τ)L1F1(φ, ψ)dτ
∥∥∥
H
σ+1

4
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≤ ‖e(t−T )L1φ(T, φ0)‖H
σ+1

4

+

∫ t

T

‖(−L1)2σe(t−τ)L1‖ · ‖F1(φ, ψ)‖H 1
4

dτ

≤ ‖e(t−T )L1φ(T, φ0)‖H
σ+1

4

+

∫ t

T

τ−2σe−δτdτ

≤ ‖e(t−T )L1φ(T, φ0)‖H
σ+1

4

+ C,

by iteration, we can obtain (5.8). ut

Proof. [Proof of Theorem 2.] By Lemma 8 and Lemma 9, we immediately
conclude the proof of Theorem 2 is completed. ut

Conclusions

Based on the regularity estimates for the semigroups and the classical existence
theorem of global attractors, we prove that the system possesses a global at-
tractor in the space Hk+ 1

4
×Hk+ 3

4
. Comparing this paper with [12,13,14]. The

system (1.1)-(1.2) is a two-component model. We define the product Hilbert
spaces, using the Lumer-Phillips theorem and the generation theorem for ana-
lytic semigroups. The main difficulties for treating the problem (1.1)-(1.2) are
caused by the nonlinearity of low order terms, and linear higher order terms
are not homogeneous. The existence of the attractor in Hk ×Hk+2, guarantee
a solution of the model equations for any value of the control parameters. This
explains the following: 1) the solutions are robust and not sensitive to changes
in the value of its control parameters and 2) the diversity of patterns that ex-
plain different biological systems (pigmentation vertebrate) and inhere animals
(membranes porous medium and ternary mixtures with surfactants).
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