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Abstract. To solve a linear ill-posed problem, a combination of the finite dimen-
sional least squares projection method and the Tikhonov regularization is considered.
The dimension of the projection is treated as the second parameter of regularization.
A two-parameter discrepancy principle defines a discrepancy set for any data error
bound. The aim of the paper is to describe this set and to indicate its subset such
that for regularization parameters from this subset the related regularized solution
has the same order of accuracy as the Tikhonov regularization with the standard
discrepancy principle but without any discretization.
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1 Introduction

Consider an ill-posed linear equation

Au = f (1.1)

with a linear, injective and bounded operator A ∈ L(X,Y ) between real infinite
dimensional Hilbert spaces X and Y with a nonclosed range R(A). We assume
that f ∈ R(A), so that (1.1) has a unique solution u ∈ X. Moreover, we assume
that f is unknown and a noisy right-hand side fδ ∈ Y with

‖f − fδ‖ ≤ δ (1.2)

is available only. A stable solution of (1.1) can be obtained via regularization
methods. For numerical calculations, we have to look for methods which can
be realized in finite dimensional spaces.

In this study we are concerned with a combination of finite dimensional least
squares (LSQ) projections of (1.1) and the Tikhonov regularization method.
There is an extensive literature concerning regularization by projection onto
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finite dimensional subspaces, beginning with the work of Natterer [13]. The
mathematical analysis of projection schemes and their self-regularization can
be found e.g. in [6, 11, 19] in the Hilbert space setting and with a posteriori
choice of the discretization level. These investigations have been extended to
regularization by projection in Banach spaces (see [7] and references therein)
as well as to nonlinear ill-posed equations (see e.g. [8, 9]). Generally, without
additional assumptions it cannot be guaranteed that a solution un obtained
by a projection method approximates the exact solution even in the error free
case (see [2] for an example given by T.I. Seidman (1980)). So, an additional
regularization method should usually be applied.

In our analysis, for regularization of a discrete problem we apply the ordi-
nary Tikhonov regularization, which is one of the most widely applied regular-
ization methods. See for instance the monographs [2, 17, 18, 20]. For conver-
gence analysis of regularization with LSQ projection see [3]. Finite dimensional
approximation of (1.1) by the LSQ projection regularized by the standard reg-
ularization method generated by Borel measurable functions has been studied
in [4, 5, 15]. This class of regularization methods contains also the Tikhonov
method. From the very beginning, there has been much interest in a poste-
riori rules for choosing regularization parameters. The basic one is Morozov’s
discrepancy principle [12]. In [14] this principle is applied to some finite di-
mensional version of Tikhonov’s regularization for severely ill-posed problems.

In the present paper, following [16], a discretization level n as well as a
Tikhonov regularization parameter α are treated as a pair of regularization
prameters. We consider an a posteriori choice of both the parameters based
on Morozov’s discrepancy principle. In such a situation, for any δ we get
a set of parameter pairs (n, α), further called the discrepancy set. The aim
of the paper is to describe this set and to indicate its subset such that for
regularization parameters from this subset the combination of LSQ projection
and Tikhonov’s method has the same rate of convergence under standard source
conditions. The discrepancy set is an analog of the discrepancy curve defined
and investigated in [10] for multiple penalty regularization of Tikhonov - type.

In the recently published paper [1] the authors consider a similar approach
to a nonlinear ill-posed problem in Banach space where a discretization level
and a Tikhonov regularization parameter are chosen by a relaxed version of
Morozov’s discrepancy principle. However, in such a general setting a dis-
cretization set is not analyzed.

Let us take into account the LSQ projection method where {Xn}∞n=1, Xn ⊂
X, is a finite dimensional approximation of X and Yn := AXn. Then {Yn}∞n=1

is an approximation of R(A). Let Pn, Qn denote orthogonal the projectors of
X and Y onto Xn and Yn, respectively. The finite dimensional approximation
of (1.1) by the LSQ projection has then the form

Anu
δ
n = fδn, (1.3)

where

An := QnA|Xn = A|Xn and fδn = Qnfδ.

It is known that uδn does not have to be an approximation of u.

Math. Model. Anal., 22(2):202–212, 2017.
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The Tikhonov regularization method applied to (1.3) consists in minimiza-
tion of the Tikhonov functional

F δn,α(v) = ‖Anv − fδn‖2 + α‖v‖2

over Xn, i.e.

uδn,α = arg min
v∈Xn

F δn,α(v). (1.4)

We omit the index δ if the noisy data fδ are replaced by the exact data f . The
regularized solution uδn,α satisfies the equation

(A∗nAn + αIn)uδn,α = A∗nQnf
δ

while un,α satisfies

(A∗nAn + αIn)un,α = A∗nQnf.

Thus the regularized solution uδn,α depends on two parameters, n and α.
In this paper, the following set of parameters will be investigated:

Definition 1. Let C be a fixed constant greater than 1. For any δ and fδ

satisfying (1.2) define

DC(δ, fδ):=
{

(n, α) : n ∈ N, α ∈ R+, n= min{k : ‖Auδk,α−fδ‖ ≤ Cδ}
}
. (1.5)

For simplicity this set will be further denoted by DC(δ) and called the discrep-
ancy set.

In [16] a subset of DC(δ) denoted by DS(δ)

DS(δ) := {(n, α) : n ∈ N, α(n) ∈ R+, ‖Auδn,α(n) − f
δ‖ = Cδ} (1.6)

was introduced and analysed. The set DS(δ) was there described in detail
for the discretization given by the truncated SVD. For the LSQ method, the
desired error bound was proved for parameter pairs from DS(δ), provided n is
sufficiently large.

In the present paper we answer the question what is the error rate for
parameters n and α ∈ (α(n − 1), α(n)), i.e. for pairs of parameters belonging
to DC(δ) \DS(δ). In order to investigate the convergence rate we will assume
(as in [16]) that the exact solution u satisfies the standard source condition of
the form

u ∈ Xµ,ρ := {v ∈ X : v = (A∗A)µw and ‖w‖ ≤ ρ}. (1.7)

This work is organized as follows: In Section 2 properties of DC(δ) are
investigated. A certain additional assumption on α is introduced in order to
prove an auxiliary lemma which plays an important role in proving the desired
order of convergence. In Section 3 an error bound is derived. It is shown that
for pairs of regularization parameters from DC(δ) satisfying this additional
assumption, the combination of the LSQ projection and Tikhonov’s method
has the same order of accuracy as Tikhonov’s regularization with the standard
discrepancy principle and without discretization.
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2 Discrepancy set

Let δ > 0 be fixed and

φ(n, α) := ‖Auδn,α − fδ‖2.

Let us observe that for every n > 0, φ(n, α) is increasing with respect to α. To
see this, let us take the singular system {µn,j , ϕn,j , ψn,j} of An. Then

φ(n, α) =
n∑
j=1

(
α

µ2
n,j + α

)2

(fδ, ψn,j)
2 + ‖(I −Qn)fδ‖2.

So φ(n, α) is increasing, since α
µ2
n,j+α

is increasing with respect to α ∈ R+.

This fact will be exploited in the next two lemmas:

Lemma 1. Let
n0(δ) := min{n : ‖(I −Qn)fδ‖ ≤ δ}.

If C > 1 in (1.6), then for every n ≥ n0(δ) there exists a unique α = α(n) such
that

‖Auδn,α(n) − f
δ‖ = Cδ, (2.1)

i.e. (n, α(n)) ∈ DS(δ).

Proof. For every n ∈ N there exists uδn ∈ Xn: Auδn = Qnf
δ. Thus

φ(n, 0) = ‖Auδn − fδ‖2 = ‖(I −Qn)fδ‖2 ≤ δ2

for n ≥ n0(δ). On the other hand, existence of α̃(n) such that ‖Auδn,α̃(n)−f
δ‖ =√

2C follows from the existence of a unique solution of the standard discrepancy
principle for An: ‖Anuδn,α−Qnfδ‖ = γδ with γ > 1 (see [3], Thm. 3.3.1). This
means that

φ(n, α̃(n)) = 2C2δ2.

Since φ(n, α) is increasing with respect to α, there exists α(n) ∈ (0, α̃(n)) such
that (2.1) holds for n ≥ n0(δ). ut

First, we collect some properties of DS(δ) in the case of An related to the
LSQ method, which were not proved in [16].

Lemma 2. If C > 1 in (1.6) and n > n0(δ) then α(n− 1) < α(n).

Proof. Let (n, α(n)) ∈ DS(δ) and let α̃ < α(n) be such that

n = min{k : φ(k, α̃) ≤ (Cδ)2}.

This means that
φ (n− 1, α̃) > (Cδ)2.

On the other hand, from Lemma 1 it follows that there exists α(n − 1) such
that

φ(n− 1, α(n− 1)) = (Cδ)2.

Math. Model. Anal., 22(2):202–212, 2017.
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Since φ(n− 1, α) is increasing, α(n− 1) < α̃ < α(n), which ends the proof. ut

Similarly to the case when the truncated SVD is chosen for discretization
(see [16] Lemma 3.3), (2.1) implies the following estimation for An related to
the LSQ method and the exact data:

Lemma 3. If ‖f − fδ‖ ≤ δ and (n, α(n)) ∈ DS(δ), then

(C − 1)δ ≤ ‖Aun,α(n) − f‖ ≤ (C + 1)δ.

Proof. We have

Aun,α − f =
[
Auδn,α − fδ

]
+
[
A(un,α − uδn,α)− (f − fδ)

]
. (2.2)

For α = α(n) the norm of the first term on the right hand side is equal to Cδ.
Using the singular system {µn,j , ϕn,j , ψn,j} of the operator An we have

A(un,α − uδn,α)− (f − fδ) =
n∑
j=1

−α
µ2
n,j + α

(fn,j − fδn,j)ψn,j − (I −Qn)(f − fδ),

where fn,j = (f, ψn,j) and fδn,j = (fδ, ψn,j). Since α
µ2
n,j+α

< 1, the norm of

the second term on the right hand side of (2.2) is bounded by δ. The triangle
inequality applied to (2.2) ends the proof. ut

Now, let us consider the new set DC(δ) introduced by (1.5). We have

DS(δ) ⊂ DC(δ).

Basing on Definition 1, let us denote

n(α) := min{n : ‖Auδn,α − fδ‖ ≤ Cδ},

where uδn,α is given by (1.4). Of course n(α(n)) = n. A similar estimation to
that in Lemma 3 holds for parameters (n(α), α) from DC(δ) but under some
additional assumption on α.

Lemma 4. Let ‖f − fδ‖ ≤ δ and (n(α), α) ∈ DC(δ). If α is such that

C̃δ ≤ ‖Auδn(α),α − f
δ‖ (2.3)

with 1 < C̃ < C, then

(C̃ − 1)δ ≤ ‖Aun(α),α − f‖ ≤ (C + 1)δ.

Proof. Let us consider the equality (2.2) for (n(α), α). Then the first term on
the right hand side of (2.2) is bounded from above, and from below according
to (2.3). The second term is bounded by δ (see the proof of Lemma 3). The
triangle inequality applied to (2.2) ends the proof. ut
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Note that in general, (2.3) does not necessarily occur for all values α ∈
(α(n − 1), α(n)). However, for any C̃ < C there exists a neighborhood BC̃ of
α(n) such that (2.3) holds for α ∈ (α(n− 1), α(n)] ∩BC̃ .

Let α̃(n) be such that

‖Auδn,α̃(n) − f
δ‖ = C̃δ.

If C̃ > 1 then α̃(n) exists according to Lemma 1. Since ‖Aun,α − fδ‖ is
increasing with respect to α (see Lemma 2), α̃(n) < α(n). If α̃(n) ≤ α(n− 1),
then

∀α ∈ (α(n− 1), α(n)] C̃δ ≤ ‖Auδn(α),α − f
δ‖.

However, if α̃(n) > α(n−1), then this inequality holds only for α ∈ (α̃(n), α(n)].

2.1 Example

Let us consider the truncated singular value decomposition (TSVD) as the
exceptional projection method which is simultaneously the LSQ and the dual
LSQ method. Let A be compact and let {µj , ϕj , ψj}∞j=1 be the singular system

for A where µ1 ≥ µ2 ≥ · · · , A∗Aϕj = µ2
jϕj , Aϕj = µjψj and ϕj , ψj are

normalized. Let

Xn := span{ϕ1, . . . , ϕn}; then Yn := span{ψ1, . . . , ψn} = AXn.

In this case uδn,α and uδn have the forms

uδn,α =
n∑
j=1

µj
µ2
j + α

fδj ϕj and uδn =
n∑
j=1

1

µj
fδj ϕj ,

where fδj = (fδ, ψj), while the solution of the Tikhonov regularization (without
discretization) has the form

uδα =
∞∑
j=1

µj
µ2
j + α

fδj ϕj .

Let α(δ) be such that ‖Auδα(δ) − f
δ‖ = Cδ.

It was proved in [16] that in the case C > 1 for every n ≥ min{n ∈ N :
‖Auδn−fδ‖ ≤ Cδ} there exists a unique α = α(n) such that (n, α(n)) ∈ DS(δ).
Moreover, α(n − 1) < α(n) and α(n) → α(δ) as n → ∞. In order to verify
the assumption (2.3) for (n(α), α) ∈ DC(δ) let us see that ‖Auδn,α − fδ‖ is
increasing with respect to α, and

‖Auδn,α(n−1)−f
δ‖2 =

n−1∑
j=1

(
α(n− 1)

µ2
j + α(n− 1)

)2

(fδj )2+

(
α(n− 1)

µ2
n + α(n− 1)

)2

(fδn)2

+
∞∑

j=n+1

(fδj )2 = ‖Auδn−1,α(n−1)‖
2 + (fδn)2

[(
α(n− 1)

µ2
n + α(n− 1)

)2

− 1

]
.

Math. Model. Anal., 22(2):202–212, 2017.
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The first term on the right hand side is equal to (Cδ)2 by (1.6). Since

(fδn)2 ≤ ‖(I −Qn−1)fδ‖2

and for n > n0(δ), ‖(I −Qn−1)fδ‖ ≤ δ, we have

‖Auδn,α(n−1) − f
δ‖2 ≥ (C2 − 1)δ2.

Therefore, for every α ∈ (α(n− 1), α(n)) and n > n0(δ),√
C2 − 1δ ≤ ‖Auδn,α − fδ‖ ≤ Cδ. (2.4)

This holds for any fixed C > 1. If C >
√

2 then C̃ =
√
C2 − 1 > 1 and Lemma

4 holds for every α ∈ (α(n0(δ)), α(δ)).

This result can also be obtained in the case when {xi}∞i=1 is any orthogonal
basis of X and Xn = span{x1, · · · , xn}.

3 Order of convergence

In [16] (Theorem 4.4) it was proved that if the exact solution u satisfies the
source condition (1.7) then for (n, α(n)) ∈ DS(δ) (see (1.6)) and for n suffi-
ciently large we have

‖uδn,α(n) − u‖ ≤ C1δ
2µ

2µ+1 , for µ ≤ 1/2, (3.1)

‖uδn,α(n) − u‖ ≤ C2

√
δ, for µ > 1/2, (3.2)

where the constants C1, C2 depend on µ, ρ, C and ‖A‖.
Now, we are going to estimate ‖uδn(α),α − u‖ in the case of parameters

(n(α), α) belonging to the set DC(δ) (1.5). The estimations (3.1) and (3.2) are
proved in [16] by using the inequality ‖uδn,α(n)‖ ≤ ‖u‖, which holds for C ≥ 2

and (n, α(n)) ∈ DS(δ) when n is sufficiently large.

However, the inequality ‖uδn(α),α‖ ≤ ‖u‖ may not occur for some

α(n− 1) < α < α(n).

For a fixed n, in terms of the singular system {µn,j , ϕn,j , ψn,j} of An, ‖uδn,α‖
has the form

‖uδn,α‖2 =
n∑
j=1

(
µn,j

µ2
n,j + α

fδn,j

)2

,

from which it follows that ‖uδn,α‖ is a decreasing function of α. Hence, for
α < α(n),

‖uδn,α‖ > ‖uδn,α(n)‖.

We are going to show that if α belongs to a sufficiently small left hand
neighborhood of α(n) then the desired estimation holds:
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Lemma 5. Let u be the solution of (1.1). Define

m(δ) := min{n : ‖A(I − Pn)u‖ ≤ δ}.

If (n, α) ∈ DC(δ) with C > 2, n ≥ m(δ) and α ∈ (α(n− 1), α(n)) is such that

2δ ≤ ‖Auδn,α − fδ‖, (3.3)

then
‖uδn,α‖ ≤ ‖u‖.

Proof. Since uδn,α is the minimizer of the Tikhonov functional Fα(z) over Xn,

Fα(uδn,α) ≤ Fα(Pnu) = ‖APnu− fδ‖2 + α‖Pnu‖2.

If (n(α), α) ∈ DC(δ) and (3.3) is satisfied, then

(2δ)2 + α‖uδn(α),α‖
2 ≤ ‖APnu− fδ‖2 + α‖Pnu‖2.

Thus
α‖uδn(α),α‖

2 ≤ α‖u‖2 +
[
‖APn(α)u− fδ‖2 − (2δ)2

]
.

If n(α) ≥ m(δ), then the term in the square brackets is nonpositive because

‖APnu− fδ‖ ≤ ‖A(I − Pn)u‖+ ‖f − fδ‖ ≤ 2δ,

which ends the proof. ut

Remark 1. Let A be compact and let the projection method be generated by
subspaces Xn spanned by eigenfunctions of A∗A (see SubSection 2.1).

a) If C ≥
√

5, then according to (2.4), (3.3) holds for any α ∈ (α(n− 1), α(n)).

b) If u ∈ Xµ,ρ, then
∞∑
j=1

1

µ
2(1+2µ)
j

f2j ≤ ρ2,

where fj = (f, ψj) and thus

‖A(I − Pn)u‖2 =

∞∑
n+1

f2j ≤ ρ2
(
µ1+2µ
n+1

)2
.

So, m(δ) ≤ min{n : ρµ1+2µ
n+1 ≤ δ}.

Theorem 1. Let u ∈ Xµ,ρ and (n, α) ∈ DC(δ) with C > 2. If n ≥ m(δ) and
α satisfies (3.3), then

‖uδn,α − u‖ ≤ c1δ
2µ

2µ+1 , for µ ≤ 1/2, (3.4)

where c1 =
(
2ρ(C + 1)2µ

) 1
2µ+1 and

‖uδn,α − u‖ ≤ c2
√
δ, for µ > 1/2, (3.5)

where c2 =
(
2ρ‖A‖2µ−1(C + 1)

) 1
2 .

Math. Model. Anal., 22(2):202–212, 2017.



210 T. Regińska

Proof. The idea is the same as in the proof of Theorem 4.4 in [16]. By Lemma
5 we have

‖uδn(α),α − u‖
2 = ‖uδn(α),α‖

2 − 2(uδn(α),α, u) + ‖u‖2

≤ 2(‖u‖2 − (uδn(α),α, u)) = 2(u− uδn(α),α, u).

By the assumption u = (A∗A)µw with ‖w‖ ≤ ρ. Thus

‖uδn(α),α − u‖
2 ≤ 2ρ‖((A∗A)

1
2 )2µ(u− uδn(α),α)‖. (3.6)

Let B be a bounded selfadjoint operator in X and let Pλ be its spectral family.
Then

‖Bτx‖2 =

∫ ∞
0

λ2τd(Pλx, x).

Since (Pλx, x) is a nonnegative measure, we can apply the Hölder inequality to
this integral with p = 1

τ , q = 1
1−τ and 0 < τ ≤ 1 to obtain

‖Bτx‖2 ≤
(∫ ∞

0

λ2τpd(Pλx, x)

) 1
p
(∫ ∞

0

1qd(Pλx, x)

) 1
q

= ‖Bx‖2τ‖x‖2(1−τ).

Using this inequality for B = (A∗A)
1
2 and τ = 2µ we get from (3.6)

‖uδn,α − u‖2 ≤ 2ρ‖(A∗A)
1
2 (u− uδn,α)‖2µ‖u− uδn,α‖1−2µ. (3.7)

For every w ∈ X we have

‖(A∗A)1/2w‖2 = ((A∗A)1/2w, (A∗A)1/2w) = (A∗Aw,w) = ‖Aw‖2,

therefore, for w = u− un(α),α it holds

‖(A∗A)
1
2 (u− uδn(α),α)‖ = ‖(A∗A)−

1
2A∗A(u− uδn(α),α)‖ ≤ ‖Auδn(α),α − f‖.

Moreover, if (n(α), α) ∈ DC(δ), then

‖Auδn(α),α − f‖ ≤ Cδ + ‖f − fδ‖ ≤ (C + 1)δ.

Combining these inequalities with (3.7) we see that

‖uδn(α),α − u‖
1+2µ ≤ 2ρ(C + 1)2µδ2µ,

which establishes (3.4). If u = (A∗A)µw for µ > 1
2 and ‖w‖ ≤ ρ, then u =

(A∗A)
1
2 v, where

‖v‖ = ‖(A∗A)µ−
1
2w‖ ≤ ρ‖A‖2µ−1 =: ρ̃.

Thus u ∈ X 1
2 ,ρ̃

and (3.5) follows from (3.4). ut
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Conclusions

In [16] the set DS(δ) of pairs (n, α(n)) of regularization parameters deter-
mined by Morozov’s type discrepancy principle was introduced for Tikhonov’s
regularization applied to the LSQ projection of a linear ill-posed problem. It
was proved there that under the standard source condition u = (A∗A)µv with
‖v‖ ≤ ρ and for arbitrary choice of (n, α(n)) ∈ DS(δ), if µ ≤ 1

2 , then the
convergence is of optimal order. If µ > 1

2 , the sub-optimal rate of convergence

O(
√
δ) is only obtained.

In the present paper a greater parameter set DC(δ) ⊃ DS(δ) containing
(n(α), α) is considered. The convergence result obtained in Theorem 1 means
that the optimal rate of convergence for µ ≤ 1

2 as well as O(
√
δ) for µ > 1

2 is
stable with respect to the choice of Tikhonov’s regularization parameter α in
a certain left hand neighborhood of α(n) for n sufficiently large. Sometimes,
as in the case of discretization given by truncated SVD, the desired order of
convergence occurs for all pairs (n, α) where α ∈ (α(n − 1), α(n)] and n is
sufficiently large.
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[16] T. Regińska. Two-parameter discrepancy principle for combined projection
and Tikhonov regularization of ill-posed problems. J. Inv. Ill-Posed Problems,
21:561–577, 2013.

[17] A.N. Tikhonov and V.Y. Arsenin. Solution of Ill-Posed Problems. Wiley, New
York, 1977.

[18] A.N. Tikhonov, A.S. Leonov and A.G. Yagola. Nonlinear ill-posed problems.
(Nelinejnye nekorrektnye zadachi.). Moskva: Nauka. Fizmatlit., 1995.
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