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Abstract. Muth introduced a probability distribution with application in relia-
bility theory. We propose a new model from the Muth law. This paper studies its
statistical properties, such as the computation of the moments, computer generation
of pseudo-random data and the behavior of the failure rate function, among others.
The estimation of parameters is carried out by the method of maximum likelihood
and a Monte Carlo simulation study assesses the performance of this method. The
practical usefulness of the new model is illustrated by means of two real data sets,
showing that it may provide a better fit than other probability distributions.
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1 Introduction

In the last decades, there exists an increasing interest in the development of new
parametric distributions with the aim of providing flexible probability models
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useful in many different areas. In 1977, Muth [25] introduced a continuous
probability distribution in the context of reliability theory. However, this law
has been overlooked in the literature until a recent paper by Jodrá et al. [20],
where its main statistical properties were thoroughly studied. To be more
precise, a random variable Y is said to have a Muth distribution if its probability
density function (pdf) is given by

fY (y;α) = (eαy − α) exp
{
αy − 1

α
(eαy − 1)

}
, y > 0,

where α ∈ (0, 1] is a shape parameter. The cumulative distribution function
(cdf) of Y is the following

FY (y;α) = 1− exp
{
αy − 1

α
(eαy − 1)

}
, y > 0. (1.1)

As a natural extension, Jodrá et al. [20] considered the scaled Muth distribu-
tion, which is defined as βY , with β > 0, and they showed the usefulness of
the scaled Muth law for modelling rainfall data.

In this paper, we introduce a new probability distribution from the Muth
law. Specifically, we define the so-called power Muth (PM) distribution by
means of the transformation X = βY 1/γ , where β > 0, γ > 0 and Y is the
Muth law with parameter α = 1. As it will be seen, the introduction of the
new parameter γ leads to a rich class of probability distributions for non-
negative random variables with a wide range of values for the asymmetry and
kurtosis coefficients, increasing generalized failure rate as well as increasing or
bathtub shape failure rate. The choice α = 1 is adopted to avoid unnecessarily
increasing the number of parameters since both α and γ are shape parameters.
From the viewpoint of applications, the new family of distributions may provide
a better fit than other probability distributions previously used to this end.

Using ordinary results related to the transformation of variables, it is easy
to see that the pdf and cdf of X are given, respectively, by

f(x;β, γ) =
γ

βγ
xγ−1

(
e(x/β)

γ

− 1
)

exp
{

(x/β)
γ −

(
e(x/β)

γ

− 1
)}
, x > 0,

F (x;β, γ) = 1− exp
{

(x/β)
γ −

(
e(x/β)

γ

− 1
)}
, x > 0, (1.2)

where β is a scale parameter and γ is a shape parameter. Figure 1 displays the
pdf of the PM distribution for different values of the parameters. Throughout
this paper, the PM law with parameters β and γ is denoted by PM(β, γ).

It is interesting to note that f(x;β, γ) is a well-defined pdf for any β > 0
and γ > 0. However, routine calculations show that

lim
x→0+

f(x;β, γ) =


∞, if γ ∈ (0, 0.5),

0.5/β, if γ = 0.5,

0, if γ ∈ (0.5,∞).

Commonly used pdf estimators, such as the histogram or kernel based estima-
tors, always yield a finite pdf estimation. Therefore, from a practical point
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Figure 1. Pdf of the PM(β, γ) distribution for β = 1 and different values of γ.

of view, an unbounded pdf will not provide a reasonable fit for any data set.
Because of this reason, we will only consider γ ∈ [0.5,∞). Nevertheless, most
properties studied for the proposed family are valid for any γ > 0.

The remainder of this paper is organized as follows. Section 2 studies some
statistical properties of the PM distribution. More precisely, the mode, the non-
central moments and moments of the order statistics are expressed in terms of
the generalized integro-exponential function. This function has also appeared
in the expression of the moments of the order statistics of other distributions
such as the Gompertz–Makeham distribution (see Jodrá [18]). The quantile
function is written in terms of the LambertW function. This function has found
nice applications in probability and statistics for calculating certain statistical
distances between some discrete distributions (see Adell and Jodrá [1]) and for
the expression of the quantile function of other probability laws (see [16,17,19],
among others). The behavior of the (generalized) failure rate function and
the mean residual life is also described. The parameter estimation problem
is considered in Section 3 and a simulation study is carried out to assess the
performance of the maximum likelihood method. In Section 4, an application
to two real data sets is presented to illustrate the practical usefulness of the
proposed distribution.
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2 Statistical properties

2.1 Mode

The mode of a continuous probability distribution, denoted by mode(X), is
the value at which the pdf has its maximum. The next result shows that
the PM(β, γ) distribution is unimodal for γ ≥ 0.5. We first introduce some
notation. Let

∆(γ) =
γ − 1

γ
, g(z) = z

(ez − r1)(ez − r2)

ez − 1
,

where r1 = 2 − ϕ, r1 = ϕ2 and ϕ stands for the golden ration. Recall that ϕ
can be defined as the positive solution of the equation x2 − x− 1 = 0, that is,

ϕ =
1 +
√

5

2
≈ 1.618034.

Therefore, r1 ≈ 0.381966 and r2 ≈ 2.618034. Clearly, g(0) = g(r2) = 0,
g(z) < 0, ∀z ∈ (0, r2), and g(z) > 0, ∀z ∈ (r2,∞). Routine calculations
show that g is a strictly convex function for z ≥ 0 with a global minimum at
r0 ∈ (0, r2), specifically r0 ≈ 0.226874 and g(r0) ≈ −1.059945.

Proposition 1. Let X be a random variable having a PM(β, γ) distribution
with β > 0 and γ ≥ 0.5. Then, X has a unique mode

mode(X) = βς1/γ ,

where: (a) ς is the unique solution in z ∈ (r0, r2) of the equation

g(z) = ∆(γ), (2.1)

if γ ∈ [0.5, 1), (b) ς = r2, if γ = 1, (c) ς is the unique solution in z ∈ (r2,∞)
of Eq. (2.1), if γ > 1.

Proof. In order to obtain the mode of X we have to solve with respect to x
the equation (∂/∂x)f(x;β, γ) = 0, which is equivalent to solve the following
equation (∂/∂x) log f(x;β, γ) = 0, where log is the natural logarithm. This is
tantamount to solve with respect to z Eq. (2.1), with z = (x/β)γ . Taking into
account that ∆(γ) is a strictly increasing function of γ satisfying ∆(γ) ∈ [−1, 0]
if γ ∈ [0.5, 1] and ∆(γ) > 0 if γ > 1, as well as the properties of g(z) sketched
above, the result follows. ut

2.2 Moments

The moments can be written in terms of the generalized integro-exponential
function, which is defined by the integral representation (see Milgram [24])

Ems (z) =
1

Γ (m+ 1)

∫ ∞
1

(log u)me−zuu−sdu, z ∈ (−∞,∞), (2.2)

where s ∈ (−∞,∞), m > −1 and Γ stands for the gamma function.

Math. Model. Anal., 22(2):186–201, 2017.
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Proposition 2. Let X have the PM(β, γ) distribution. Then,

E[Xk] = e βkΓ

(
k

γ
+ 1

)
E
k
γ−1
0 (1) , k = 1, 2, . . . . (2.3)

Proof. From Eq. (1.2), for any k = 1, 2, . . . , we have

E[Xk] =

∫ ∞
0

xkdF (x;β, γ)

=

∫ ∞
0

γ

βγ
xk+γ−1

(
e(x/β)

γ

− 1
)

exp

{(
x

β

)γ
−
(
e(x/β)

γ

− 1
)}

dx

= e βk
∫ ∞
1

(log u)k/γe−u (u− 1)du,

where in the last equality we have made the change of variable
u = exp {(x/β)

γ}. Then, by virtue of Eq. (2.2), we get

E[Xk] = e βkΓ (k/γ + 1)
{
E
k/γ
−1 (1)− Ek/γ0 (1)

}
.

Finally, by taking into account in the above equation the following recurrence
formula (see Milgram [24, eqn 2.4])

(1− s)Ems (z) = zEms−1(z)− Em−1s (z), z > 0, s 6= 1, m ≥ 0, (2.4)

where it is assumed E−1s (z) = e−z, the desired result is obtained. ut

The main mathematical properties of the generalized integro-exponential
function have been studied by Ozalp and Bairamov [26], who provided an
accurate algorithm to evaluate (2.2). As a consequence, from Eq. (2.3) we
can compute efficiently the usual statistical measures involving E[Xk]. The
behavior of some common measures can be graphically seen in the following
figures, where we set β = 1 since β is a scale parameter: Figure 2 displays the
mean, standard deviation, asymmetry coefficient (κ = E[(X−E[X])3]/σ3) and
kurtosis coefficient (E[(X − E[X])4]/σ4). As can be seen, the PM family has
a wide range of values for the coefficients of asymmetry and kurtosis, which
provides a great flexibility in modelling data. Moreover, for γ ∈ [1.12, 1.36] the
asymmetry coefficient satisfies |κ| ≤ 0.1, leading to quasi-symmetric densities.
As suggested in Vargo et al. [30], a diagram of asymmetry coefficient versus
kurtosis is also shown in Figure 3.

2.3 Quantile function

The PM distribution inherits the variate generation property from the Muth
distribution, that is, its quantile function can also be written in closed form.
Specifically, it can be expressed explicitly in terms of the Lambert W function
(see Corless et al. [8] for a review of the theory and applications of W ). In this
regard, it is interesting to note that the Lambert W function is implemented
in computer algebra systems such as Maple, Mathematica and Matlab and
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Figure 2. Mean, standard deviation, asymmetry and kurtosis as functions of γ (β = 1).

also in programming languages such as R [29]. Therefore, pseudo-random data
from the PM model can be computer-generated in a straightforward manner
by virtue of the following result.

Proposition 3. The quantile function of the PM(β, γ) distribution is

F−1(u;β, γ) = β

(
log

{
−W−1

(
u− 1

e

)})1/γ

, 0 < u < 1, (2.5)

where W−1 denotes the negative branch of the Lambert W function.

Proof. For any 0 < u < 1, we have to solve with respect to x the equation
F (x;β, γ) = u, which is equivalent to solve FY ((x/β)γ ; 1) = u, with FY given

by (1.1). Clearly, the solution of the latter equation is x = β
(
F−1Y (u; 1)

)1/γ
.

Then, taking into account the closed-form expression for F−1Y provided in Jodrá
et al. [20, Corollary 2], the result in (2.5) is obtained. ut

2.4 Failure rate function

The failure (or hazard) rate function of the PM(β, γ) distribution is

h(x;β, γ) =
f(x;β, γ)

1− F (x;β, γ)
=

γ

βγ

(
e(x/β)

γ

− 1
)
xγ−1, x > 0.

Proposition 4. (a) If γ ≥ 1 then h(x;β, γ) is increasing in x for any β > 0.
(b) If 0 < γ < 1 then there exists an x0 = x0(β, γ) > 0 so that h(x;β, γ) is
(strictly) decreasing when x < x0 and (strictly) increasing when x > x0.

Math. Model. Anal., 22(2):186–201, 2017.
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Figure 3. Graph of asymmetry coefficient versus kurtosis coefficient.

Proof. Let τ = (x/β)γ . The first derivative of h can be written as follows

h′(x;β, γ) =
∂

∂x
h(x;β, γ) =

γ

βγ
(γ − 1) (eτ − 1)xγ−2 +

γ2

β2γ
eτx2(γ−1).

Part (a) is evident from the expression of h′. To prove part (b), notice that

h′(x;β, γ) =
γ

βγ
(1− γ) (eτ − 1) {c(x)− 1}xγ−2

with c(x) =
γ

βγ(1− γ)

eτ

eτ − 1
xγ . Since for any x > 0, β > 0 and 0 < γ < 1,

we have

c′(x) =
∂

∂x
c(x) =

γ2

βγ(1− γ)

eτ

(eτ − 1)2
(eτ − τ − 1)xγ−1 > 0,

limx→0 c(x) = 0, limx→∞ c(x) = +∞ and
γ

βγ
(1 − γ) (eτ − 1)xγ−2 > 0, then

there exists an x0 = x0(β, γ) > 0 so that h′(x;β, γ) < 0 for x < x0 and
h′(x;β, γ) > 0 for x > x0. This proves part (b). ut

Therefore, the PM(β, γ) distribution has either increasing failure rate (IFR)
when γ ≥ 1 or bathtub-shaped failure rate when 0 < γ < 1.

2.5 Generalized failure rate

Lariviere and Porteus [22] introduced the concept of generalized failure rate
(GFR) of a continuous non-negative random variable and they showed that
the distributions with increasing GFR (IGFR) have useful applications in ope-
rations management (see also Lariviere [21]). The GFR of a random variable
X is defined by g(x) = xh(x), where h(x) denotes the failure rate function. It
is said that X is IGFR if g(x) is non-decreasing. The next proposition shows
that the PM distribution satisfies this desirable property.

Proposition 5. The PM(β, γ) distribution is IGFR.
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Proof. The first derivative of the GFR of the PM distribution can be written
as follows

g′(x;β, γ) =
∂

∂x
g(x;β, γ) =

γ2

βγ
xγ−1

((
1

βγ
xγ + 1

)
e(x/β)

γ

− 1

)
and clearly g′(x;β, γ) > 0 since x > 0, β > 0 and γ > 0. Hence, g(x;β, γ) is a
non-decreasing function in x, which implies the result. ut

2.6 Mean residual life

Another important reliability measure for non-negative random variables is the
mean residual life, which is defined as E(X − x|X > x). It is well-known that
if a random variable has IFR, then its mean residual life is decreasing, which
occurs when γ ≥ 1 for the PM(β, γ) law as a consequence of Proposition 4. An
analytical expression for the mean residual life is given in the following result.

Proposition 6. The mean residual life of the PM(β, γ) distribution is

r(x;β, γ) =
β

γ
{log u(x)}

1
γ−1 I(x) (2.6)

=
β

γ
Γ
(

1
γ

)
{log u(x)}

1
γ−1 exp {u(x)}E

1
γ−1
0 (u(x)) (2.7)

with

I(x) =

∫ ∞
0

{log(1 + z)}
1
γ−1 exp {−zu(x)} dz, u(x) = exp {(x/β)

γ} .

Proof. Let S(x;β, γ) = 1− F (x;β, γ). The mean residual life is

r(x;β, γ) = E(X − x|X > x) =

∫ ∞
x

S(y;β, γ)

S(x;β, γ)
dy

=
1

S(x;β, γ)

∫ ∞
x

exp

{(
y

β

)γ
−
(
e(y/β)

γ

− 1
)}

dy

=
β

γ u(x)

∫ ∞
u(x)

log(t)
1
γ−1 exp {u(x)− t} dt,

where in the last equality we have made the change of variable t = exp {(y/β)
γ}.

Then, the result in (2.6) follows by making the change of variable v = t−u(x).
The result in (2.7) is obtained from (2.6) by taking into account (2.2). ut

Figure 4 displays the mean residual life of the PM(β, γ) distribution for
β = 1 and several values of γ. As can be seen, for γ ∈ (0, 1) the mean residual
life is first increasing up to a point and then decreasing, whereas for γ ≥ 1 it
is always decreasing.

Math. Model. Anal., 22(2):186–201, 2017.
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Figure 4. Mean residual life for β = 1 and γ = 0.5, 0.75, 1, 2.

2.7 Moments of order statistics

This section shows that the moments of the order statistics can be expressed
in closed form in terms of the generalized integro-exponential function.

Let X1, . . . , Xn be a random sample of size n from the PM(β, γ) distri-
bution. Let X1:n ≤ X2:n ≤ . . . ≤ Xn:n be the order statistics obtained by
arranging Xi, i = 1, . . . , n, in non-decreasing order of magnitude. For any
n = 1, 2, . . . and k = 1, 2, . . . , the kth moment of Xr:n, r = 1, . . . , n, can be
computed using the well-known formula (see Arnold et al. [4, p. 108])

E[Xk
r:n] = r

(
n

r

)∫ ∞
0

xk {F (x;β, γ)}r−1 {1− F (x;β, γ)}n−r dF (x;β, γ), (2.8)

where F is defined by (1.2). We state the following.

Proposition 7. For any n = 1, 2, . . . , the moments of the smallest order statis-
tic X1:n are given by

E[Xk
1:n] = enβkΓ

(
k

γ
+ 1

)
E
k
γ−1
1−n (n) , k = 1, 2, . . . .

Proof. From Eqs. (1.2) and (2.8), together with the change of variable u =
exp {(x/β)

γ}, we have

E[Xk
1:n] = nenβk

{∫ ∞
1

(log u)k/γune−nudu−
∫ ∞
1

(log u)k/γun−1e−nudu

}
= nenβkΓ

(
k

γ
+ 1

){
E
k/γ
−n (n)− Ek/γ1−n(n)

}
,
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where in the last equality we have used Eq. (2.2). The result is obtained by
taking into account in the above equation the recurrence formula (2.4). ut

The expression of E[Xk
1:n] in Proposition 7 can be used to evaluate E[Xk

r:n],
for r = 2, . . . , n and k = 1, 2, . . . , computing only the moments of the smallest
order statistic in samples of size r = n − r + 1, . . . , n. With this aim, the
following well-known formula can be applied (see Arnold et al. [4, p. 113])

E[Xk
r:n] =

n∑
j=n−r+1

(−1)j−(n−r+1)

(
n

j

)(
j − 1

n− r

)
E[Xk

1:j ], r = 2, . . . , n.

3 Parameter estimation

This section considers the parameter estimation problem. Subsection 3.1 de-
scribes the maximum likelihood (ML) method. Subsection 3.2 gives some
practical advice to calculate the ML estimators. Finally, some simulation re-
sults are presented in Subsection 3.3.

3.1 The maximum likelihood method

Let X1, . . . , Xn be a random sample of size n from the PM(β, γ) distribution
with unknown parameters β and γ. Denote by x1, x2, . . . , xn the observed
values of the sample. From the likelihood function, L(β, γ) =

∏n
i=1 f(xi;β, γ),

the log-likelihood function can be written as follows

logL(β, γ) = n(log γ − γ log β) + (γ − 1)

n∑
i=1

log xi +
1

βγ

n∑
i=1

xγi

+

n∑
i=1

log
{
e(xi/β)

γ

− 1
}
−

n∑
i=1

(
e(xi/β)

γ

− 1
)
.

(3.1)

The ML estimates of β, γ are the values β̂, γ̂ that maximize Eq. (3.1). The
system of partial derivatives of logL(β, γ) set equal to zero is the following

∂

∂β
logL(β, γ) = − γ

βγ+1

n∑
i=1

xγi e
(xi/β)

γ

e(xi/β)
γ − 1

+
γ

βγ+1

n∑
i=1

xγi e
(xi/β)

γ

− γ

βγ+1

n∑
i=1

xγi −
nγ

β
= 0,

∂

∂γ
logL(β, γ) =

1

βγ

n∑
i=1

xγi log
(
xi
β

)
e(xi/β)

γ

e(xi/β)
γ − 1

− 1

βγ

n∑
i=1

xγi log

(
xi
β

)
e(xi/β)

γ

+
1

βγ

n∑
i=1

xγi log

(
xi
β

)
+

n∑
i=1

log

(
xi
β

)
+
n

γ
= 0. (3.2)

Clearly, this system does not have an explicit solution, so to get β̂ and γ̂ it is
preferable to maximize (3.1).

Math. Model. Anal., 22(2):186–201, 2017.
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3.2 Some practical considerations

As noted in the previous subsection, in order to obtain the ML estimates the
following optimization problem is solved

max logL(β, γ),

s.t. β > 0, γ ≥ 0.5,
(3.3)

where logL(β, γ) is given in (3.1). In our simulations, problem (3.3) was
solved by using the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm,
since (3.3) has linear constraints in the parametric space. The BFGS algorithm
is available, for example, in the function constrOptim of the R language [29].
A starting point in the parametric space together with the gradient function of
logL(β, γ) must be supplied; the latter is given in (3.2). To determine a suita-
ble starting point, from the simulation experiments carried out, we propose to
solve with respect to β and γ the following system of equations

F−1(ui;β, γ) = qi, F−1(uj ;β, γ) = qj ,

for (i, j) = (1, 2), (1, 3), (2, 3) with u1 = 1/4, u2 = 1/2, u3 = 3/4 and the
sample quartiles qi, i = 1, 2, 3. Then, take as starting point the solution with
the highest value of logL(β, γ).

3.3 Numerical results

The performance of the ML method was assessed via a Monte Carlo simulation
study. To this end, we generated N = 10, 000 random samples of different sizes
n for several values of β and γ. Pseudo-random data from the PM distribution
were computer-generated by means of (2.5). In the simulation study, the follo-

wing quantities were calculated for the simulated estimates β̂j , j = 1, . . . , N .

(i) The mean: β̄ = (1/N)
∑N
j=1 β̂j .

(ii) The bias: Bias(β̂) = β̄ − β.
(iii) The variance: Var(β̂) = (1/N)

∑N
j=1 β̂

2
j − β̄2.

(iv) The mean-square error: MSE(β̂) = (1/N)
∑N
j=1(β̂j − β)2.

The analogous quantities for γ were also calculated.
Table 1 presents some simulation results where the true values of the para-

meters are β = 10 and γ = 0.5, 1, 3. The bias, variance and mean-square errors
are multiplied by 103.

Looking at this table, it can be concluded that the ML method provides
acceptable estimates of the parameters. As expected, the bias, variance and
mean-square error decrease as n increases.

4 Real data analysis

In this section, we consider two real data sets previously analyzed in the lite-
rature. The results of fitting the PM distribution to both sets are compared to
the ones provided by other probability models formerly used to this end.
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Table 1. ML parameter estimates.

β = 10 γ = 0.5

n β̄ Bias(β̂) Var(β̂) MSE(β̂) γ̄ Bias(γ̂) Var(γ̂) MSE(γ̂)

50 10.0891 89.1242 1859.7786 1867.7217 0.5148 14.8965 3.6490 3.8710
100 10.0465 46.5860 933.8444 936.01470 0.5075 7.5661 1.7267 1.7839
200 10.0188 18.8566 464.9652 465.32082 0.5039 3.9197 0.8351 0.8504
500 9.9996 -0.3416 184.5562 184.5563 0.5013 1.3391 0.3252 0.3270

1000 10.0035 3.5800 98.4787 98.4915 0.5007 0.7701 0.1662 0.1668

β = 10 γ = 1

n β̄ Bias(β̂) Var(β̂) MSE(β̂) γ̄ Bias(γ̂) Var(γ̂) MSE(γ̂)

50 9.9984 -1.5960 465.7295 465.7320 1.0277 27.7550 15.1706 15.9409
100 10.0057 5.7468 237.1530 237.1860 1.0152 15.2591 7.0338 7.2666
200 9.9991 -0.8303 116.2340 116.2347 1.0066 6.6421 3.3466 3.3907
500 10.0011 1.1851 46.7260 46.7274 1.0030 3.0313 1.3098 1.3189

1000 9.9996 -0.3374 23.1173 23.1174 1.0014 1.4786 0.6479 0.6501

β = 10 γ = 3

n β̄ Bias(β̂) Var(β̂) MSE(β̂) γ̄ Bias(γ̂) Var(γ̂) MSE(γ̂)

50 9.9990 -0.9099 51.6289 51.6297 3.0912 91.2156 132.4955 140.8158
100 10.0017 1.7169 25.5372 25.5402 3.0443 44.3853 61.4293 63.3993
200 10.0011 1.1989 12.8004 12.8018 3.0221 22.1501 29.6718 30.1624
500 10.0001 0.1717 5.2081 5.2082 3.0089 8.9863 11.5848 11.6656

1000 10.0003 0.3491 2.6170 2.6172 3.0038 3.8816 5.9737 5.9888

4.1 Data set 1

The first real data set corresponds to the breaking stress of carbon fibres (in
Gba) and it was studied in Cordeiro and Lemonte [7]. The n = 66 data values
are: 3.70, 2.74, 2.73, 2.50, 3.60, 3.11, 3.27, 2.87, 1.47, 3.11, 3.56, 4.42, 2.41, 3.19,

3.22, 1.69, 3.28, 3.09, 1.87, 3.15, 4.90, 1.57, 2.67, 2.93, 3.22, 3.39, 2.81, 4.20, 3.33,

2.55, 3.31, 3.31, 2.85, 1.25, 4.38, 1.84, 0.39, 3.68, 2.48, 0.85, 1.61, 2.79, 4.70, 2.03,

1.89, 2.88, 2.82, 2.05, 3.65, 3.75, 2.43, 2.95, 2.97, 3.39, 2.96, 2.35, 2.55, 2.59, 2.03,

1.61, 2.12, 3.15, 1.08, 2.56, 1.80, 2.53. In [7], these data were fitted by using the
Birnbaum–Saunders (BS) and β-Birnbaum–Saunders (β-BS) distributions.

We fitted the PM distribution. Table 2 shows the ML estimated parameters.
The correlation coefficient between the theoretical and the empirical cumulative
probabilities is 0.9935. The results of the PM fitting were compared to the
ones provided by the BS and β-BS distributions. As in [7], we calculated the
Akaike information criterion AIC (see Akaike [2]) and the Bayesian information
criterion BIC (see Schwarz [27]), which are defined as AIC = 2r − 2 logL and
BIC = −2 logL+r log n, respectively, where r is the number of parameters and
L denotes the maximized value of the likelihood function. The AIC and BIC
values for each fitted distribution are given in Table 2 and the lowest values
were obtained for the PM model.

We applied the following goodness-of-fit tests based on the empirical cdf: the
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Table 2. Breaking stress of carbon fibres: Model, ML estimates, AIC and BIC values.

Model ML estimates AIC BIC

PM(β, γ) β̂ = 2.810, γ̂ = 1.394 176.11 180.49

β-BS(α, β, a, b) α̂ = 1.044, β̂ = 57.600, â = 0.193, b̂ = 1876.732 190.71 199.47

BS(α, β) α̂ = 0.437, β̂ = 2.515 204.38 208.75

Cramér–von Mises statistic W 2, the Watson statistic U2, the Anderson–Darling
statistic A2 and the Kolmogorov–Smirnov statistic D. A detailed definition
together with simple formulae for computing these statistics can be found in
D’Agostino and Stephens [9, Chapter 4]. We also applied two tests based on the
empirical characteristic function [14, 15] by using the integral transformation,
as proposed in Meintanis et al. [23], taking as weight functions: the standard
normal law, FC1, and the pdf w(t) = {1 − cos(t)}/πt2, which is the choice
recommended in Epps and Pulley [10] (see also Section 4 in [15]), FC2. To
get the corresponding p-values we applied a parametric bootstrap generating
10,000 bootstrap samples (see Stute et al. [28] and Babu and Rao [5] for full
details). The results are shown in Table 3. The apparent inconsistency of
the p-values can be explained from the results in Janssen [13], which assert
that the global power function of any nonparametric test is flat on balls of
alternatives except for alternatives coming from a finite dimensional subspace.
In other words, each test has a high power against a set of alternatives. This
fact justifies the difference in the p-values.

Table 3. Breaking stress of carbon fibres: Goodness-of-fit tests.

W 2 U2 A2 D FC1 FC2

p-value: 0.1733 0.1512 0.9693 0.2138 0.9655 0.9653

From all the above results, it can be concluded that the PM distribution
provides a better fit than the BS and β-BS probability models.

4.2 Data set 2

The second real data set corresponds to the stress-rupture life of Kevlar
49/epoxy strands which were subjected to constant sustained pressure at the
70% stress level until all had failed. The failure times are given in hours. The
n = 49 values are: 1051, 1337, 1389, 1921, 1942, 2322, 3629, 4006, 4012, 4063, 4921,

5445, 5620, 5817, 5905, 5956, 6068, 6121, 6473, 7501, 7886, 8108, 8546, 8666, 8831,

9106, 9711, 9806, 10205, 10396, 10861, 11026, 11214, 11362, 11604, 11608, 11745,

11762, 11895, 12044, 13520, 13670, 14110, 14496, 15395, 16179, 17092, 17568, 17568.
This data set can be found in Andrews and Herzberg [3, pp. 181–186].

We fitted the PM distribution to the above data set. Table 4 shows the
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ML estimated parameters. The correlation coefficient between the theoretical
and the empirical cumulative probabilities is 0.9947. Table 5 shows the p-values
associated with the aforementioned goodness-of-fit tests. Moreover, the PM fit-
ting was compared with the ones obtained by using other distributions such as:
BS, Gamma (G), log-logistic (LL), power Lindley (PL) (see Ghitany et al. [11])
and Weibull (W). Table 4 shows the corresponding ML estimated parameters
together with the AIC and BIC values. Other two-parameter distributions were
fitted to the data set, which have not been included in Table 5, such as the in-
verse Gaussian, Lomax, paralogistic, Gumbel and generalized exponential (see
Gupta and Kundu [12]). Neither of them improved the PM fitting. Moreover,
in VedoVatto et al. [31] (see also Cooray and Ananda [6]), the following dis-
tributions were fitted to the above data set: Nadarajah–Haghighi (NH), beta
NH, exponentiated NH, exponentiated generalized NH, Kumaraswamy NH,
Marshall-Olkin NH, modified NH, Zografos–Balakrishnan NH, exponentiated
exponential and generalized power Weibull. As can be seen in [31], the AIC and
BIC values obtained for these distributions are greater than the ones provided
by the PM fitting.

Table 4. Stress-rupture life: Model, ML estimates, AIC and BIC values.

Model ML estimates AIC BIC

PM(β, γ) β̂ = 8603.034, γ̂ = 0.850 963.85 963.96

BS(α, β) α̂ = 6806.278, β̂ = 0.754 980.87 984.65

G(α, β) α̂ = 0.00031, β̂ = 2.779 970.27 974.05

LL(α, β) α̂ = 7986.578, β̂ = 0.381 978.07 981.86

PL(α, β) α̂ = 0.000017, β̂ = 1.279 968.75 972.53

W(α, β) α̂ = 9906.049, β̂ = 2.015 965.69 969.48

Table 5. Stress-rupture life: Goodness-of-fit tests.

W 2 U2 A2 D FC1 FC2

p-value: 0.4577 0.4519 0.1674 0.6858 0.1688 0.1663

Overall, from the above results, it can be concluded that the PM distribu-
tion may be an interesting alternative to the other models under consideration.
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