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Abstract. In this paper, we propose a new approach for obtaining explicit ana-
lytical approximations to the homoclinic or heteroclinic solutions of a general class
of strongly nonlinear ordinary differential equations describing conservative single-
degree-of-freedom systems. Through a simple and explicit change of the independent
variable that we introduce, these equations are transformed to others for which the
original homoclinic or heteroclinic solutions are mapped into periodic solutions that
satisfy some boundary conditions. Recent simplified methods of harmonic balance
can then be exploited to construct highly accurate analytic approximations to these
solutions. Here, we adopt the combination of Newton linearization with the har-
monic balance to construct the approximates in incremental steps, thereby proposing
both appropriate initial approximates and increments that together satisfy the re-
quired boundary conditions. Three examples including a septic Duffing oscillator, a
controlled mechanical pendulum and a perturbed KdV equations are presented to
illustrate the great accuracy and simplicity of the new approach.
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1 Introduction

Physical, engineering, and biological sciences are continuously generating prob-
lems of either theoretical or practical interest. The necessary investigations of
these problems involve models that, very often, are mathematically expressed
as ordinary differential equations (ODEs). The solutions of the latter are there-
fore of great importance for the refinement of the designed models in view of
the best understanding of the original problems or phenomena and, hence, their
optimal exploitation or eventually their control. In this respect, solving ODEs
constitutes an important research activity which is ever attracting a great deal
of attention.

The ideal approach to this task is analytical. Yet, it appears to be very
challenging owing to the fact that most of the relevant ODEs, being nonlinear,
avail no general solution methodology. In other worlds, exact general solutions
of nonlinear ODEs are rarely obtainable analytically in closed form. Even
if a solution can be found, its expression is often too complicated to display
clearly the principal features of the solution; this is particularly true of implicit
solutions and of solutions which are in the form of integrals or infinite series [15].
Similarly, an exact analytical solution expressed in terms of special functions
can be useless if it is to be used numerically (e.g. as the initial condition for
a propagation problem) in a computing system that lacks these functions. In
this context, several techniques have been developed to tackle the problems
whenever some special circumstances can be met. For instance, approximate
solutions can be obtained analytically using various perturbation techniques
[21] for nonlinear ODEs which contain a small parameter. Problems with two or
more scales of variation can be analyzed using the method of multiple scales [21]
or the method of averaging [22].

Obviously, it is of interest to broaden as much as possible the applica-
bility of these approximation schemes; especially when they are simple and
operationally easy to use. For the important class of systems with oscillatory
behavior, dedicated research efforts of recent decades have achieved this goal
to some extend for some of the applicable perturbation methods; by enlarg-
ing the problems’ parameters range and oscillations’ amplitudes for which the
methods remain accurate. A typical example here, among several others, is the
famous method of Lindstedt–Poincaré which has been improved considerably
through its combination with the linear delta expansion [3] or the technique
of expansion of constant [14, 26] (see also [4, pp. 14–19]). In addition to those
works geared toward the approximation of periodic solutions, some others have
recently broadened the application of the method of Lindstedt–Poincaré to the
approximation of homoclinic and heteroclinic solutions [7, 8, 9]. Similarly, the
renormalization group has recently been shown to be a simple and powerful ap-
proach for finding global approximate solutions to nonlinear perturbed partial
differential equations arising in mathematical physics [16].

Toward the same goal, we aim in this paper to demonstrate the applicability
of the well-known method of harmonic balance (HB) to the approximation of
some types of solutions that are not its original target. Specifically, we show
that non-periodic hyperbolic solutions of some classes of nonlinear ODEs, in-
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cluding homoclinic and heteroclinic solutions which represent solitary waves for
propagation problems, can be successfully approximated using the method of
HB and its varied derivatives. For such an ODE and provided that its periodic
solutions can be approximated using the HB, we propose a simple classical
change of the independent variable that puts the ODE in a form for which
the subsequent HB obtained solutions approximate homoclinic or heteroclinic
solutions rather than periodic ones.

The remaining part of this paper is organized as follows. In the next Section,
the specific class of ODEs dealt with and the change of variable are successively
presented. Then the method of HB is briefly reviewed with emphasis on aspects
that are relevant for the homoclinic and heteroclinic solutions. We proceed
with our examples in Section 3 where a septic Duffing oscillator, a controlled
mechanical pendulum and a perturbed KdV equations are treated. Section 3.3
closes the paper with our conclusions and remarks.

2 Outline of the approach

We are concerned in this paper by systems whose states, represented by a scalar
real variable (x), evolve in time (t) as prescribed by a second-order nonlinear
ODE of the general form

ẍ+ g(x)ẋ2 + f(x) = 0. (2.1)

Here, an overdot denotes differentiation with respect to t, and f and g are
two real-valued functions. We restrict ourselves without loss of generality to
conservative systems. If there exists a point x(s) and an integer n ≥ 0 such
that

djf

dxj
(x(s)) = 0, 0 ≤ j ≤ 2n;

d2n+1f

dx2n+1
(x(s)) > 0, (2.2)

then, x(s) is said to be a stable equilibrium position for a system governed
by Eq. (2.1). The system’s behavior around such a point is oscillatory. This
case has largely been investigated in recent decades with the assigned initial
conditions (x(0), ẋ(0)) = (A, 0), with A conveniently close to, but different
from x(s). One of the successful methods that have been employed is that of
HB. We assume in this section, once again without loss of generality, that the
ideal conditions where it works genuinely well are satisfied: f(−x) = −f(x)
and g(−x) = −g(x). Mikens refers to systems that fulfill these conditions as
having odd-parity [20]. In this paper, we are interested by the case where
Eq. (2.1) also admits unstable equilibrium solutions in addition to the stable
ones. Similar to Eq. (2.2), these are determined by

djf

dxj
(x(u)) = 0, 0 ≤ j ≤ 2m;

d2m+1f

dx2m+1
(x(u)) < 0, (2.3)

where m ≥ 0 is an integer. In particular, for m = 0 as assumed onward, these
fixed points are hyperbolic. When the two conditions in Eq. (2.2) and Eq. (2.3)
are simultaneously satisfied, there exists a non-periodic solution, xh(t), that is
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both forward and backward asymptotic to an unstable point:

lim
t→−∞

xh(t) = x
(u)
− , lim

t→+∞
xh(t) = x

(u)
+ , lim

t→±∞
ẋh(t) = 0. (2.4)

The corresponding trajectory is qualified as homoclinic when x
(u)
− = x

(u)
+ ≡

x
(u)
± , or heteroclinic when x

(u)
− 6= x

(u)
+ . In comparison to the effort devoted to

the approximation of periodic solutions of Eq. (2.1), very few available works
deal with these special orbits [7, 8, 9, 11, 12]. To improve on this situation we
introduce a simple change of independent variable from t to τ according to

t =
ln
(
tan

(
τ
2 + π

4

))
√
Ω

, (2.5)

where Ω is a positive quantity that must be determined as part of the approx-
imation. Using the prime to denote a differentiation with respect to τ , this
change of variable transforms the differential equation Eq. (2.1) as

Ω

2

[
(1 + cos (2τ))

(
x′′ + g(x) (x′)

2
)
− x′ sin (2τ)

]
+ f (x) = 0. (2.6)

It also transforms the first two boundary conditions in Eq. (2.4) as

lim
τ→−π

2

xh(τ) = x
(u)
− , lim

τ→+π
2

xh(τ) = x
(u)
+ (2.7)

while the third one is automatically satisfied since ẋ =
√
Ω cos (τ)x′; assuming

that x′ remains finite.
Now, if the HB can be applied to Eq. (2.1), which requires that one be able

to compute the Fourier series of f (x (t)) and g (x (t)) for a given truncation of
the periodic Fourier expansion of x (t) , then it should equally be applicable
to Eq. (2.6). This is the essence of the approach that we propose herein for
the analytical construction of explicit approximations to the hyperbolic homo-
clinic or heteroclinic of ODEs. For the specific class of problems governed by
Eq. (2.1), we suggest to initiate the approximation of homoclinic solution with

x0(τ) = x
(u)
± +A cos (τ) . (2.8)

For heteroclinic solution, an appropriate starting ansatz is given by

x0(τ) =
x
(u)
+ + x

(u)
−

2
+
x
(u)
+ − x(u)−

2
sin (τ) . (2.9)

Motivated by the case of ODEs that describe traveling waves of PDEs, and
for simplicity, we shall assume that the “amplitude” A appearing in Eq. (2.8)
above is given. For ODEs describing mechanical systems, it can be determined

from the conservation of total mechanical energy between x
(u)
± and the turning

point of the orbit. It may be necessary to resort to a numerical procedure to

this end; just as for finding x
(u)
− , x

(u)
+ or x

(u)
± . Then, a simple application of HB
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to Eq. (2.1) using either of Eq. (2.8) or Eq. (2.9) enables to find Ω and thus a
first approximation to the problems.

It is noteworthy to observe that all the advantages [19] of the HB can
be exploited within our proposed technique. For instance, the rational har-
monic balance [5, 28] or the combination of HB with Newton-like linearization
(HBwL) [17,18,23,29] can be used for the construction of improved approximate
solutions. The important point to lay emphasis on here is that each approx-
imate solution or ansatz should satisfy the boundary conditions in Eq. (2.7),
similar to the fact that prescribed initial conditions must be satisfied when
applying the ordinary HB. For Eq. (2.1), we propose following the HBwL that
corrections to an approximate solution be computed incrementally using the
form [29]

xj+1(τ) = xj(τ) +

j+1∑
i=1

Cj+1,2i+1 (cos (τ)− cos ((2i+ 1) τ)) , (2.10)

or

xj+1(τ) = xj(τ) +

j+1∑
i=1

Sj+1,2i+1

(
sin (τ)− (−1)i sin ((2i+ 1) τ)

)
(2.11)

for homoclinic or heteroclinic orbit, respectively. Notice that for consistency,
equations Eq. (2.10) and Eq. (2.11) are designed so as to satisfy xj+1(0) =
x0(0). Taking advantage of the fact that Eq. (2.6) is linear in Ω, we choose
to recompute it anew at each stage from the equation corresponding to the
coefficient of cos (τ) or sin (τ) in the set of equations obtained as ordinarily in
the HB. The remaining equations are next linearized respect with to, and then
easily solved for

{Cj+1,2i+1, i = 1, 2, · · · j + 1} ,

or
{Sj+1,2i+1, i = 1, 2, · · · j + 1}

as appropriate. Once the solution is obtained in terms of τ , one first converts
any higher order harmonic of the form cos (kτ) or sin (kτ) contained in it into
a polynomial in cos (τ) and sin (τ) using the expansions [13, p. 33]

cos (kτ) = 2k−1 cosk (τ)− k

1
2k−3 cosk−2 (τ) +

k

2

(
k − 3

1

)
2k−5 cosk−4 (τ)

− k

3

(
k − 4

2

)
2k−7 cosk−6 (τ) + · · · ,

sin (kτ) = sin (τ)

[
2k−1 cosk−1 (τ)−

(
k − 2

1

)
2k−3 cosk−3 (τ)

+

(
k − 3

2

)
2k−5 cosk−5 (τ)−

(
k − 4

3

)
2k−7 cosk−7 (τ) + · · ·

]
.

The approximate analytical solution is expressed explicitly in terms of t by
finally making the substitutions cos (τ) = sech(t

√
Ω) and sin (τ) = tanh(t

√
Ω).
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3 Illustrations

3.1 Nonlinear wave problems

We choose our first example from the study of nonlinear waves in physics. In
this research subject the nonlinear Schrödinger equation, whose general form
in one-dimensional space reads as [2, p. 155]

i
∂u

∂z
+ P

∂2u

∂t2
+ h(|u|2)u = 0 (3.1)

is one of the most encountered PDEs. In effect it is used to describe the
slowly varying envelope of light electric fields propagating in optical Kerr media
within the paraxial model of self-focusing, the evolution of wave-packets as, e.g.,
Langmuir waves in strong plasma turbulence [6]. It also arises in many other
physical problems which include the evolution of water waves, the propagation
of a heat pulse in a solid, the propagation of solitary waves in piezoelectric
semiconductors, the study of nonlinear waves in a fluid-filled viscoelastic tube
[10, p. 153].

By seeking the solution of Eq. (3.1) in the form u(z, t) = ρ(t)eiνz with
ν, ρ(t) ∈ R and assuming that P 6= 0, one obtains that ρ(t) must be solution of
the following ODE

ρ̈− ν

P
ρ+

1

P
h(ρ2)ρ = 0. (3.2)

Exact analytical solutions are obtainable in explicit form for Eq. (3.2) in the
now classic case where h is such that h(ξ) = Qξ, and also for the cubic-quintic
NLS equation for which h(ξ) = Qξ + Q2ξ

2, see [25]. For other forms of h in-
cluding polynomial functions of degree higher than two, no explicit analytical
solution exist to our knowledge and it seems unavoidable to resort to approx-
imation. We illustrate below the usefulness of our proposed method for such
situations. However, for the sake of simplicity, we restrict ourselves to consider
only monomial form of h. Specifically, we take h(ξ) = ηξ3.

3.1.1 Homoclinic orbit

When P , ν and η are all positive or all negative, Eq. (3.2) can be put in the
form

ρ̈− ω2ρ+ σ2ρ7 = 0, ω > 0, σ > 0. (3.3)

The stationary solutions of this equation as well as their stability are easily

determined to be x
(s)
+ = 3

√
ω/σ, x

(u)
± = 0 and x

(s)
− = −x(s)+ . It is also easy to

verify that Eq. (3.3) above derives from the Hamiltonian

H(ρ, ρ̇) =
1

2
ρ̇2 − ω2

2
ρ2 +

σ2

8
ρ8. (3.4)

The equation H(A, 0) = H(x
(u)
± , 0) has two solutions A = ± 3

√
2ω/σ of which

none is a stationary solution of Eq. (3.3). This indicates the existence of a

pair homoclinic orbits that connect x
(u)
± = 0 to itself; and each of the A is
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the abscissa of the turning point on one of these orbits. In order to deter-
mine approximate analytical expression for these solutions, Eq. (3.3) is first
transformed into

Ω

2
[(1 + cos (2τ)) ρ′′ − ρ′ sin (2τ)]− ω2ρ+ σ2ρ7 = 0 (3.5)

using the change of variable in Eq. (2.5). Then, according to Eq. (2.8) the
simplest approximation is taken as ρ0 (τ) = A cos (τ). The usual HB then
enables us to obtain Ω0 = 19ω2/8. Thus the simplest approximate solution
from our approach is given in explicit form as

ρ0 (t) = ± 3
√

2ω/σ sech
(√

19/8ωt
)
. (3.6)

The ansatz for the next approximation is obtained from Eq. (2.10) for j = 0
and reads

ρ1 (τ) = A [cos (τ) + C1,3 (cos (τ)− cos (3τ))] . (3.7)

We substitute this ansatz into Eq. (3.5) and put the ensuing equation in the
form of a Fourier series. Then we solve the cos (τ)-coefficient of this series for
Ω. The solution is substituted in the cos (3τ)-coefficient which is subsequently
linearized with respect to, then solve for C1,3. The expression obtained is sim-

plified using A = ± 3
√

2ω/σ and backward substituted in the expression of Ω.
Explicitly, we have

C1,3 = − 1

22
, Ω1 =

1644133001

907039232
ω2, (3.8)

ρ1 (t) = ± 3

√
2ω

σ

[
9

11
sech

(
t
√
Ω1

)
+

2

11
sech3

(
t
√
Ω1

)]
. (3.9)

We shall omit the details of further approximations by assuming that the pro-
cedure is now well established. Thus for brevity, the second and third order
improved approximate solutions are given as follows

Ω2 ≈ 1.570815495ω2, ρ2 (t) ≈ ± 3

√
2ω

σ

[
0.8896999239 sech

(
t
√
Ω2

)
− 0.1747001803 sech3

(
t
√
Ω2

)
+ 0.2850002564 sech5

(
t
√
Ω2

) ]
, (3.10)

Ω3 ≈ 1.374552324ω2, ρ3 (t) ≈ ± 3

√
2ω

σ

[
0.8141600989 sech

(
t
√
Ω3

)
− 0.04102482745 sech3

(
t
√
Ω3

)
+ 0.09535597041 sech5

(
t
√
Ω3

)
+ 0.1315087581 sech7

(
t
√
Ω3

) ]
. (3.11)

It appears from equations Eq. (3.7), Eq. (3.9)-Eq. (3.11) that the various ap-
proximations are polynomials in the auxiliary function sech. The present ap-
proach offers a means for calculating the polynomial coefficients in an algorith-
mic way that can easily be implemented in an algebraic manipulator such as
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Figure 1. Comparison of various approximations of the homoclinic solution of Eq. (3.3)
to the exact solution (solid black line) for ω = σ = 1 . The red dotted, magenta dashed,
cyan dash-dotted and blue long-dashed lines correspond to Eq. (3.6), Eqs. (3.8)-(3.9),

Eqs. (3.10), and Eqs. (3.11) respectively.

Maple. It is worth notice that these coefficients are not decreasing monotoni-
cally as the power is increased.

The various approximations obtained above are plotted in Figure 1 to-
gether with the exact solution obtained numerically using the Runge-Kutta
algorithm as implemented in the Maple package dsolve with options numeric
and method=rk45. This figure shows that our approximations converge steadily
toward the exact solution.

3.1.2 Heteroclinic orbit

Consider now the situation where Pν < 0 and Pη < 0. In this case, the signs of
the ω2-term and σ2-term of Eq. (3.3) are swapped, and similarly for Eq. (3.4).

Then, the stability of the fixed points also changes so that x
(u)
+ = 3

√
ω/σ,

x
(s)
0 = 0 and x

(u)
− = −x(u)+ . One can straightforwardly verify that the two

unstable fixed points have the same energy value. Therefore, there exists an
heteroclinic orbit connecting them. If approximate analytical expressions are
needed for it, then our procedure provides the following for the zeroth through
the third order improvement (details omitted for brevity):

Ω0 =
29

32
, ρ0 (t) = ± 3

√
ω

σ
tanh

(√29

32
ωt
)
, (3.12)

Ω1=
315443280275

235551657312
, ρ1 (t) =± 3

√
ω

σ
tanh

(
t
√
Ω1

) [
1− 8

27
sech2

(
t
√
Ω1

)]
,

(3.13)

Ω2 ≈ 1.365629149ω2, ρ2 (t) ≈ ± 3
√
ω/σ tanh

(
t
√
Ω2

)
(3.14)

×
[
1− 0.3886044766 sech2

(
t
√
Ω2

)
+ 0.1347035012 sech4(t

√
Ω2)

]
,
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Ω3 ≈ 1.446122331ω2, ρ3 (t) ≈ ± 3
√
ω/σ tanh

(
t
√
Ω3

)
×
[
1− 0.4935148551 sech2

(
t
√
Ω3

)
+ 0.3170228201 sech4

(
t
√
Ω3

)
− 0.10474669950 sech6

]
. (3.15)

Figure 2 shows the comparison with the numerically obtained exact solution.
Again very good accuracy is observed. In fact, for this particular case where the
solution is antisymmetric, our approximate solution is indistinguishable from
the exact one at the scale of the plot.

Figure 2. Comparison of various approximations of the heteroclinic solution to the exact
solution (solid black line) for ω = σ = 1 . The red dotted, magenta dashed, cyan

dash-dotted and blue long-dashed lines correspond to Eq. (3.12), Eqs. (3.13), Eqs. (3.14),
and Eq. (3.15) respectively. Only the first two approximates can be distinguished at the

scale of the plot.

We leave this example with the observation that the asymptotic behavior

of the system around a hyperbolic unstable equilibrium x
(u)
± is dictated by the

eigenvalue of the linearized equation of motion at this point. We can then
expect that the squared frequency-like parameter Ω should converge to this
eigenvalue. This is in indeed the case, although the convergence may seem
to be slow. In effect it decreases monotonically from 2.38ω2 toward the the
squared eigenvalue ω2 calculated at the origin, for the homoclinic orbit. In
the case of the heteroclinic orbit, it increases monotonically from 0.91ω2 to the

squared eigenvalue 6ω2 which is obtained at x
(u)
± = 3

√
ω/σ. Even though it may

appear to be slow, the convergence is evidenced by the fact that the magnitude
of the difference between the two values diminishes as more harmonic terms.

3.2 Mechanical problem

Our second example is taken from a mechanical problem. It consists of a
simple pendulum subjected to linear feedback with desired periodic motions.
The undamped autonomous version of the equation that governs the dynamics
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of this systems is given by [24]

ẍ+ sin (x) + αx− β = 0. (3.16)

We choose β = απ and let y = x− π. Equation (3.16) then becomes

ÿ − sin (y) + αy = 0, (3.17)

for which y
(u)
± = 0 is an hyperbolic saddle connected to itself by a pair of

homoclinic orbits for 0 < α < 1. The amplitudes A of these orbits are the
solutions of the transcendental algebraic equation

2 cos(y) + αy2 = 0.

Applying the change of variable in Eq. (2.5) to Eq. (3.17) and using the identity
[1, p. 361]

sin (Γ cos (θ)) = 2
∞∑
k=0

(−1)
k
J2k+1 (Γ ) cos ((2k + 1) θ) (3.18)

we obtain the one-term approximation of the homoclinic orbits of Eq. (3.17) as

Ω0 =
2 (αA− 2 J1 (A))

A
, y0 (t) = A sech

(
t
√
Ω0

)
.

Here and in what follows, Jm designates the Bessel function of the first kind of
order m [1, p. 361].

An improved approximate solution can be considered in the form of (3.7).
The exact computation of the Fourier coefficients necessary for our method is
difficult for this expression due to the sine function. To manage this problem,
these coefficients are calculated only after expanding the equation in powers of
C1,3. Then they can be obtained easily using the identity [1, p. 361]

cos (Γ cos (θ)) = J0 (Γ ) + 2

∞∑
k=1

(−1)
k
J2k (Γ ) cos (2kθ)

in addition to Eq. (3.18). Retaining only terms that are linear with respect to
C1,3, the routine calculations described earlier lead to the following final form
of the approximate solution:

Ω1 =
2
(
λ1C1,3 + αA3 − 2A2 J1 (A)

)
(1− 2C1,3)A3

,

y1 (t) = A
[
(1 + 4C1,3) sech

(
t
√
Ω1

)
− 4C1,3 sech3

(
t
√
Ω1

)
,
]

where

λ1 = αA3 + 8
(
6−A2

)
J1 (A)− 24AJ0 (A) ,

C1,3 =
αA5 + 8J0 (A)A3 − 16J1 (A)A2

4αA5 − 96 (A2 − 20)AJ0 (A)− 12 (A4 − 56A2 + 320) J1 (A)
.

Math. Model. Anal., 22(2):140–156, 2017.



150 S.B. Yamgoué, O.T. Lekeufack and T.C. Kofané

When the Fourier coefficients of either of the nonlinear functions f(x(τ)) or
g(x(τ)) cannot be computed exactly in closed-form for a given non-harmonic
truncation of x(τ) as in this example, a practical tricks consists of introducing
a bookkeeping parameter µ and assuming that the nth-order correction is or
order µn. In other world, Eq. (2.10) needs to be modified as

xj+1(τ) = xj(τ) + µj+1

j+1∑
i=1

Cj+1,2i+1 (cos (τ)− cos ((2i+ 1) τ)) , (3.19)

so that the functions may be expanded in power-series of µ which is set equal
to 1 at thereafter. In this way the pseudo-frequency of the third approximate
solution (or second order correction) for the controlled pendulum is found to
be

Ω2 =
2
(
αA5 + λ2C1,3 + λ2C2,3 + λ3C2,5 − 2A4J1 (A)

)
(1− 2C1,3 − 2C2,3 + C2,5)A5

, (3.20)

where

C2,3 =
2λ6λ7 − λ4λ9
λ5λ9 + 2λ6λ8

, C2,5 = −2 (λ4λ8 + λ5λ7)

λ5λ9 + 2λ6λ8
, (3.21)

λ2 = αA5 − 24A3J0 (A)− 8A2
(
A2 − 6

)
J1 (A) ,

λ3 = αA5 − 24A
(
7A2 − 80

)
, J0 (A)− 24

(
160− 34A2 +A4

)
J1 (A) .

The expressions of the other quantities λ4–λ9 which parameterize C2,3 and C2,5

are respectively given as

λ4 = 4A7α C3
1,3 + 12A7α C2

1,3 + 32A6J1 (A) C3
1,3 − 9A7αC1,3

− 56A6J1 (A) C2
1,3 + 480A5J0 (A) C3

1,3 +A7α+ 20C1,3J1 (A)A6

− 448A5J0 (A) C2
1,3 − 2880A4J1 (A) C3

1,3 + 88C1,3J0 (A)A5

+ 2816 C2
1,3J1 (A)A4 − 7680A3J0 (A) C3

1,3 + 8 J0 (A)A5

− 656C1,3J1 (A)A4 + 7680A3J0 (A) C2
1,3 + 15360A2J1 (A) C3

1,3

+ 16A2 C3
1,3λ2−16J1 (A)A4−1920A3J0 (A)C1,3 − 15360A2J1 (A) C2

1,3

− 10A2 C2
1,3λ2 + 3840C1,3J1 (A)A2 +A2C1,3λ2,

λ5 = 4A7αC2
1,3 − 4A7αC1,3+32A6J1 (A) C2

1,3 − 5A7α− 32C1,3J1 (A)A6

+ 480A5J0 (A) C2
1,3 + 20 J1 (A)A6 − 480C1,3J0 (A)A5

− 2880 C2
1,3J1 (A)A4 + 120 J0 (A)A5 + 2880C1,3J1 (A)A4

− 7680A3J0 (A) C2
1,3 − 720 J1 (A)A4 + 7680A3J0 (A)C1,3

+ 15360A2J1 (A) C2
1,3 + 16A2 C2

1,3λ2 − 1920 J0 (A)A3

− 15360C1,3J1 (A)A2 − 16A2C1,3λ2 + 3840 J1 (A)A2 +A2λ2,

λ6 = 96A6J1 (A) C2
1,3 − 148C1,3J1 (A)A6 + 1824A5J0 (A) C2

1,3

− 1824C1,3J0 (A)A5 − 19008 C2
1,3J1 (A)A4 + 19008C1,3J1 (A)A4
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− 115200A3J0 (A)C2
1,3+115200A3J0 (A)C1,3 + 552960A2J1 (A) C2

1,3

− 552960C1,3J1 (A)A2−1290240AJ0 (A)C1,3+1290240 C2
1,3J0 (A)A

− 645120 J1 (A) + 26A7αC1,3 + 26A2 C2
1,3λ2 + 16A2 C2

1,3λ3

− 10A2C1,3λ2 − 10A2C1,3λ3 + 322560 J0 (A)A+ 138240 J1 (A)A2

− 28800 J0 (A)A3 + 456 J0 (A)A5 − 4752 J1 (A)A4 + 44 J1 (A)A6

+ 2580480 J1 (A)C1,3 − 2580480 C2
1,3J1 (A)− 10A7α+A2λ3,

λ7 = −7968A6J1 (A) C3
1,3 + 7680A6J1 (A) C2

1,3 − 53760A5J0 (A) C3
1,3

− 1704C1,3J1 (A)A6 + 52992A5J0 (A) C2
1,3 + 268800A4J1 (A) C3

1,3

− 12672C1,3J0 (A)A5 − 267264 C2
1,3J1 (A)A4 + 645120A3J0 (A) C3

1,3

+ 65664C1,3J1 (A)A4 − 645120A3J0 (A) C2
1,3 − 1290240A2J1 (A) C3

1,3

+ 161280A3J0 (A)C1,3 + 1290240A2J1 (A) C2
1,3 − 322560C1,3J1 (A)A2

+ 108C1,3J0 (A)A7 + 6C1,3J1 (A)A8 − 24A8J1 (A) C2
1,3

− 576A7J0 (A) C2
1,3 + 16A8J1 (A) C3

1,3 + 624A7J0 (A) C3
1,3

− 192 J0 (A)A5 + 384 J1 (A)A4 − 72 J1 (A)A6 + J1 (A)A8 + 12 J0 (A)A7

+ 6A9α C2
1,3 − 3A9αC1,3 − 3A4 C2

1,3λ2 + 6A4 C3
1,3λ2,

λ8 = −16A8J1 (A) C2
1,3 + 3αA9 + 16C1,3J1 (A)A8 − 624A7J0 (A) C2

1,3

− 10 J1 (A)A8 + 624C1,3J0 (A)A7 + 7968A6J1 (A) C2
1,3 − 156 J0 (A)A7

− 7968C1,3J1 (A)A6 + 53760A5J0 (A) C2
1,3 + 1992 J1 (A)A6

− 53760C1,3J0 (A)A5 − 268800 C2
1,3J1 (A)A4 − 6A4 C2

1,3λ2

+ 13440 J0 (A)A5 + 268800C1,3J1 (A)A4 + 6A4C1,3λ2

− 645120A3J0 (A) C2
1,3 − 67200 J1 (A)A4 + 645120A3J0 (A)C1,3

+ 1290240A2J1 (A) C2
1,3 − 161280 J0 (A)A3 − 1290240C1,3J1 (A)A2

+ 322560 J1 (A)A2,

λ9 = −73536A6J1 (A) C2
1,3 + 73536C1,3J1 (A)A6 − 798720A5J0 (A) C2

1,3

+ 798720C1,3J0 (A)A5 + 6758400 C2
1,3J1 (A)A4 − 6758400C1,3J1 (A)A4

+ 36126720A3J0 (A) C2
1,3 − 36126720A3J0 (A)C1,3

− 165150720A2J1 (A) C2
1,3 + 165150720C1,3J1 (A)A2

+ 371589120AJ0 (A)C1,3 − 371589120 C2
1,3J0 (A)A− 4128C1,3J0 (A)A7

− 208C1,3J1 (A)A8 + 96A8J1 (A) C2
1,3 + 4128A7J0 (A) C2

1,3

+ 185794560 J1 (A)− 92897280 J0 (A)A− 41287680 J1 (A)A2

+ 9031680 J0 (A)A3 − 199680 J0 (A)A5 + 1689600 J1 (A)A4

− 18384 J1 (A)A6 − 743178240 J1 (A)C1,3 + 743178240 C2
1,3J1 (A)

+ 74 J1 (A)A8 + 1032 J0 (A)A7 − 24αA9 + 4A9α C2
1,3 + 52A9αC1,3

+ 56A4 C2
1,3λ2 + 12A4 C2

1,3λ3 − 25A4C1,3λ2 − 6A4C1,3λ3.

Math. Model. Anal., 22(2):140–156, 2017.
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Figure 3 show the comparison of the three approximations to the exact
solution obtained via numerical integration. The third approximate solution
appears to superimpose almost perfectly to the the exact solution; while the
from the first two a steady convergence is observed once again.

Figure 3. Comparison of various approximations of the homoclinic solution of Eq. (3.3)
to the exact solution (solid black line) for ω = σ = 1 . The red dotted, magenta dashed,
cyan dash-dotted and blue long-dashed lines correspond to Eq. (3.6), Eqs. (3.8)-(3.9),

Eqs. (3.10), and Eqs. (3.11) respectively.

3.3 An example of asymmetric problem

In Section 2, only second order ODEs that have the odd-parity property were
considered in the outline of our proposed technique because they allow for a
clear and straightforward formulation. We aim now to demonstrate through
an example that our method is also applicable beyond those second order sym-
metric problems. To this end, we consider a perturbed KdV equation [16]

uτ + 6uux + uxxx + ε
(
αuxxxxxx + βuuxxx + 3λuxuxx + σu2ux

)
= 0, (3.22)

where a subscript variable means derivation with respect to this variable.
Looking for traveling wave solutions with constant profile and velocity, we let
t = x − ητ . This transforms equation Eq. (3.22) into a sixth order ODE that
we integrate once to obtain

ü− ηu+ 3u2 + ε

(
α

d5u

dt5
+ βuü+

3λ− β
2

(u̇)
2

+
σ

3
u3
)

= 0, (3.23)

taking the constant of integration equal to zero. One can realize that the fifth
order derivative in the last equation above is a damping-like term. It will allow
for soliton solution with constant parameters (amplitude, width and velocity)
being investigated only when very delicate relationships exist between these
parameters. The application of our method to this case will be considered
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elsewhere. For now, we drop this term here onward by setting α = 0. Then
equation (3.23) can obviously be put in the form Eq. (2.1) but with functions g
and f not odd. After applying the key change of independent variable Eq. (2.5)
to Eq. (3.23), we seek an initial approximation to the solution of the resulting
parametric ODE in the form

u0(t) = A (1 + cos (2t)) . (3.24)

Upon substituting this ansatz into the equation, it takes the form

E0 + E2 cos (2t) + E4 cos (4t) + E6 cos (6t) = 0. (3.25)

We form a system of two linear algebraic equations in Ω and η by equating E0

and E2 to zero. The solution of this system is easily found to be

Ω0 =
(18 + 5εσA)A

9 [2 + (2β + λ) εA]
, η0 =

AN
9 [2 + (2β + λ) εA]

,

N = 144 + 10σ (3λ+ β) ε2A2 + (25σ + 135λ+ 90β) εA,

which yields

u0(x, τ) = 2A sech2
(

(x− η0τ)
√
Ω0

)
as the first approximate solution to the perturbed KdV equation (3.22) with
α = 0.

Proceeding further necessitates to coin an appropriate increment and add
it to the right hand side of Eq. (3.24). In this regard we follow the simple
rule suggested in [27]. It recommends that the harmonics to include in the
increment to the ansatz of a given stage should be higher than or equal to the
least harmonic of the residual terms of that stage. Combining this rule with the
requirement u1(0) = u0(0) and the boundary conditions Eq. (2.7), the ansatz
of the next stage of approximation for our current example is taken as

u1(t) = A [1 + cos (2t) + b (1− cos (4t))] , (3.26)

the corresponding explicit form of which is

u1(x, τ) = 2A (1 + 4b) sech2
(

(x− η1τ)
√
Ω1

)
− 8Ab sech4

(
(x− η1τ)

√
Ω1

)
.

In these equations b, Ω1 and η1 are to be determined. Once again, the routine
HB procedure using Eq. (3.26) yields a Fourier series similar to Eq. (3.25) where
the bias term and the coefficient of the cos (2t)-term are also linear in Ω and
η. Solving these coefficients for the latter gives

Ω1 =
4Aχ1

∆
, η1 =

Aχ2

∆
(3.27)
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with

∆ = 72− 48b− 528εβAb2 − 84εβAb+ 288Aελb2 + 108Aελb

− 144b2 − 288Aελb3 + 144εβAb3 + 36Aελ+ 72εβA, (3.28a)

χ1 = 18 + 36b+ 5εσA− 18b2 + 12εσAb− 4εσAb3, (3.28b)

χ2 = 288− 144b+ 648εβAb4 + 120ε2βA2b5σ − 41ε2βA2σb

− 248ε2βA2b4σ − 384ε2βA2b2σ − 478ε2βA2b3σ + 60A2ε2λσ

+ 20ε2βA2σ + 258A2ε2λb3σ − 240A2ε2λb5σ + 87A2ε2λbσ

− 48A2ε2λb4σ + 318A2ε2λb2σ − 48εσAb2 − 120εσAb4 − 1296Aελb4

− 2232εβAb2 − 216εβAb+ 1566Aελb2 + 432Aελb+ 50εσA

− 432b2 − 648b3 − 24εσAb− 136εσAb3 + 432Aελb3 − 1728εβAb3

+ 270Aελ+ 180εβA. (3.28c)

To complete the determination of the approximation, equations (3.27)-(3.28c)
are substituted in the coefficient of the cos (4t)-term, which is subsequently
linearized with respect to b. From the ensuing linear equation, b reads as

b =
εA [2σ (β + 3λ) εA+ 27λ+ 18β − 3σ]

24 + σ (5β + λ) ε2A2 + 7 (3β + σ) εA
.

We can observe that the dependency of b on the parameters of Eq. (3.22) is
such that b vanishes when the perturbation therein is switched off (i.e., ε = 0),
as expected. Being rational in these parameters, the accuracy of this expression
is however not limited to finitely small values of ε, in contrast to results that
would be obtained using classical perturbation methods.

Conclusions

In this paper, we have proposed a technique for obtaining analytical approx-
imations to homoclinic and heteroclinic solutions of some ODEs. It consists
essentially of the well-known method of harmonic balance; but which is applied
only after effecting a simple and explicit change of the independent variable
that we have indicated. From the examples used to illustrate the proposed
approach, it appears to produce accurate explicit approximations which are
steadily converging to the exact solutions with increased level of approxima-
tions. The proposed method is also very easy and straightforward to use and
can be easily implemented in computer algebra systems.

Our examples included both symmetric and asymmetric ODEs, but was
limited to second order conservative systems. However, since the proposed
method leans on the HB which is known to be applicable to ODEs of any
order [19], ODEs of arbitrary order can also certainly be investigated using
the proposed method. A path of further widening this method currently being
investigated is its applicability to damped systems.
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[16] Y. Kai. Generalized hyperbolic perturbation method for homoclinic solutions
of strongly nonlinear autonomous systems. Phys. Scr., 91(2):025202, 2016.
https://doi.org/10.1088/0031-8949/91/2/025202.

[17] C.W. Lim and B.S. Wu. A new analytical approach to the Duffing-harmonic os-
cillator. Phys. Lett. A, 311(4–5):365–373, 2003. https://doi.org/10.1016/S0375-
9601(03)00513-9.

[18] C.W. Lim, B.S. Wu and W.P. Sun. Higher accuracy analytical approximations
to the Duffing-Harmonic oscillator. J. Sound Vib., 296(4–5):1039–1045, 2006.
https://doi.org/10.1016/j.jsv.2006.02.020.

[19] R.E. Mickens. Comments on the method of harmonic balance. J. Sound Vib.,
94:456–460, 1984. https://doi.org/10.1016/S0022-460X(84)80025-5.

[20] R.E. Mickens. Fourier representations for periodic solutions
of odd-parity systems. J. Sound Vib., 258(2):398–401, 2002.
https://doi.org/doi:10.1006/jsvi.5200.

[21] A.H. Nayfeh. Introduction to Perturbation Techniques. Wiley, New York, 1981.

[22] J.A. Sanders, F. Verhulst and J. Murdock. Averaging Methods in Nonlinear
Dynamical Systems. Springer, New-York, 2007.

[23] B.S. Wu, W.P. Sun and C.W. Lim. An analytical approximate technique for a
class of strongly non-linear oscillators. Int. J. Non-Linear Mech., 41(6–7):766–
774, 2006. https://doi.org/10.1016/j.ijnonlinmec.2006.01.006.

[24] K. Yagasaki. A simple feedback control system: bifurcation of periodic orbits and
chaos. Nonlinear Dyn., 9:391–417, 1996. https://doi.org/10.1007/BF01833363.
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