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Abstract. This paper proposes a statistical and probabilistic approach to compare
and analyze the errors of two different approximation methods. We introduce the
principle of numerical uncertainty in such a process, and we illustrate it by considering
the discretization difference between two different approximation orders, e.g., first and
second order Lagrangian finite element. Then, we derive a probabilistic approach
to define and to qualify equivalent results. We illustrate our approach on a model
problem on which we built the two above mentioned finite element approximations.
We consider some variables as physical “predictors”, and we characterize how they
influence the odds of the approximation methods to be locally “same order accurate”.
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1 Introduction

With the development of super-computers, numerical methods produce today
a huge quantity of numerical results, referred as big data, particularly for un-
steady and three dimensional problems, in which approximations of vector
fields or tensor components are computed. It seems thus interesting to look at
new tools to analyze the corresponding simulated big data. Probabilistic and
statistical methods could be (part of) such tools, that would help to charac-
terize and compare quantitative uncertainty in approximate results of partial
differential equations. In previous papers [1, 2], we have started to apply data
mining techniques to scientific computing. In particular, data mining was used
there as a tool to compare and evaluate a posteriori different asymptotic mod-
els. We relied on the fact that data mining techniques have already proved to
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be efficient in other contexts which deal with big data, like in biology [11, 16],
medicine [19, 20], marketing [15, 17], advertising and communications [5, 7]. In
this article, we propose a probabilistic approach to model and compute a poste-
riori quantitative uncertainty in numerical approximations of partial differen-
tial equations. It concerns the treatment of errors involved in an approximation
process, which describes a given real system by a mathematical model, solved
by numerical approximation methods, and whose exploitation, in fine, will pro-
vide the understanding, the control and the forecast of this system. In that
sense, it can be used to compare two numerical solutions which may be based
on different modeling choices, discretization processes, or solver strategies. Let
us illustrate our purpose on basic examples. Let us consider two mathematical
models used to describe a given system, for instance the Navier-Stokes and
the Stokes equations in fluid mechanics. Our aim will be to evaluate on the
results the relative quality of the two models, namely to define and measure a
kind of modeling error between them. Ideally, one would like to evaluate and
compare the gap between each of the models and the given system. However,
as the actual complete rules of the system are generally unknown, we focus
on comparison between the two models. In the case where observed data are
available, another application could be to determine the closeness of the solu-
tion approximation to observed data. As another example, consider two finite
element approximations, says Pk and Pk′ (0 ≤ k < k′), applied for finding
approximate solutions to a given problem. Based on classical finite element es-
timates, and under conditions of regularity of the mesh and of the solution, the
numerical results computed by the Pk′ finite element method converge faster
to the exact solution than those computed by the Pk one. However, due to the
presence of uncertainty which appears in the standard error estimates, through
the unknown constants, situations where Pk and Pk′ finite elements lead to
equivalent results are possible (see for example [3]). In [1], we introduced and
discussed separately different types of errors (modeling, approximations, etc.),
and we focus on one of them. In reality, however, these different types of er-
rors co-exist, and it can be informative to investigate the possible interferences.
The approach proposed in this article is based on numerical computed results,
warehoused in a database, and could allows to study these interferences. Con-
tinuing with the same example above, one could define a database made of
finite difference approximation of the Navier-Stokes equations, that one wants
to compare to a finite element approximation of Stokes equations. The pro-
posed method here can characterize the errors involved in the approximation
process, for instance the regions of space (and time if any) that two approxi-
mations “differ” or are “comparable”, in a sense we will define. Obviously, It
is not realistic to assume that any simulation analyst would construct several
approximation methods of the problem, and then, want to figure out where
the cheaper (or more efficient) approximation was adequate. The basic idea is
rather to get a quite general indication, depending on the given circumstances,
on the best adapted approximation method for a given class of problems. In
other words, our aim is to identify a kind of stochastic behavior in the ap-
proximation process which will justify our stochastic approach. In our view,
this is part of the topic to automatically characterize the approximation errors
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via statistical, probabilistic and unsupervised or supervised learning techniques
implemented in data mining for big data. This paper is organized as follows.
In Section 2, we introduce the principle of quantitative uncertainty for a vari-
ational formulation. We then illustrate it by considering two different finite
elements approximation of a given elliptic standard problem. In particular, we
highlight how a quantitative uncertainty can appear in finite elements error
estimates. In Section 3, we derive a probabilistic approach, that allows us to
qualify by logistic regressions the equivalent results. Then, we introduce in
Section 4 a model problem and we derive a linear and a quadratic finite el-
ement approximations to illustrate on the corresponding simulated data our
approach. Concluding remarks are finally drawn.

2 Quantitative uncertainty and approximation process

We seek to better understand how two different approximations of the same
problem could produce numerical results with comparable accuracy. When we
speak about approximations, we refer to any kind of errors, that is the modeling
error, the approximation error, the discretization error or interferences of the
different types, as introduced in [1]. Let u denote a reference solution (for
instance, the exact solution, if known) to the system one wants to solve. We
denote by uapprox its approximation, in the sense introduced above. Our aim
is to characterize in a probabilistic sense, the error define by the “distance”
between u and uapprox. It is generally measured by a well adapted norm, and
depends on the considered approximations.

Remark 1. In an “ideal case”, the reference solution should be the exact one.
But, in most situations, this exact solution is unknown, which motivates its
approximation! In these conditions, one only will be able to assess the distance
between two different kinds of approximations. This approach is classic for
instance in the Model Order Reduction approach, in which the unknown exact
solution is replaced by a “truth approximation”, computed in a “very high
dimension” subspace of the space of solution. This “truth approximation” is
assumed to be “very close” to the exact one [18].

Our idea consists in building the database made of u and uapprox, or two differ-
ent computed uapprox, and to derive probabilistic tools to measure equivalent
results. In other words, we will assume a kind of stochastic behavior in our
data, which will justify our stochastic approach. Moreover, this approach can
obviously be applied to more than two approximations. To be more concrete,
let us illustrate the quantitative uncertainty in the case of two different finite
elements approximations. For this kind of error, we suspect that the numerical
uncertainty is mainly due to the presence of uncertainty in the unknown con-
stants involved in the error estimates. For our purpose here, we shortly recall
the main steps involved in the derivation of error estimates (for more details
see [3]).

Remark 2. For the sake of simplicity, we consider in what follows an ellip-
tic standard problem, that is not time-dependent. When looking at a time-
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dependent problem, after time discretization, one generally solves a sequence
of stationary problems, one for each time step.

Let Ω be a regular subset of R2 and u a vector field defined from Ω to RM ,
M ∈ N,M ≥ 1. We introduce a Hilbert space (V, ‖.‖V) (product of M Hilbert
spaces Vm, (1 ≤ m ≤M)), and a bilinear, continuous, and V-elliptic form a(·, ·)
defined on V×V. We denote by l(·) a linear continuous form defined on V, and
by Vh a given finite dimension subset of V. We consider a standard abstract
elliptic variational formulation and its approximation, defined as follows:{

Find u ∈ V solution to:
a(u,v) = l(v),∀v ∈ V,

{
Find uh ∈ Vh solution to:
a(uh,vh) = l(vh),∀vh ∈ Vh.

We aim to illustrate how two different finite element approximations could
produce equivalent (in a sense that we will define) numerical results. For our
purpose, we first introduce a finite element partition Mh of Ω, assumed to

exactly coincide with Ω. Let u
(1)
h denote the P1 finite element approximation

of u, we have the classical following result (see for instance [6]).

Lemma 1. Let h denotes the mesh size of Mh. Assume that Ω is a convex

polygonal domain and suppose the exact solution u belongs to
[
C2(Ω)

]M
. The

approximation u
(1)
h converges to u when h tends to zero and we have the fol-

lowing global error estimate:

‖u− u
(1)
h ‖[H1(Ω)]M ≤ γ1h .

Above, ‖.‖[H1(Ω)]M denotes the standard Sobolev norm of
[
H1(Ω)

]M
and γ1 is

an unknown constant made up of the unknown value of ‖D2u‖[L∞(Ω)]M , on the
first hand, and the unknown ellipticity constant associated to the bilinear form

a(., .), on the other hand (see ( [3])). Similar results can be derived for u
(2)
h ,

the P2 finite element approximation of u. In this case, one obtains, assuming

the exact solution u belonging to
[
C3(Ω)

]M
:

‖u− u
(2)
h ‖[H1(Ω)]M ≤ γ2h

2,

where γ2 is the unknown constant for the P2 finite element approximation anal-
ogous to γ1. Therefore, because the presence of the two unknown constants γ1
and γ2, which contain numerical uncertainty, we suspect the following numeri-
cal local situation to take place: ∃m ∈ {1, . . . ,M},∃x ∈ Ω such that:

|um(x)− u(1)h,m(x)| ≤ |um(x)− u(2)h,m(x)| ,

or at least
|um(x)− u(1)h,m(x)| ' |um(x)− u(2)h,m(x)|. (2.1)

Inequations (2.1) mean that locally, i.e. for some x in Ω, P1 finite elements
might be either more accurate than P2 finite elements, or at least equivalent,
regarding the component um of the exact solution u. We also remark that
x ∈ Ω, and m ∈ {1, . . . ,M} are not necessarily unique. Similar uncertainties
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can be identified for the other different kinds of errors between u and uapprox,
or between two different uapprox. In the following, our purpose will be to
characterize local features such that two approximations could numerically be
equivalent. To this end, we will consider stochastic approach motivated by this
kind of stochastic behavior in the approximation process. Moreover, one relies
on the fact that data mining techniques are appropriate to explore a given
database to identify, if any, and to characterize homogenous subgroups, which
corresponds to local properties of the database.

3 Quantification of equivalent approximation results

From now on, we will assume that the reference solution is unknown, and we
will expose our approach to characterize two different approximations (not nec-

essary finite element ones), that we will denote u
(1)
h and u

(2)
h . However, it can

be written in the same way between the reference solution and an approximate
solution, if the former is known.

3.1 A probabilistic approach to measure equivalent results

For a given value m, (1 ≤ m ≤ M), we consider the m-th component of the

two different approximations u
(1)
h and u

(2)
h one wants to investigate, that we

denote by u
(k)
h , (k = 1, 2). Again, u

(1)
h or u

(2)
h can denote the m-th component

of the reference solution, for instance in the context of Model Order Reduction
method. We first build a database which consists of all theM components of the

approximations u
(k)
h , (k = 1, 2) computed by the two approximation methods

at common degree of freedom. Typically, this can be computed values at the
vertices of a common mesh, like Mh in the illustration above. We denote by
N the total number of rows in the database. Then, we introduce the Bernoulli
random variable Xuh whose trace on the N observations in the database is
defined by:

∀l = 1, . . . , N : (Xuh)l ≡

∣∣∣∣∣ 1, if |u(2)h,l−u
(1)
h,l | ≤ α max

j=1,N
|u(2)h,j−u

(1)
h,j |,

0, if not,
(3.1)

where u
(k)
h,l , (k = 1, 2), denotes the trace of the approximation u

(k)
h at a given

common degree of freedom, and α is threshold to be defined.

The variable Xuh defines to what extend the approximations u
(2)
h and u

(1)
h are

assumed to be equivalent. This definition strongly depends on the threshold α.
To evaluate this threshold, we introduce n, the size of the equivalent systematic

sampling, defined such that u
(2)
h and u

(1)
h do not “differ significantly” between

the sampling and the database. To determine the value of n, one can apply the
non parametric Kolmogorov-Smirnov test [9], (with a standard p-value equal
to 0.05), since no features are known regarding the shape of the distributions of

u
(2)
h and u

(1)
h . Practically, to get the optimal value of n, one has to successively

process the above statistical tests in order to achieve the statistical significance,
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parameterized by the p-value. Therefore, for a given value of α, we denote pα
the uniform probability of picking an index l (1 ≤ l ≤ N) from the database,

such that the approximations u
(2)
h,l and u

(1)
h,l will have the same numerical order.

In other words, we have

∀ l = 1, . . . , N : pα ≡ Prob {Yl < α max
1≤j≤N

Yj},

where the random variable Y is defined by Y = |u(2)h − u
(1)
h |, Yj being the

trace of Y on any element j in the database. Let us now consider a systematic
sampling of n elements, (n < N), and the individual Bernoulli random variables
Xi, (i = 1, . . . , n), defined by:

Xi =

∣∣∣∣∣ 1, if Yi < α max
1≤j≤N

Yj ,

0, if not,

where Yi denotes the trace of Y on any element i, (1 ≤ i ≤ n), which belongs
to the sampling. We have:

∀i ∈ {1, . . . , n} : Prob{Xi = 1} = Prob{Yi < α max
1≤j≤N

Yj} = pα. (3.2)

We also introduce the random variable X which allows us to count the number
of all the individuals in the sampling which are qualified “Equivalent Results”:

X =
∑

1≤i≤n

Xi. (3.3)

Then, X follows a binomial law of parameters n and pα, usually denoted
X ↪→ B(n, pα), whose expected value µX and standard deviation σX are given
by: µX = npα and σ2

X = npα(1 − pα). Finally, we introduce the frequency of
“Equivalent Results” in the sampling which corresponds to the random variable
X/n. Our purpose is now to guarantee that X/n measured on the sampling
does not diverge “too much” from pα evaluated on the whole population. This
can be expressed by

Prob {|X/n− pα| ≤ εpα} ≥ S, (3.4)

for S a given confidence level, and ε a parameter, ε ∈ [0, 1]. We prove the
following result

Theorem 1. Let X be the binomial variable B(n, pα) defined by (3.3) such
that npα(1− pα) ≥ 25, with pα defined by (3.2). Let (ε, S′) ∈ [0, 1]2 and p∗α the
smallest value of pα solution to:

2

∫ ε
√

npα
(1−pα)

0

e−t
2/2

√
2π

dt ≥ S′. (3.5)

Then,

Prob

{∣∣∣∣X∗ − µX∗σX∗

∣∣∣∣ ≤ ε
√

np∗α
(1− p∗α)

}
≥ S′ − C√

np∗α(1− p∗α)
, (3.6)

where X∗ denotes the binomial variable B (n, p∗α) and C is a positive constant
lower than 0.588.
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Proof. Let X be the binomial variable B (n, pα). Under suitable conditions
that will be explained later, we have:

Prob

{ ∣∣∣∣X − µXσX

∣∣∣∣ ≤ ε√ npα
(1− pα)

}
≈ 2

∫ ε
√

npα
(1−pα)

0

e−t
2/2

√
2π

dt. (3.7)

Hence, taking into account inequality (3.5) and its associated smallest value
p∗, we have:

Prob

{∣∣∣∣X∗ − µX∗σX∗

∣∣∣∣ ≤ ε
√

np∗α
(1− p∗α)

}
≥ S′. (3.8)

Given that (3.7) is an approximation, the corresponding error estimate is
mainly due to Uspensky [21]. In our case, by directly applying his result,
one can prove that:∣∣∣∣∣∣Prob

{∣∣∣∣X∗−µX∗σX∗

∣∣∣∣ ≤ ε
√

np∗α
1−p∗α

}
−2

∫ ε

√
np∗α
1−p∗α

0

e−t
2/2

√
2π

dt

∣∣∣∣∣∣ ≤ C√
np∗α(1−p∗α)

,

(3.9)
where C < 0.588 [21]. So, using (3.9) in the approximation (3.7) implies that
(3.6) holds from (3.8). ut

Remarks:

1. The condition npα(1 − pα) ≥ 25 is the one mentioned in Uspensky [21],
which allows us to approximate the binomial law by the normal one, with
the corresponding error estimate (3.9).

2. For a given value of the confident level S′, inequation (3.5) can be solved
to get p∗α, using a table of standard normal distributions [14].

3. With elementary transformations, one can get our objective control given
by (3.4) from (3.6), substituting p∗α to pα and setting:

S = S′ − C/
√
np∗α(1− p∗α).

4. Given the value p∗α related to a given confident level S′ solution to (3.6),
the associated value α∗ is processed by marginal distributions on the
whole database. This guarantees that the value p∗α fits the corresponding
percent of rows which are qualified “Equivalent Results”.

3.2 Logistic regression and local qualification of equivalent results

We introduce the logistic regression [8, 13] to analyze and qualify the “Equiv-
alent Results” class {Xuh = 1} defined in (3.1), according to the value of the
parameter α∗ defined above. In Subsection 3.1, we have considered the case
where one of the M components of the approximation uh satisfies inequality
(2.1). Now, we take into account that the variable Xuh is a function of all other
available predictors (i.e. the other independent variables used to predict Xuh),
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that is the space coordinates and the M − 1 other approximations computed
by the two methods one aims to compare. Denoting by Zi (1 ≤ i ≤ I) these I
predictors, we aim to model the conditional probability p(z1, z2, . . . , zI) defined
by:

p(z1, . . . , zI) ≡ Prob {Xuh = 1|Z1 = z1, . . . , ZI = zI}.
We introduce now the odds ω(z1, . . . , zI) of getting:{

Xuh=1 if (Z1=z1, . . . , ZI=zI)
}

versus
{
Xuh=0 if (Z1 = z1, . . . , ZI = zI)

}
for given values (z1, . . . , zI) of the predictors (Z1, . . . , ZI), defined by:

ω(z1, . . . , zI) =
p(z1, . . . , zI)

1− p(z1, . . . , zI)
. (3.10)

Odds values are in [0,+∞[ which allows us to consider the following linear
regression, denoting by βi (0 ≤ i ≤ I) the coefficients of the regression

ln

(
p(z1, . . . , zI)

1− p(z1, . . . , zI)

)
= β0 + β1 z1 + · · ·+ βIzI ≡ β0 + β.z , (3.11)

where, for simplicity, we introduced the vectors β and z that belong to RI . A
very nice property deduced from (3.11) is the interpretation of the coefficients

βi. Indeed, let us introduce the odds ratio o(z
(0)
i , z

(1)
i ) relatively to one of the

predictors Zi, (i = 1, . . . , I) defined by:

o(z
(0)
i , z

(1)
i ) ≡

P
(
z
(1)
i

)
P
(
z
(0)
i

) , (3.12)

P
(
z
(k)
i

)
=

p(z1, ..., zi−1, z
(k)
i , zi+1, ..., zI)

1− p(z1, ..., zi−1, z(k)i , zi+1, ..., zI)
, k = 0, 1.

where z
(0)
i and z

(1)
i correspond to two different values of the random predictor

variable zi. One can easily show the following lemma:

Lemma 2. Equations (3.11) and (3.12) lead to: βi = ln(o(zi + 1, zi)) and
o(zi + c, zi) = exp(cβi), ∀c ∈ R and ∀i = 1, . . . , I.

In the next section this lemma will allow us to model and quantify the
relationship between the “Equivalent Results” category (Xuh = 1) and the
other predictors Zi.

We now proceed to the evaluation of the coefficient β0 and the vector β ∈
RI which determine the “linear” regression (3.11). We assume that, for each
training independent data-point indexed by k, (k = 1, . . . , n), we have a vector

of features z(k) = (z
(k)
1 , . . . , z

(k)
I ) which belongs to RI , and an observed class

y(k) . The probability of that class was either p(z(k)), if y(k) = 1, or 1−p(z(k)),
if y(k) = 0. The corresponding likelihood function L(β0,β) is then defined by:

L(β0,β) ≡
n∏
k=1

p(z(k))y
(k)(

1− p(z(k))
)1−y(k)

. (3.13)

So we have the following result:

Math. Model. Anal., 22(1):106–120, 2017.
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Lemma 3. Let β̂i, (i = 0, . . . , I), the estimators of the parameters βi introduced
in (3.11) which maximize the likelihood function L(β0,β) defined in (3.13).

Then, β̂i are solution to:
n∑
k=1

y(k)z
(k)
q −

n∑
k=1

z
(k)
q eβ̂0+z(k).β̂

1 + eβ̂0+z(k).β̂
= 0, ∀q = 1, . . . , I,

n∑
k=1

y(k) −
n∑
k=1

eβ̂0+z(k).β̂

1 + eβ̂0+z(k).β̂
= 0.

(3.14)

Proof. The log-likelihood turning products into sums, this yields, using (3)

ln
(
L(β0,β)

)
=

n∑
k=1

y(k) ln
(
p(z(k))

)
+

n∑
k=1

(1− y(k)) ln
(

1− p(z(k))
)

=

n∑
k=1

y(k) ln

(
p(z(k))

1− p(z(k))

)
+

n∑
k=1

ln
(

1− p(z(k))
)

=

n∑
k=1

y(k)
(
β0 + z(k).β

)
+

n∑
k=1

ln
(

1− p(z(k))
)
, (3.15)

where we also used (3.11). Moreover, from (3.11), we can isolate p(z(k)) as

p(z(k)) =
eβ0+z(k).β

1 + eβ0+z(k).β
, ln

(
1− p(z(k)

)
= − ln

(
1 + eβ0+z(k).β).

Finally, the log-likelihood (3.15) can be written in its final expression:

ln
(
L(β0,β)

)
=

n∑
k=1

y(k)
(
β0 + z(k).β

)
−

n∑
k=1

ln
(
1 + eβ0+z(k).β).

So, the necessary conditions to maximize the likelihood function L(β0,β) are
obtained by canceling each of its first order partial derivative with respect to
βq, (q = 0, . . . , I). Then, we get the following system:

∂ ln
(
L(β̂0, β̂)

)
∂β̂q

=
n∑
k=1

y(k)z
(k)
q −

n∑
k=1

z
(k)
q eβ̂0+z(k).β̂

1 + eβ̂0+z(k).β̂
= 0, ∀q = 1, . . . , I,

∂ ln
(
L(β̂0, β̂)

)
∂β̂0

=
n∑
k=1

y(k) −
n∑
k=1

eβ̂0+z(k).β̂

1 + eβ̂0+z(k).β̂
= 0.

(3.16)
Equations (3.16) can not be exactly solved but however are approximated by
numerical schemes as Newton’s method [10]. ut

In the next section, we will consider a model problem and we will illustrate our
approach by considering two different finite element approximations, as in Sec-
tion 2. To better understand the quantitative process of approximation error,
we have summarized below the workflow suggested by our method. For a given
mathematical model described by a system of (partial) differential equations,
we have to
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1. construct the variational formulations,

2. choose the numerical approximations to be compared,

3. store the database made of the numerical approximations,

4. determine the sampling size n obtained by a goodness-of-fit test processed
on the two approximations,

5. determine first the optimal p∗α solution to (3.7), then the α∗ obtained by
marginal distributions on the whole database,

6. qualify equivalent approximations results processed by a logistic regres-
sion,

7. identify predictors which significantly increase or decrease the odds of
being in the “Same Order” approximation.

4 Application to a model problem

In this section, we introduce a model problem, and, as in the beginning of
the article, we apply our approach to a linear P1 and a quadratic P2 finite
element approximations. For our purpose, we consider a quasi-static elliptic
approximation of the Vlasov-Maxwell equations in a relativistic case [2]. This
models the propagation of an electron bunch in an hollow cylindrical tube
[4]. The Vlasov equation is approximated by a particle method whereas the
electromagnetic field is discretized by P1 and P2 finite elements, using the
FreeFem++ package [12]. We notice that as the right hand side of the quasi-
static Maxwell equation is explicitly time dependent, the resulting problem
consists of a sequence of elliptic problems solved at each time step. As a
consequence, the database of approximations will include all these time steps.

Remark 3. This model, derived from plasma simulations, has the advantage
to be “rich enough” to produce big data stored in a database constituted by a
large number of different variables. Indeed, in an “elementary” model problem,
as for instance the Laplace problem, the P1 and P2 approximations may be too
predictable, so that our investigation method does not add much.

In the sequel, we will illustrate the probabilistic framework we propose by
characterizing the numerical uncertainty in the error estimates as described
in (2.1), regarding the longitudinal component of the magnetic field denoted

Hz. We denote by H
(1)
z and H

(2)
z the P1 and P2 finite element approximations

of the reference solution Hz. More precisely, as exposed in Section 2, one is
interested to investigate the situation characterized by∣∣H(1)

z (rj∗ , ζk∗ , tn∗)−Hz(rj∗ , ζk∗ , tn∗)
∣∣ ' ∣∣H(2)

z (rj∗ , ζk∗ , tn∗)−Hz(rj∗ , ζk∗ , tn∗)
∣∣

for a discrete time tn∗ and a space node (rj∗ , ζk∗) of a mesh Mh, introduced
for these finite element approximations. As described before, we construct the
database made of the P1 and P2 computed solutions. It is composed by 125000
rows and by the 36 variables, as we considered 100 time steps tn, 1250 space
nodes (rj , ζk), and at all, 36 physical variables in our simulations. The main
results we have obtained are summarized below:
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1. Size of the sampling: As explained in Subsection 3.1, without statistical

features of the components H
(1)
z and H

(2)
z , we processed the Kolmogorov-

Smirnov test. Consequently, the equivalent sampling we consider is com-
posed by 5800 rows of the database.

2. Determination of α∗ by the probabilistic model: To apply Theorem 1 in
our case, we choose ε = 5% and S′ = 97% to obtain the confident level S
equals to the standard value which is 95%. Indeed, if S′ = 97%, one can
show that (3.5) is satisfied when

ε

√
npα

(1− pα)
≥ 2.17 ⇐⇒ pα ≥

4.71

4.71 + nε2
.

So, if n = 5800 and ε = 5%, we get pα ≥ p∗ ' 0.245 and its corresponding
value α∗ ' 0.75. As a consequence, the right-hand side of the inequality
(3.6) approximatively equals to 95%.

3. Logistic regression and qualification of Equivalent Results for H
(1)
z and

H
(2)
z : Given the previous value of α∗, we processed under the Data Min-

ing platform IBM SPSS Modeler the logistic regression to qualify the de-

pendency between the “Equivalent Results” category for H
(1)
z and H

(2)
z

(named “H
(1)
z −H(2)

z Equivalent Results” in the sequel), namely the value
of the corresponding random variable Xuh = 1 defined in (3.1), with the
time t and the spacial coordinates (r, ζ), as potential predictors. The
corresponding model we have obtained presents the following properties:

• The equation of the logistic regression we found is described by:

ln

(
Prob{Xuh = 1|(t, r, ζ)}

1−Prob{Xuh=1|(t, r, ζ)}

)
= 0.01176t+0.01545r−0.1696ζ, (4.1)

where the three estimators (β̂t, β̂r, β̂ζ) = (0.1176, 0.01545,−01696) of the
coefficients βt, βr and βζ have been estimated by maximizing the corre-
sponding likelihood function coupled with Newton’s scheme, as explained
in Subsection 3.2. As we saw above in Lemma 2, the meaning of the co-
efficient β̂i of (4.1) is easy to interpret by the help of exp(β̂i). Because
we consider here a logistic regression with multiple predictor variables,
the general rule to get the right interpretation of the coefficients can be
formulated as follows: each estimated coefficient is the expected change

in the log odds of being in the “H
(1)
z −H(2)

z Equivalent Results” class, cor-
responding to a unit increase in the associated predictor variable, holding
the other predictor variables constant at a certain value. Each exponen-
tiated coefficient is the ratio of two odds, or the change in odds in the
multiplicative scale, corresponding to a unit increase in the associated
predictor variable, holding other variables at a certain value.

(a) Interpretation of the coefficient β̂t and exp(β̂t). According to the defini-
tion (3.10) of the odds and thanks to (3.12) and Lemma 2, we can say

now that the coefficient β̂t of the time t in (4.1) is the difference in the log
odds. In other words, for a one-unit increase in time, (i.e. a time step),

the expected change in log odds is β̂t = 0.01176. Can we translate this
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change in log odds to the change in odds? Indeed, by Lemma 2 we can say
that, for a one-unit increase in time, we expect to see about 1.2% increase
in the odds of being in the “Same Order” class (exp(0.01176) ' 1.012).
Even if this growth increasing seems quite small, one does not forget that
we have to deal with one hundred time steps in our numerical simulations.
So, by considering Lemma 2, one must deal with an about 50% increase

in the odds of being in the “H
(1)
z −H(2)

z Equivalent Results” class after 35
time steps, (exp(35∗0.01176) ' 1.5) and with about 224% increase in the

odds of being in the “H
(1)
z −H(2)

z Equivalent Results” class after 100 time
steps, (exp(100 ∗ 0.01176) ' 3.24). In other words, the more time passes,

the more the odds of being in the “H
(1)
z −H(2)

z Equivalent Results” class
increases. Consequently, less useful and justified is the implementation
of P2 finite elements.

Figure 1. Time dependency of the average < |H(1)
z −H(2)

z | >(r,ζ)

This behavior can be illustrated below on Figure 1, where we plot <

|H(1)
z − H

(2)
z | >(r,ζ), the average of |H(1)

z − H
(2)
z | computed over all r

and ζ. As one can see, the more the time passes, the more the trend of
this average decreases: this corresponds to equivalent numerical results
between the P1 and P2 finite elements approximations of the magnetic
component Hz.

(b) Interpretation of the coefficient β̂r and exp(β̂r). In the same way, for a

one-unit increase of r, the expected change in log odds is β̂r = 0.01545.
This change in log odds corresponds to an equivalent change in odds of

about 1.55% increase in the odds of being in the “H
(1)
z − H(2)

z Equiva-
lent Results” class (exp(0.01545) ' 1.01556). As r belongs to the inter-
val [0, 120] in our simulations, we found that, when r = 26, one must

deal with about 50% increase in the odds of being in the “H
(1)
z − H(2)

z

Equivalent Results” class, (since exp(26 ∗ 0.01545) ' 1.5). Finally, when
r = 120 := R (corresponding to the tube wall), the odds of being in

the “H
(1)
z − H

(2)
z Equivalent Results” ratio is about 6.38 times more,

(again, exp(120 ∗ 0.01545) ' 6.38) compared with r = 0; the situation

“H
(1)
z −H(2)

z Equivalent Results” is most likely when r = R rather than
r = 0. In other words, the closer you get to the tube wall, the more equiv-
alent are P1 and P2 approximations expected to be. This can be explained
by the presence of the vanishing integral boundary condition on Hz which
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constraints the solution to vanish at r = R. Here again, we illustrate this

behavior on Figure 2 where the average < |H(1)
z −H(2)

z | >(t,ζ) is depicted
as a function of all the time and ζ. As one can see, this value strongly
decreases as a function of r, corresponding to equivalent numerical results
between the P1 and P2 approximations of the magnetic component Hz .

Figure 2. r-dependency of the average < |H(1)
z −H(2)

z | >(t,ζ)

(c) Interpretation of the coefficient β̂ζ and exp(β̂ζ). As we have β̂ζ = −0.1696,
the presence of the sign “-” allows us conclude that the more ζ grows,

the more the odds of being in the “H
(1)
z − H

(2)
z Equivalent Results”

class decreases. Indeed, this feature can be quantified by the help of
exp(−0.1696) ' 0.8440 which means that, for a one-unit increase of
ζ, we expect to see about 15.6% decrease in the odds of being in the

“H
(1)
z −H(2)

z Equivalent Results” class. As a consequence, after 4 units
of ζ one must deal with about 50% decrease in the odds of being in the

“H
(1)
z −H(2)

z Equivalent Results” class (exp(−4 ∗ 0.1696) ' 0.5). More-
over, as the maximum value of ζ is 15 in the mesh we implemented,
exp(−15 ∗ 0.1696) ' 0.08. This implies that, at the end of the bunch,

the situation “H
(1)
z −H(2)

z Equivalent Results” is least likely, (the odds of

being in the “H
(1)
z −H(2)

z Equivalent Results” class decreases about 92%),
rather than at the beginning of the bunch, where ζ = 0. Here again, as
for the interpretation of the coefficient β̂t, this behavior was not expected
even after a close look of the equations, and is probably related to the
non linear coupling of the solved system. Again, we plot on Figure 3 the

average < |H(1)
z −H(2)

z | >(r,t), computed over all the time and r values.
As one can see, when ζ takes high values at the end of the bunch, the
curve increases which shows that the numerical approximations of Hz

cannot be considered anymore equivalent.

5 Conclusion

In this paper, we have proposed a new approach that combines probabilistic
techniques and statistical methods, to characterize and compute a posteriori
quantitative uncertainty in approximation methods. We have highlighted the
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Figure 3. ζ-dependency of the average < |H(1)
z −H(2)

z | >(r,t)

part of uncertainty contains in the methods, that can influence and even dam-
age the precision of the computed numerical results.

In a second part, we have applied the approach by comparing a low order
finite element method (P1) to a high order one (P2). We have derived a statis-
tical and probabilistic approach to compare the two corresponding numerical
approximations u1

h and u2
h. This allows us to measure, then to qualify by lo-

gistic regression the notion of “Equivalent Results”. Then, we characterized
the influence of predictors on the odds of being in the “Equivalent Results”
category. Finally, we introduced, as a model problem, a quasi-static elliptic
approximation of the Vlasov-Maxwell equations. We illustrate our approach
by characterizing the “Equivalent Results” in that case. Future developments
could concern the interaction between more than two predictors, for instance by
introducing in the logistic regression equation, non linear terms like tr, tζ and
rζ. Another extension could consist in investigating the ability to well model
the second class of the randomness variable Z, which describes the “Different
Order” class of two different approximations of partial differential equations.
Another potential application for this work could be to determine the close-
ness of the solution approximation to observed data, considered as a reference
or exact solution. This could be used as goodness-of-fit test for compare the
model to the reality.
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