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Abstract. The unstable production of renewable energy sources, which is difficult
to model using conventional computational techniques, may be predicted to advantage
by means of biologically inspired soft-computing methods. The photovoltaic output
power is primarily dependent on the solar direct or global radiation, which short-term
numerical forecasts are possible to apply for daily power predictions. The study com-
pares two methods, which can successfully model dynamic fluctuant variances of the
solar irradiance and corresponding output power time-series. Differential polynomial
network is a new neural network class, which defines and substitutes for the general
partial differential equation to model an unknown system function. Its total output is
composed from selected neurons, i.e. relative polynomial substitution terms, formed
in all network layers of a multi-layer structure. The proposed derivative polynomial
regression using relative dimensionless fraction units, formed according to the Simi-
larity analysis, can describe and generalize data relations on a wider range of values
than defined by the training interval when using standard soft-computing composing
techniques that apply only absolute data. 1-variable time-series observations are pos-
sible to model by time derivatives of a converted ordinary differential equation, solved
analogously with partial derivative substitution terms of several time-point variables.
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1 Introduction

The electrical energy produced by energy sources within the network must be
at the same time consumed by customers as the accumulation of its reasonable
quantities is too demanding, even though experimental systems are installed at
prototype. In order to maintain a reliable and efficient operation of the electri-
cal network, the operator must be able to estimate the volume of the electrical
energy produced by unstable energy sources (e.g. wind or photovoltaic power
plants). In a power grid is needed a reliable prediction of the renewable power
generation in order to ensure that the stable sources of electrical energy (such
as coal, gas, and nuclear power plants) will be able to balance the energy pro-
duction and satisfy a demand for electricity by all customers. Photovoltaic
power plants offer stochastic supply of electricity, which deterministic predic-
tion methods often do not provide sufficient accuracy. Applied algorithms
usually model the electricity production within short time interval periods ac-
cording to given sunshine forecasts. The photovoltaic systems, used at present,
apply mostly technologies with specific parameters. The photovoltaic plant
(PVP) with a mono-crystalline (PVP1) technology has higher total efficiency
(about 25%) in comparison with a poly-crystalline (PVP2) technology (about
15-20%).

Figure 1. PVP output active power for the mono-crystalline (PVP1) and poly-crystalline
technology (PVP2).

However the PVP1 can transfer only direct solar radiation by contrast to
the PVP2, which can convert all components of the solar direct and diffusion
radiation [18]. The influence of the direct solar radiation results in a dynamic
course of the PVP1 output active power. Values of the PVP1 output active
power can fluctuate in an interval 30-95% of the nominal power, whereas dy-
namic changes of the output active power (caused by cloud passing) are in
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units of minutes in this specific case. The maximal value of the output active
power of the PVP2 is not so high (about 85% of a nominal value) however the
dynamic changes are smaller and this system is more stable. The character-
istics are necessary to respect in prediction models. The analysis (Figure 1)
characterizes a typical day during July 2011 with changeable cloudiness for the
nominal power 1MWp.

Figure 2. The power curve of PVP with monocrystalline technology (PVP1) and
polycrystalline technology (PVP2).

Power curves can characterize the two above mentioned PVPs (Figure 2),
where the PVP1 is a photovoltaic system placed on a tracker and the PVP2 is a
system with a stabile construction. The power curve shows a dependence of the
output active power on the solar radiation (Figure 2). The PVP1 power curve
(placed on the tracker) has higher values of the hysteresis, which is caused by
the different output power for eastern and western sun. Therefore it is possible
to obtain the different output power for the same values of the solar radiation
whereas output power values are higher for azimuth corresponding of eastern
sun. The PVP2 hysteresis power curve is flatter by a virtue of the stabile
placing and poly-crystalline technology. The power curves were created for
same day as in the previous case (Figure 1).

Prediction models must respect all the above mentioned specifications of the
PVP parameters. Developed prediction techniques for the PVP production,
based on the optimization for specific areas, can use fuzzy sets and logic [4],
neural networks [23], statistical short-term forecasting [11], non-linear function
relations [25] or Gaussian equations [26]. The study compares two different
types of daily prediction models: the general differential equation solutions of
polynomial networks and symbolic tree expressions of evolutional fuzzy rules
(of a searched function), tested at a 14-day period. The applied time-series
data contain only information about the solar radiation intensity related to
corresponding power output values in a location of the facility. No other ad-
ditional relevant data (e.g. relative humidity, pressure, visibility) were consid-
ered, which might significantly impact the presented models results. Each of
the two methods applies a different approach to the training data, either daily
updated or long-term invariant models. The paper is organized as follows:



Modelling the Photovoltaic Output Power 81

Section 2 and Section 3 present the principles of both the compared methods,
Section 4 contains experimental results first using real solar irradiation data
(for testing both model types) and then numerical forecast data (for real daily
predictions), and Section 5 and Section 6 resume evaluations and implications.

2 General partial differential equation decomposition and
substitution

2.1 General differential equation composition models

A lot of physical or natural systems, which is not possible to model using a
unique explicit function, can be described to advantage by means of differential
equations solved using neural networks [27], genetic programming [6, 10, 12]
based on trajectory methods [22], wave series [3, 8] and other. The general
partial differential equation (DE) (2.1), which selective exact form is not known
in advance (for a specific system model), can generally describe a system of
related variables with sum derivative terms. The searched function u, which
is possible to calculate as a sum of the derivative terms (+ bias) (2.1) may be
expressed in the form of sum series, consisting of convergent series arisen from
partial derivative terms (2.2) of 2 input variables.

a+ bu+

n∑
i=1

ci
∂u

∂xi
+

n∑
i=1

n∑
j=1

dij
∂2u

∂xi∂xj
+ . . . = 0, (2.1)

a, b, ~c(d11, dc12, . . .) – parameters, ~x(x1, x2, . . . , xn) – vector of n input vari-

ables, u(~x) – searched function u =
∞∑
k=1

uk, uk – partial separable functions of

u: (∑ ∂uk
∂x1

,
∑ ∂uk

∂x2
,
∑ ∂2uk

∂x21
,
∑ ∂2uk

∂x1∂x2
,
∑ ∂2uk

∂x22

)
. (2.2)

Volterra functional series, a discrete analogue of which is the Kolmogorov-
Gabor polynomial (2.3), express general connections between input and output
variables. This polynomial can approximate any stationary random sequence
of observations and can be computed by either adaptive methods or a system
of Gaussian normal equations. Group Method of Data Handling (GMDH),
created by a Ukrainian scientist Aleksey Ivakhnenko in 1968, when the back-
propagation technique was not known yet [13], decomposes the complexity of
a system or process (2.3) into many simpler relationships each described by
a low order 2-variable polynomial processing function (2.4) of a single neuron
(node). The GMDH evolves progressively a polynomial neural network (PNN)
multi-layer structure towards the output layer, adding layers one after one in
successive steps calculating the actual last layer coefficients and selecting its
optimal neurons. It defines an optimal structure of a complex system model
identifying non-linear relations between input and output variables [20].

Y = a0 +

n∑
i=1

aixi +

n∑
i=1

n∑
j=1

aijxixj +

n∑
i=1

n∑
j=1

n∑
k=1

aijkxixjxk + . . . , (2.3)
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A(a1, a2, . . . , an) – vector of parameters, X(x1, x2, . . . , xn) – vector of n input
variables.

Differential polynomial neural network (D-PNN) is a new neural network
type, which extends the basic complete GMDH PNN structure to form sum
series of relative combination derivation terms, which together define and sub-
stitute for the selective general partial differential equation (DE) of a multi-
variable function searched model based on data observations. This derivative
series model is differs from simple upright computational techniques, which can
compose a searched function from a collection of operators and terminals of a
defined set to form symbolic tree-like structural expressions.

y = a0 + a1x1 + a2xj + a3xixj + a4x
2
i + a5x

2
j . (2.4)

The similarity theory is based on the hypothesis functional relationships exist
among the non-dimensional parameters, which can describe a physical system.
The Buckingham π theorem removes extraneous information from a problem
by forming dimensionless groups of variables and is the fundamental of dimen-
sional analysis. It states if the Equation (2.5) is the only relationship among the
qi’s and if it holds for any arbitrary choice of the units in which q1, q2, . . . , qn
are measured, then it can be written in the form using π1, π2, . . . , πm as in-
dependent dimensionless products of the qi’s (7). If k is the minimal number
of principal quantities necessary to express the dimensions of the q’s, then
m = n− k [24].

Φ(q1, q2, . . . , qn) = 0, Φ(π1, π2, . . . , πn) = 0, (2.5)

where π1, π2, . . . , πm are independent dimensionless products of the q’s. The
method of integral analogues provides an essential principle for the partial
derivative terms (2.2) polynomial substitution. It is a part of the similarity
dimensional analysis, which applies various formal adaptations of a DE (or data
observations) to form dimensionless characteristic groups of variables [7], thus
the original mathematical operators and symbols in a DE are replaced by the
ratio of corresponding variables. The derivatives are replaced by their integral
analogues, i.e. derivative operators are removed and replaced by analogue or
proportion signs in equations. The complete input polynomials (of a uniform
degree) replace the partial searched functions uk of derivative terms (2.2), while
the reduced combination polynomials of denominators represent the derivative
versatile parts (2.9). If the u(x1, x2, . . . , xn) function of the partial DE (2.1) is
defined around a point A(a1, a2, . . . , an), its partial derivation in respect of xi
may be considered 1-variable function g(xi) (2.6).[

∂u

∂xi

]
A

=
∂u(A)

∂xi

= lim
xi→ai

u(a1, . . . , ai−1, xi, ai+1, . . . , an)− u(a1, . . . , ai−1, ai, ai+1, . . . , an)

xi − ai

= lim
xi→ai

g(xi)− g(ai)

xi − ai
. (2.6)
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If the partial DE involves u(~x) function derivatives with respect only to time t
variable, which the independent variables x1, x2, . . . , xn depends on, the equa-
tion (2.6) is possible to express in (2.7).[

du(t, x1, . . . , xn)

dt

]
t=ta

= lim
t→ta

u(t, a1, . . . , an)− u(ta, a1, . . . , an)

t− ta
,

dx = xi − ai = t− ta = dt. (2.7)

If only one independent variable x occurs in the function u, the equation (2.7)
becomes the form (2.8).[

du(t, x)

dt

]
t=ta

= lim
t→ta

u(t, a)− u(ta, a)

t− ta
. (2.8)

On this assumption the general partial DE (2.1), which describes 1-variable
time-series, might be converted into an ordinary DE with only time derivatives.
The variables x1, x2, . . . , xn of the u function are observations in various time
t, so partial derivatives (2.1) turns into derivatives in respect of the only time
t variable. The input vector ~x variables depend only on time t so the searched
function u is replaced by f(~x) time observations. Combinations of the partial
DE term denominators (2.1) project themselves into partial numerator f(~x)
functions in the ordinary DE

a+ bf +

n∑
i=1

ci
df(xi)

dt
+

n∑
i=1

n∑
j=1

dij
df(xi, xj)

dt
+ . . .+

n∑
i=1

cci
df2(xi)

dt2
+ . . . = 0,

where f(~x) – function of independent time observations x(x1, x2, . . . , xn). This
equation is formed and solved analogous to the general partial DE (2.1) by
means of partial derivative terms substitutions using combinations of several
time-point variables.

Figure 3. 2-variable combination block consists of basic (/) and composite terms (CT) -
neurons.

Blocks (nodes) of the D-PNN (Figure 3) form simple neurons, one for each
fractional polynomial derivative combination, so each neuron represents a sub-
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stitution DE term (2.9) (2.10) (2.11)

y1 =
∂f(x1, x2)

∂x1
= w1

(a0 + a1x1 + a2x2 + a3x1x2 + a4x
2
1 + a5x

2
2)

1
2

1.5(b0 + b1x1)
, (2.9)

y3 =
∂2f(x1, x2)

∂2x2
= w3

a0 + a1x1 + a2x2 + a3x1x2 + a4x
2
1 + a5x

2
2

2.7(b0 + b1x2 + b2x22)
, (2.10)

y5 =
∂2f(x1, x2)

∂x1∂x2
= w5

a0 + a1x1 + a2x2 + a3x1x2 + a4x
2
1 + a5x

2
2

2.3(b0 + b1x11 + b2x12 + b3x11x12)
. (2.11)

Each block contains a single output polynomial (2.4), without derivative
part. Neurons do not affect the block output but can be directly included in
the total network output sum of a DE solution. Each block has 1 and neuron
2 vectors of adjustable parameters ~a and ~a,~b respectively. The numerator root
function decreases a combination degree of the input polynomial (2.9), in order
to get the dimensionless values [7].

The GMDH polynomial (2.4) is applied in the block outputs and neuron
fractions as it proves generally to yield best results besides being easy to use.
Each block includes 5 simple substitution neurons of the 2nd order partial DE
(2.12) of a searched 2-variable partial u function model, formed with respect
to 2 single x1, x2 (2.9), 2 squared x21, x

2
2 (2.10) and 1 combination x1x2 (2.11)

derivative variables, which correspond exactly to the GMDH polynomial vari-
ables. This DE type is preferably used to describe natural and physical systems
non-linearities.

F

(
x1, x2, u,

∂u

∂x1
,
∂u

∂x2
,
∂2u

∂x21
,

∂2u

∂x1∂x2
,
∂2u

∂x22

)
= 0, (2.12)

where F (x1, x2, u, p, q, r, s, t) is a function of 8 variables.

2.2 Differential polynomial neural network

Multi-layer D-PNN forms composite functions (Figure 4). The previous layer
blocks produce internal functions, which substitute for the next hidden layer
input variables of neuron and block polynomials in external functions. Compos-
ite DE terms, i.e. composite function derivatives in respect of the variables of
previous layers, are calculated according to the partial derivation rules (2.13),
(2.14) by products of the external and internal function partial derivatives.

F (x1, x2, . . . , xn) = f(y1, y2, . . . , ym) = f(Φ1(X), Φ2(X), . . . , Φm(X)), (2.13)

∂F

∂xk
=

m∑
i=1

∂f(y1, y2, . . . , ym)

∂yi
· ∂Φi(X)

∂xk
, k = 1, . . . , n. (2.14)

The blocks of the 2nd and following hidden layers produce extended neurons -
composite terms (CT), which substitute for the composite function derivatives
in respect of the output and input variables of the back connected previous
layer blocks, e.g. the 1st block of the 3rd layer (Figure 4) can form linear CT
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Figure 4. Backward connections of the D-PNN 3rd layer 1st block (dashed lines).

with respect to 2nd (2.15) and 1st layer (2.16) derivative input variables. As the
couples of input variables of the internal functions Φ1(x1, x2) and Φ2(x3, x4)
(2.11) can differ from each other, the partial derivatives are calculated sepa-
rately in respect of each variable. This way the sums (2.12) consist of only 1
derivative term, which a single neuron represents again. The number of the
neurons in blocks, which form composite polynomials, doubles with each previ-
ous back-connected layer. A backward recursive algorithm can easy form and
calculate the CT from composite functions in the network tree-like structure.
The squared and combination derivative terms are calculated analogously ac-
cording to the composite function derivation rules however this study does not
apply the complete composed terms from the formulas [29].

y2 =
∂f(x21, x22)

∂x11
= w2

(a0 + a1x21 + a2x22 + a3x21x22 + a4x
2
21 + a5x

2
22)

1
2

1.5x22

× (x21)
1
2

1.5(b0 + b1x11)
, (2.15)

y3 =
∂f(x21, x22)

∂x1
= w3

(a0 + a1x21 + a2x22 + a3x21x22 + a4x
2
21 + a5x

2
22)

1
2

1.5x22

× (x21)
1
2

1.5x12

(x11)
1
2

1.5(b0 + b1x1)
. (2.16)

Only some of all the potential substitution derivative terms (neurons) may form
a DE solution, even though they have an adjustable term weight wi. A proper
neuron combination, which can substitute for a general DE solution, is not able
to accept a disturbing effect of the rest of the neurons (which may compose
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other solutions) in the parameter optimization. The D-PNN total output Y is

calculated as the arithmetic mean of all active neuron outputs Y = 1
k

∑k
i=1 yi,

so as to prevent a changeable number of selected active neurons (of a combi-
nation) from influencing its value. Here k is the number of active neurons (DE
terms). The selection of a fit neuron combination is the principal part of the
DE composition and may apply the binary particle swarm optimization in the
initial composing phase, rather than a standard genetic algorithm as the chain
lengths (number of neurons) may differ in each individual solution. Parameters
of polynomials are adjusted by means of the gradient steepest descent (GSD)
method, supplied with sufficient random mutations to prevent from trapping to
a local error minima [29]. The GSD parameter updates result from the partial
derivatives of the polynomial substitution DE terms with respect to the single
parameters ~a,~b [20] analogous to the standard neural network error calculation.

3 Evolutionary fuzzy rules

Fuzzy classification is an umbrella term for different methods capable of ef-
ficient soft classification of data. In contrast to its crisp counterpart, fuzzy
classification provides a more sensitive tools for data analysis [4]. Fuzzy deci-
sion trees and fuzzy if-then rules are prime examples of efficient, transparent,
and intelligible fuzzy classifiers and value estimators [4].

The need for interpretable and linguistically comprehensible classification
and regression tools is widely recognized [9,28]. It is also well-known that bio-
inspired and evolutionary methods possess the ability to learn and optimize
various types of fuzzy systems [9] and data mining models [2]. Evolutionary
fuzzy rules (FR) [16, 17] are simple yet powerful classification and regression
instruments based on the merger of fuzzy information retrieval (IR) and genetic
programming.

Fuzzy information retrieval uses extended Boolean queries that consist of
search terms, operators, and weights, and evaluates them against an internal
representation (index) of a collection of documents. It is based on the fuzzy set
theory and fuzzy logic that facilitate flexible and accurate search [21]. Evolu-
tionary fuzzy rules use similar basic concepts, data structures, and operations,
and apply them to general data processing tasks such as classification, predic-
tion, and so forth. Here, the concepts of information retrieval are employed
to interpret data and to define the classification or regression models. Sym-
bolic rules of such models are then evolved using genetic programming [1, 15],
a generic, problem-independent meta-heuristic machine learning algorithm.

The data processed by a fuzzy rule is a real valued matrix. Each row of
the matrix corresponds to a single data record interpreted as a fuzzy set of
features. Such a general, real valued matrix D with m rows (data records)
and n columns (data attributes, features) can be mapped to an IR index that
describes a collection of objects.

A fuzzy rule takes the form of a weighted symbolic expression roughly cor-
responding to an extended Boolean query in the fuzzy IR analogy. The rule
consists of weighted feature names and weighted aggregation operators. The
evaluation of such an expression assigns to each data record a real value from
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the range [0, 1]. Such valuation can be interpreted as an ordering, labeling, or
a fuzzy set induced on the data records.

The fuzzy rule is a symbolic expression that can be parsed into a tree
structure consisting of nodes and leafs. There are three types of leafs (a.k.a.
terminal nodes)

a) Feature node which represents the name of a feature (a search term in the IR
analogy). It specifies a requirement for a particular feature in the currently
processed data record.

b) Past feature node which defines a requirement on certain feature in a previ-
ous data record. The index of the previous data record (current - 1, current
- 2, etc.) is a parameter of the node.

c) Past output node which puts the requirement on a previous output of the
predictor. The index of the previous output (current - 1, current - 2, etc.)
is a parameter of the node.

A fuzzy rule can be expressed using a simple infix notation

feature1:0.5 and:0.4 (feature2[1]:0.3 or:0.1 ([1]:0.1 and:0.2 [2]:0.3)),

where feature1:0.5 is a feature node, feature2[1]:0.3 is a past feature node,
and [1]:0.5 is a past output node. Different node types can be used when
dealing with different data sets. For example, the past feature node and past
output node are useful for the analysis of time series and data sets where the
ordering of the records matters. But their usage is pointless for the analysis
of regular data sets. The feature node is the basic building block of classifiers
and predictors developed for arbitrary data. An example is given in Figure 5.

Figure 5. An example of a fuzzy rule.

The evaluation of a node, f:a, with value f ∈ [0, 1] and weight a ∈ [0, 1], is
performed using a threshold interpretation of the retrieval status value (RSV)
concept known from fuzzy information retrieval [5]

g(f, a) =

{
P (a)f/a, f < a,

P (a) +Q(a)(f − a)/(1− a), f ≥ a,

where P (a) = (1 + a)/2 and Q(a) = (1− a2)/4 are coefficients used to fine-tune
the threshold curve.

Math. Model. Anal., 22(1):78–94, 2017.
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Typical evolutionary fuzzy rules support and, or, not, prod, and sum oper-
ator nodes. However, more general or domain specific operators can be used as
well. Both nodes and leafs are weighted to soften the criteria they represent.
The operators and, or, not, prod, and sum are evaluated using fuzzy set oper-
ations. In this study, the standard t-norm and s-norm are used to implement
and and or operators, respectively

t(x, y) = min(x, y), s(x, y) = max(x, y),

operator not is evaluated using the standard fuzzy complement c(x) = 1 − x
and prod and sum operators, respectively, using the product t-norm and its
dual s-norm, bounded sum

tprod(x, y) = xy, ssum(x, y) = a+ b− ab.

However, other classes of complement, intersection, and union models [14, 19]
can be used as well.

A fuzzy rule is a simple version of a general fuzzy rule-based system that
consists of a single expression describing soft requirements on data records in
terms of their features. In evolutionary fuzzy rules, this expression is evolved us-
ing genetic programming [1]. The tree structures, corresponding to the parsed
fuzzy rules, are developed by an iterative application of crossover, mutation,
and selection operators in order to find an accurate model of the training data.

The general process of rule evolution is used for data-driven search for
custom classifiers or predictors. Different data sets may by characterized by
different properties and different hidden structure, and the adaptability of ge-
netic programming is essential for the evolution of problem-specific fuzzy rules.
On the other hand, the stochastic nature of genetic programming introduces
probabilistic elements into the process of rule evolution.

The evolutionary fuzzy rules, although machine-generated, retain the un-
derstandable structure and ease of interpretation inherited from the extended
Boolean search expressions, and allow a soft classification/regression without
the complexity and computational costs of full-featured fuzzy rule-based sys-
tems [16].

4 Real data experiments

The above two methods prediction models were verified on the database of
measured values (output active power, solar radiation) for PVP1 with mono-
crystalline technology and nominal power 1MWp. The volumes of electrical
energy produced by the PVP and values of the solar radiation in the same
location were recorded in 10 minute intervals between November 2010 and
April 2011. The complete data set for the evolutionary fuzzy rules application
was divided into two halves. The first part (i.e. for about 3 months) was used
as the training data and the second part as the testing set.

The D-PNN was trained in other way, updating its DE models per diem
(Figure 6). It was trained with time-series of last 1 up to 4 days to form the
following day power model, which is possible to test a day before the training
interval in real-time.
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Figure 6. The daily updated (D-PNN) and completely trained (Fuzzy-rules) models.

Figure 7. RMSE: Day 0. D-PNN = 0.00833, Fuzzy = 0.00987 - back-time check D-PNN
model computed from the Day 1. Day 3. D-PNN = 0.05433, Fuzzy = 0.09243.

Figure 7 shows this back-computed model of day 0, trained with the follow-
ing day 1. The average number of the applied derivative neurons (substitution
DE terms) in the total network sum output was around 60 and it can a few
vary as per a model solution.

Figure 8. 14-day PVP power average testing RMSE of normalized data D-PNN =
0.0212, Fuzzy = 0.0364.

Figure 8 shows the root mean squared error (RMSE), calculated on the
testing normalized data, in each of 14 modelled successive days. Both methods
managed to estimate the PVP active power quite well for some days and less
accurately for several other days (day 3. and day 10.).

Each Figure 7 – 10 show a day time-window with non-zero output power
(i.e. solar radiation). The average testing error is around 1-2% of a daily
output active power peak, which is a satisfactory result, considering that only
1-variable time-series of the solar radiation intensity were available. Both the
applied methods provide mostly similar results but the responses to some days
input patterns differ fairly as the computing paradigms do. However the D-
PNN models, based on the up-dated time ordinary DE solutions, appear any
better. The presented models applied only 3 input time-series of the solar
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Figure 9. RMSE: Day 5. D-PNN = 0.02837, Fuzzy = 0.05832. Day 7. D-PNN =
0.00650, Fuzzy = 0.014978.

irradiance to estimate the PVP active power, corresponding to the end-time
(3rd) variable.

Figure 10. RMSE: Day 9. D-PNN = 0.00450, Fuzzy = 0.03458. Day 10. D-PNN =
0.07857, Fuzzy = 0.14127.

The D-PNN (more successful method) was chosen to predict the daily PVP2
output power using 24-hour “Aladin” forecasts of the solar irradiance, which
accuracy primarily influences the power model estimations (Figure 11), tested
on real actual data only in the previous experiments.

Figure 11. 14-day average prediction RMSE of the PVP power: D-PNN = 134.98 and
solar irradiance: Aladin = 146.43 from 13.6.2011 to 26.6.2011 in Starojicska Lhota (Czech

rep.).

The short-term “Aladin” numerical forecast model refines the global French
ARPEGE model on a middle-scale target area using a more detailed time and
spatial resolution of the interpolation. The forecast model, calculated for fol-
lowing 48-hours at 0:00 CET in the nodal point 17.9132/49.5860 (the closed to
Starojicska Lhota, Czech rep.), can predict the direct and diffusion (together
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Figure 12. RMSE: Day 1. D-PNN = 99.09, Aladin = 115.91. Day 2. D-PNN =
137.21, Aladin = 190.99.

Figure 13. RMSE: Day 5. D-PNN = 162.16, Aladin = 151.87. Day 7. D-PNN =
170.82, Aladin = 180.41.

global) solar radiation, which sum enter the PVP2 power prediction models
using 2nd data set (Figure 12 – Figure 14). The D-PNN model, trained with
hourly averaged real time-series (in respect of hourly forecasts) of several previ-
ous days, applies the “Aladin” irradiance prognoses, which inaccuracies it may
partly compensate in some cases (Figure 13). An extended D-PNN model,
based on a partial DE solution, using weather surface observations of several
previous days (in several surrounding locations) combined with complete 24-
hour forecasts (of the relative humidity, static pressure, etc.), might improve
the daily solar irradiance and consequent PVP power predictions (Figure 12,
Day 2).

5 Discussion

The D-PNN models, based on ordinary differential equation solutions, proved
to provide more accurate PVP power estimations than the presented fuzzy rule
algorithm. The daily updated D-PNN model merits become evident in the real
24-hour PVP2 power prediction using global solar irradiance forecasts of the
numerical weather prediction model “Aladin”. D-PNN models are updated
with only some few last day time-series, thus the latest derivative changes
projected themselves into a DE solution, which utilizes less but up to date
data samples. Analogous daily trained recurrent neural network (RNN) models
provide very similar results [30]. On the other hand if the weather conditions
change suddenly, overnight from the training to testing day(s), the D-PNN
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Figure 14. RMSE: Day 9. D-PNN = 72.11, Aladin = 94.55. Day 10. D-PNN =
143.28, Aladin = 80.68.

model can also show itself out of truth enough (day 10. in Figure 10) however
these cases are less frequent. As a result if a sizable (fixed) testing error of
the D-PNN daily power estimations (in the last not trained day verification) is
exceeded, there should be applied the alternative fuzzy (or ANN) completely
trained prediction model, which results from much varied long-term training
conditions and accordingly comprises considerable features of far more data
samples.

6 Conclusions

The PVP1 power supplies are very unstable as a result of the applied technology
and dynamic changes in the solar radiation intensity, which influences also the
more stable PVP2 power generation. To eliminate the rapid power changes a
regulation system is used by the network operator to stable the operation. The
key is mainly to estimate the power generation from these sources for certain
short time (day ahead) future intervals. Two different types of the neuro and
fuzzy-computing methods were tested at the 14-day data period. The evolution
fuzzy rule algorithm applies genetic programming techniques with the principles
of fuzzy information retrieval. Its training data set included one half of the
complete data at disposal. D-PNN was trained only with time-series of several
last days, updating its DE model per diem. Its relative data computing allow
apply more varied training and testing data intervals of the daily time-series.
The presented fuzzy model needs apply a larger training data set to eliminate
this handicap, as the absolute data values may differ considerably from day to
day (day 9. and 10. in Figure 10). For this reason some days testing errors
may quite intensify (day 3. in Figure 7, day 7. in Figure 9 and day 9. in
Figure 10), which applies also for completely trained ANN power models [23].
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rections of data mining by evolutionary fuzzy rules and symbolic regres-
sion. Computers & Mathematics with Applications, 66(2):190–200, 2013.
https://doi.org/10.1016/j.camwa.2013.02.017.
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