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Abstract. This paper describes the construction of second derivative general linear
methods in Nordsieck form with stability properties determined by quadratic stabil-
ity functions. This is achieved by imposing the so–called inherent quadratic stability
conditions. After satisfying order and inherent quadratic stability conditions, the
remaining free parameters are used to find the methods with L–stable property. Ex-
amples of methods with p = q = s = r − 1 up to order four are given.
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1 Introduction

In the past 50 years, great efforts for obtaining the numerical solution of stiff
ordinary differential equations (ODEs) have been done. For stiff ODEs good
accuracy and some reasonably wide region of absolute stability, in the best
situation A–stability, are required. Among the linear multistep methods, back-
ward differentiation formulae (BDF) [24] are regularly used for the numerical
solution of stiff initial value problems. Many modifications of BDF were in-
troduced to improve the stability characteristics of BDF such as EBDF (ex-
tended BDF) [15], MEBDF (modified EBDF) [17], MF–MEBDF (Matrix free
MEBDF) [28], A–BDF method [23] and A–EBDF method [26]. On the other
hand, implicit Runge–Kutta (IRK) methods have a special role in the numer-
ical solution of stiff problems. Although there exist A–stable Runge–Kutta
methods of arbitrarily high order, but the implementation cost of full implicit
Runge–Kutta methods is high. So, many subclasses of IRK schemes, such
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as diagonally implicit Runge–Kutta (DIRK) and singly implicit Runge–Kutta
(SDIRK) schemes have been developed to reduce implementation cost. The
main restrictions of these methods are their relatively low order and suffering
from the order reduction phenomenon when applied to stiff ODEs.

General linear methods (GLMs) as a comprehensive extension of these tra-
ditional methods were introduced by Butcher in 1966 [7]. GLMs opened up the
possibility of obtaining essentially new methods which are neither these two
categories nor slight variations of these methods (see more [8, 9, 29]).

To construct methods with high orders and satisfactory stability properties,
methods were introduced where use second derivatives of the solution [16, 18,
21, 27]. Although GLMs include linear multistep methods, Runge–Kutta and
many other standard methods, but they don’t cover second derivative methods.
So, GLMs were extended to second derivative general linear methods (SGLMs)
by Butcher and Hojjati in [10] and studied more by Abdi and Hojjati [2, 3, 4].

The general form of SGLM for the numerical solution of initial value prob-
lem of the form

y′(x) = f(y(x)), f : Rm → Rm, x ∈ [x0, x],

y(x0) = y0,

where the function f is assumed to be sufficiently smooth and m is the dimen-
sionality of the system, is

Y [n] = h(A⊗ Im)f(Y [n]) + h2(A⊗ Im)g(Y [n]) + (U ⊗ Im)y[n−1], (1.1)

y[n] = h(B ⊗ Im)f(Y [n]) + h2(B ⊗ Im)g(Y [n]) + (V ⊗ Im)y[n−1],

where n = 1, 2, · · · , N, Nh = x − x0, h is the stepsize, ⊗ is the Kronecker
product of two matrices and Im stands for the identity matrix of dimension m.
Here, A, A ∈ Rs×s, U ∈ Rs×r, B, B ∈ Rr×s, and V ∈ Rr×r are six coefficients
matrices of the SGLM. Also, p and q are respectively order and stage order
of the method, r is the number of input and output approximations, and s is

the number of internal stages. The vector Y [n] = [Y
[n]
i ]si=1 is an approximation

of stage order q to the vector y(xn−1 + ch) = [y(xn−1 + cih)]si=1 with c =

[c1 c2 · · · cs]T as the abscissa vector, and the vectors f(Y [n]) = [f(Y
[n]
i )]si=1

and g(Y [n]) = [g(Y
[n]
i )]si=1 denote the first and second derivative stage values,

where g(·) = f ′(·)f(·). The vectors y[n−1] = [y
[n−1]
i ]ri=1 and y[n] = [y

[n]
i ]ri=1

stand as the input and output vectors at step number n, respectively. Con-
struction and the main features of SGLMs including pre-consistency, consis-
tency, stability and types of these methods have been discussed in [3, 10]. To
construct efficient SGLMs for stiff ODEs with lower implementation cost, we
will always assume that the coefficient matrices A and A have the form

A=


λ
a
2,1

λ
...

...
. . .

a
s−1,1

a
s−1,2

· · · λ
a
s,1

a
s,2

· · · a
s,s−1

λ

 , A=


µ
a
2,1

µ
...

...
. . .

a
s−1,1

a
s−1,2

· · · µ
as,1 as,2 · · · as,s−1 µ

 .
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Also, to ensure that the method (1.1) is zero–stable [3], here we will assume
that the coefficient matrix V has the form

V =


1 v

1,2
v
1,3

· · · v
1,r

0 0 v
2,3

· · · v
2,r

...
...

...
. . .

...
0 0 0 · · · v

r−1,r

0 0 0 · · · 0

 . (1.2)

The stability behavior of these methods is considered using the standard
linear test problem y′ = ξy [20], where ξ is a complex parameter with negative
real part. Applying method (1.1) to this test problem, the stability matrix is
achieved by

M(z) = V + (zB + z2B)(I − zA− z2A)−1U,

where z = ξh. The characteristic polynomial of M(z), as the stability function

p?(w, z) = det(wI −M(z))

is a polynomial of degree r with respect to w and its coefficients are rational
functions with respect to z. To investigate stability properties of the methods
corresponding to this function it is usually more convenient to work with the
polynomial obtained by multiplying stability function by its denominator, i.e.,

p(w, z) = (1− λz − µz2)s det(wI −M(z)).

The method is said to be absolutely stable in z if p(w, z) has roots of modulus
less than 1. The set of the points z such that the method is stable, is defined
as the region of absolute stability.
If the stability function has only one nonzero root, then the method is said to
possess Runge–Kutta stability (RKS) property. In [3] Abdi and Hojjati intro-
duced a subclass of SGLMs as SDIMSIMs (second derivative diagonally implicit
multistage integration methods) and constructed methods of this subclass with
RKS property. They obtained order barriers for some types of SGLMs which
have RKS property in [3, 4] and constructed SDIMSIMs of all types up to or-
der 4 in [2]. Also, the construction of Nordsieck SGLMs up to order four and
their implementation in a variable stepsize environment have been investigated
in [5]. It is desirable that SGLMs have RKS property, but it is complicated
task because it needs to solve large polynomial equations systems of high de-
gree, especially for the methods with a large r and s parameters. In [22], a
special case of SGLMs as A–A–V methods was introduced which made easier
to reach RKS property. Similar to what has been done in [8, 11, 12, 13, 33, 34]
for GLMs with inherent Runge–Kutta stability (IRKS), SGLMs with inherent
Runge–Kutta stability (SIRKS) were introduced in [32] in which the coefficients
matrices satisfy some relationships to ensure the methods have RKS property.

In [1], SGLMs of high order with s = 2 were investigated which have
quadratic stability (QS) property. In this paper, we are going to relax the
concept of SIRKS to the concept of inherent quadratic stability (IQS). This
property was first introduced in [19] for two–step Runge–Kutta (TSRK) meth-
ods and then presented for GLMs [6,14] which guarantees the stability function
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has only two nonzero roots. Using this approach, we solve fewer equations in
comparison with methods based on SIRKS, which makes construction to be
easier and gains some additional free parameters. We use these parameters
in order to construct methods with ‘nice’ coefficient, L–stability property and
reasonably small error constant.

The rest of the paper is organized as follows. In Section 2, the order and
stage order conditions for the Nordsieck SGLMs are represented and some suf-
ficient conditions are obtained which guarantee quadratic stability property. In
Section 3, practical construction of the methods with IQS property is discussed.
Finally, some numerical experiments of the constructed methods are given in
Section 4 to verify the theoretical results.

2 SGLMs with IQS property

In this section, we first recall the order and stage order conditions for the
Nordsieck SGLMs. Then, we present interrelations between the matrices which
ensure that SGLMs have QS property.

2.1 Order and stage order conditions

To formulate order and stage order conditions SGLMs in Nordsieck form in the
case p = q = s = r − 1, we assume that the components of the input vector,
for the next step, satisfy

y
[n−1]
i = hi−1y(i−1)(xn−1) +O(hp+1), i = 1, 2, . . . , r.

The method (1.1) in the Nordsieck form has stage order q and order p if the
components of the internal stages and the output vector satisfy

Y
[n]
i = y(xn−1 + cih) +O(hq+1), i = 1, 2, . . . , s,

y
[n]
i = hi−1y(i−1)(xn) +O(hp+1), i = 1, 2, ..., r.

Order and stage order conditions are derived in the following theorem.

Theorem 1. [10] An SGLM in Nordsieck form has order p and stage order
q = p if and only if

exp(cz) = zA exp(cz) + z2A exp(cz) + UZ +O(zp+1), (2.1)

exp(z)Z = zB exp(cz) + z2B exp(cz) + V Z +O(zp+1), (2.2)

where Z is the p+ 1 dimensional vector with component number i equal to zi−1

and exp(cz) is the component-by-component exponential of cz.

An equivalent condition for order p and stage order q = p is that U and V
are related to A, A, B and B by

U = Cp −ACpKp −ACpK
2
p , (2.3)

V = Ep −BCpKp −BCpK
2
p , (2.4)

Math. Model. Anal., 22(1):60–77, 2017.
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where Cp is the scaled Vandermonde matrix Cp = [1 c c2

2! · · ·
cp−1

(p−1)!
cp

p! ],

Kp ∈ R(p+1)×(p+1) is the shifting matrix defined by Kp = [0 e1 · · · ep] with
ej as the jth unit vector and

Ep = exp(Kp) =



1 1 1
2! · · · 1

p!

0 1 1 · · · 1
(p−1)!

0 0 1 · · · 1
(p−2)!

...
...

...
. . .

...
0 0 0 · · · 1

 .

The relation (2.4) can be inverted in order to express the matrix B in terms
of V , B and c. Let us partition the matrix CpKp and CpK

2
p as follows

CpKp =

[
0 1 c · · · cp−1

(p− 1)!

]
= [0 | Cp−1] ,

CpK
2
p =

[
0 0 1 c · · · cp−2

(p− 2)!

]
=
[
0 | C̃

]
Ep =

[
e1 | Ẽ

]
, V =

[
e1 | Ṽ

]
.

Now, assuming that the components of vector c are distinct, we can write the
relation (2.4) as

B = (Ẽ − Ṽ −BC̃)C−1p−1. (2.5)

2.2 Criteria for IQS

After satisfying the order and stage order conditions, relations (2.3) and (2.5),
the stability function of (1.1) takes the form

p(w, z) = (1− λz − µz2)swr − pr−1(z)wr−1 + · · ·+ (−1)rp0(z),

where pi(z), i = 0, 1, ..., r− 1 are the polynomials of degree 2s with coefficients
that depend on elements of A, A, B, V and c. We will try to construct the
SGLMs with the stability function to be

p(w, z) = wr−2((1− λz − µz2)sw2 − p̂1(z)w + p̂0(z)
)

(2.6)

with a root w = 0 of multiplicity r−2 and a quadratic polynomial. To do this,
a direct idea is to compute the stability function and solve system of nonlinear
equations pj(z) = 0, j = 0, 1, ..., r−3. But, in general, it is a very complicated
task, especially for methods with large number of stages s and r. However, it
is possible to find interrelations between the coefficients matrices which will
guarantee this property.

To investigate the Nordsieck methods with IQS, we first introduce equiv-
alence relation between matrices of the same dimensions. We say that two
matrices D and E are equivalent, denoted by “D ≡ E”, if they are equal
except for the first two rows.
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Definition 1. A Nordsieck SGLM with p = q = s = r − 1 and coefficients
matrices A, A, B, B, U , and V defined by (1.2) has IQS property if there
exists a matrix X ∈ R(s+1)×(s+1) such that

BA ≡ XB, BA+B ≡ XB, (2.7)

B U ≡ X V − V X. (2.8)

We have the following result.

Theorem 2. Assume that the SGLM (1.1) with p = q = s = r − 1 has IQS
property and that the matrices Is − zA− z2A and Is+1 − zX are nonsingular.
Then its stability function takes the form (2.6).

Proof. The relations (2.7) are equivalent to

B
(
I − z A− z2A

)
≡
(
I − z X

)(
B + z B

)
,

which by non-singularity of the matrix I − z A− z2A, it follows that

B ≡
(
I − z X

)(
B + z B

)(
I − z A− z2A

)−1
. (2.9)

For investigating characteristic polynomial of the stability matrix M(z), we
consider the matrix related to M(z) by similarity transformation. Using (2.8)
and (2.9), and assuming that I − zX is nonsingular, it follows that(
I − z X

)
M(z)

(
I − z X

)−1
=
(
V − z X V + z

(
I − z X

)(
B + z B

)(
I − z A− z2A

)−1
U
)(
I − z X

)−1
≡
(
V − z X V + z B U

)(
I − z X

)−1
≡
(
V − z V X

)(
I − z X

)−1
= V,

or

(
I − z X

)
M(z)

(
I − z X

)−1
=



M1,1(z) M1,2(z)

0 0 0 v3,4 v3,5 · · · v3,r
0 0 0 0 v4,5 · · · v4,r
...

...
...

...
...

. . .
...

0 0 0 0 0 · · · vr−1,r
0 0 0 0 0 . . . 0


,

where M1,1(z) is a 2× 2 matrix and M1,2(z) is a 2× (s− 1) matrix. Thus, the
matrix M(z) has only two non-zero eigenvalues. This completes the proof. ut

The next theorem investigates the structure of the matrix X appearing in the
IQS conditions.

Math. Model. Anal., 22(1):60–77, 2017.
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Theorem 3. For an SGLM with p = q = s = r−1, the general form of matrix
X satisfying IQS conditions is

X =



x1,1 x1,2 x1,3 · · · x1,r−1 x1,r
x2,1 x2,2 x2,3 · · · x2,r−1 x2,r

0 1 0 · · · 0 x3,r
0 0 1 · · · 0 x4,r
...

...
...

. . .
...

...
0 0 0 · · · 1 xr,r


.

Proof. Multiply both sides of the relation (2.1) by zB and (2.2) by I − zX,
and by adding the resulting equations, we get

exp(z)
(
I − z X

)
Z = z

(
B U −X V

)
Z + z2

(
BA−X B +B

)
exp(cz)

+ z3
(
BA−X B

)
exp(cz) + V Z +O(zp+1).

From the IQS conditions, it follows that(
exp(z)I − V

)(
I − zX

)
Z ≡ O(zp+1). (2.10)

Let us partition the matrix V and the vector D(z) :=
(
I − z X

)
Z as follows

V =

[
V1,1 V1,2

0 V2,2

]
, D(z) =

[
D1(z)

D2(z)

]
,

where

V1,1 =

[
1 v1,2
0 0

]
, V1,2 =

[
v1,3 · · · v1,r
v2,3 · · · v2,r

]
,

where 0 stands for the zero matrix of dimension (r−2)×2, D1(z) contains the
first two elements of D(z) and D2(z) contains the rest of its elements. From
(2.10) it follows that

(
exp(z)I − V

)
D(z) =

[ (
exp(z)I2 − V1,1

)
D1(z)− V1,2D2(z)(

exp(z)Ir−2 − V2,2
)
D2(z)

]
≡ O(zp+1).

Since the matrix exp(z)Ir−2−V2,2 is invertible, thus we can consider the matrix
V defined by

V =

[
I2 0

0
(

exp(z)Ir−2 − V2,2
)−1

]
.

We have

V
(

exp(z)I − V
)
D(z) =

[ (
exp(z)I2 − V1,1

)
D1(z)− V1,2D2(z)

D2(z)

]
≡ O(zp+1)
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and it follows that
D(z) =

(
I − zX

)
Z ≡ O(zp+1).

Since zJZ ≡ Z, where J is transpose of matrix Kp, we have

z(J −X)Z ≡ O(zp+1),

which is equivalent to the relation (J −X)Z ≡ O(zp). Therefore X − J must
be zero except for the first two rows and the last column. This concludes the
proof. ut

3 Construction of IQS methods

In this section, we are going to construct L–stable SGLMs with IQS property.
After applying the order conditions, relations (2.3) and (2.5), and applying IQS
conditions, a number of parameters remain as the free parameters. We choose
the remaining free parameters to construct L–stable methods (if the methods
are A–stable) with nice coefficients and reasonably small error constant.

To control the error constant, we use the characteristic of the stability
function p(w, z), i.e.,

p(exp(z), z) = Cp+1z
p+1 +O(zp+2),

where Cp+1 is the error constant of the method of order p. Assuming A–
stability, we search for the related subset of L–stable methods by solving the
nonlinear system

lim
z→∞

p̂0(z)

(1− λz − µz2)s
= 0, lim

z→∞

p̂1(z)

(1− λz − µz2)s
= 0.

The boundary locus method [30] enables us to make a search among the re-
maining free parameters corresponding to A–stable (and so L–stable) methods.

3.1 Methods with p=s=1

In this subsection, we construct Nordsieck SGLMs with p = q = s = r − 1 = 1
and IQS property. We set abscissa c = 1, C2 = −10−5 as the error constant
of the method and use relations (2.3) and (2.5) for satisfying order condition.
After applying order and stage order, error constant and L–stability conditions,
the stability function takes the form

p(w, z) = (1− λz − µz2)w2 − p̂1(z)w + p̂0(z),

where

p̂1(z) =
150001

100000
z − 2zλ− zµ+ 1, p̂0(z) =

50001

100000
z − zµ− zλ.

Now, we search among the free parameters that guarantee the L–stability prop-
erty of the method. Using the boundary locus method, we find pairs of (λ, µ)
values in domain [0, 2]× [−2, 0] giving L–stability of method in Figure 1.

Math. Model. Anal., 22(1):60–77, 2017.
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Figure 1. L-stable choices of (λ,µ) for the methods with p = s = 1.

We select a single example characterized by λ = 3
4 and µ = − 1

5 . The
coefficients of the corresponding method are

A =
3

4
, A = −1

5
, U =

[
1 1

4

]
,

B =

[
70001
100000

1

]
, B =

[
− 1

5

0

]
, V =

[
1 29999

100000

0 0

]
.

3.2 Methods with p=s=2

In this subsection, we construct Nordsieck SGLMs with p = q = s = r − 1 = 2
and IQS property. We set the abscissa vector c = [ 12 1]T and the error constant
C3 = −10−5. Applying the order and stage order, IQS, error constant and L–
stability conditions, we obtain a 4-parameter family of the methods depending
on v12, v23, λ and µ.

Figure 2. L-stable choices of (λ,µ) for the methods with p = s = 2.

Setting v12 = v23 = −0.01, we search for the free parameters λ and µ
to find L–stable methods. We have plotted pairs of (λ, µ) values in domain
[0, 2] × [−2, 0] giving L–stability in Figure 2. An example of such a method
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corresponding to λ = 3
5 and µ = − 1

5 is

A =

[
3
5 0

1
2

3
5

]
, A =

[
− 1

5 0

− 9
50 − 1

5

]
,

B =


6069751
9165000

3186899
9165000

7
10

3
10

2 −2

 , B =


− 20729347

91650000
445319

18330000

− 1
25

2
5

1
2

3
2

 ,

U =

[
1 − 1

10
1
40

1 − 1
10

3
100

]
, V =


1 − 1

100
2110007
91650000

0 0 − 1
100

0 0 0

 .

3.3 Methods with p=s=3

In this subsection, we construct Nordsieck L–stable SGLMs with p = q = s =
r−1 = 3, the abscissa vector c = [ 12

3
4 1]T , the error constant C4 = −10−5 and

IQS property. We obtain a 9-parameter family of methods which by setting
a21 = b̄12 = b̄13 = v13 = 0, ā21 = −0.001, ā32 = −0.01 and v12 = 1/2, we search
for the parameters λ and µ to find L–stable methods. For such methods, the
pairs of (λ, µ) values in domain [0, 2]× [−2, 0] giving L–stability are shown in
Figure 3.

Figure 3. L-stable choices of (λ,µ) for the methods with p = s = 3.

The coefficients matrices of a single example of these methods are as follows

A =


1
2 0 0

0 1
2 0

7853
36000 − 1853

36000
1
2

 , A =


− 2

25 0 0

− 1
1000 − 2

25 0

41
4800 − 1

100 − 2
25

 ,

Math. Model. Anal., 22(1):60–77, 2017.
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B=


− 2557241

1800000
2269241
900000 − 1081241

1800000

13853
6000 − 25853

6000 3

2 −8 6
0 0 0

 , B =


− 2

25 0 0

− 709
12000

31
75 − 71

200

0 0 0
2 −8 6

 ,

U =


1 0 − 9

200 − 1
600

1 1
4 − 51

4000 − 157
16000

1 1
3

1583
144000 − 2971

230400

 , V =


1 1

2 0 − 706759
28800000

0 0 1871
24000 − 141

64000

0 0 0 0
0 0 0 0

 .

3.4 Methods with p=s=4

In this subsection, we construct Nordsieck L–stable SGLMs with p = q = s =
r− 1 = 4, the abscissa vector c = [ 14

1
2

3
4 1]T , the error constant C5 = −10−5

and IQS property. We obtain a 13-parameter family of methods which by
setting a41 = a42 = ā31 = ā32 = ā41 = ā43 = 0, b̄12 = −0.003, b̄13 = 0.002,
b̄14 = −0.01, v12 = −0.001 and v13 = −0.0031, we search for the parameters λ
and µ to find L-stable methods. For such methods, the pairs of (λ, µ) values
in domain [0, 2]× [−2, 0] giving L–stable methods are shown in Figure 4.

Figure 4. L-stable choices of (λ,µ) for the methods with p = s = 4.

We select a single example characterized by (λ, µ) = ( 3
5 ,−

9
50 ) which the

coefficients of this method are

A =


3
5 0 0 0

797
3750

3
5 0 0

1594
9375 0 3

5 0

0 0 0 3
5

 , A =


− 9

50 0 0 0

27
20000 − 9

50 0 0

0 0 − 9
50 0

0 571
20000 0 − 9

50

 ,
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B=



b11 b12 b13 b14

− 27827
7500

30188
1875 − 1139

60
1139
150

− 48
5

192
5 −48 96

5

−16 64 −80 32

0 0 0 0


, B=



b11 − 3
1000

1
500 − 1

100

5562
3125 − 19887

3125
216
25 − 432

125

15373
7500 − 13012

1875
589
60 − 589

150

0 0 0 0

−16 64 −80 32


,

b11 = −222395963693189827

192173264640000000
, b12 =

262179058144271809

75496639680000000
,

b13 = −4272347069016171653

2113905911040000000
, b14 =

248951476425448183

352317651840000000
,

b11 = − 641548411

5184000000
,

U =


1 − 7

20
49
800

277
9600

649
153600

1 − 586
1875 − 2969

60000
277
9600

69169
5760000

1 − 751
37500 − 9377

300000
37499

1200000
1219871
57600000

1 2
5

1029
20000

3887
120000

13487
480000

 ,

V =



1 − 1
1000 − 31

10000
838778628744701039

33822494576640000000
36187770783965093

6764498915328000000

0 0 − 49
625 − 84739

600000 − 15607
300000

0 0 0 − 49
625 − 11303

120000

0 0 0 0 0

0 0 0 0 0


.

4 Numerical experiments

In this section, we present some results of numerical experiments to show effi-
ciency of the constructed methods in Section 3.

At first, in order to validate the order of proposed methods, we consider the
following problem:

Problem 1. The non-linear stiff system of ODEs{
y′1 = −10004y1 + 10000y42 , y1(0) = 1,

y′2 = y1 − y2(1 + y32), y2(0) = 1,

whose exact solution is [y1(x), y2(x)]T = [exp(−4x), exp(−x)]T and
x ∈ [0, 1].

We apply the methods of orders p = 1, 2, 3, 4 with the fixed stepsizes h = 1/2k

for different integer values of k on Problem 1. In Table 1 and Table 2, we have
listed the Euclidean norms of errors ‖eh(x)‖ at the endpoint of the integration
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and the observed order of convergence p computed by

p =
log(‖eh(x)‖/‖eh/2(x)‖)

log(2)
,

where ‖eh(x)‖ and ‖eh/2(x̄)‖ are the errors corresponding to stepsizes h and
h/2.

Table 1. Numerical results for IQS methods of orders p = 1 and p = 2 applied to Problem
1.

method of order p = 1 method of order p = 2

k ‖eh(x)‖ p ‖eh(x)‖ p

4 2.24× 10−6 3.87× 10−7

5 1.19× 10−6 0.91 9.76× 10−8 1.99

6 6.10× 10−7 0.96 2.45× 10−8 1.99

7 3.10× 10−7 0.98 6.16× 10−9 1.99

8 1.56× 10−7 0.99 1.55× 10−9 1.99

Table 2. Numerical results for IQS methods of orders p = 3 and p = 4 applied to Problem
1.

method of order p = 3 method of order p = 4

k ‖eh(x̄)‖ p ‖eh(x̄)‖ p

4 1.25× 10−7 6.44× 10−8

5 1.62× 10−8 2.95 4.00× 10−9 4.01

6 2.08× 10−9 2.97 2.49× 10−10 4.01

7 2.67× 10−10 2.96 1.54× 10−11 4.01

8 3.45× 10−11 2.95 9.34× 10−13 4.04

Also in Figure 5 we have plotted log(‖eh(x)‖) versus log(h) and linear func-
tions in terms of log(h) with a slope of p for methods of orders p = 1, 2, 3, 4.
These numerical results confirm the theoretical order of convergence. Now in
a similar way to the introduced strategy in [5], we are going to verify the capa-
bility and efficiency of the constructed method of order 4 in a variable stepsize
environment.

The Nordsieck methods (1.1) in the variable stepsize mode takes the form

Y [n]=hn(A⊗Im)f(Y [n])+h2n(A⊗Im)g(Y [n])+(UD(δn)⊗ Im)y[n−1], (4.1)

y[n]=hn(B ⊗ Im)f(Y [n]) + h2n(B ⊗ Im)g(Y [n]) + (V D(δn)⊗ Im)y[n−1],
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Figure 5. Numerical results for the SGLMs of order p = 1, 2, 3, 4.

for n = 1, 2, . . . , N , where hn = xn − xn−1. Here Y [n] is an approximation of
stage order q = p to the vector y(xn−1 + chn) = [y(xn−1 + cihn)]si=1, y[n] is
an approximation of order p to the Nordsieck vector [hi−1n y(i−1)(xn)]ri=1, and
D(δn) is the diagonal rescaling matrix defined by

D(δn) :=
(
1, δn, δ

2
n, . . . , δ

p
n

)
, δn = hn/hn−1.

The zero-stability properties of the methods determine by the eigenvalues of the
matrix V D(δn). Since the matrix V D(δn) for all δn, has a simple eigenvalue
equal to 1 and eigenvalue zero of multiplicity p, it follows that the methods
(4.1) are zero-stable for any variable stepsize pattern.

To determine the accuracy of the calculations and to achieve a suitable
choice of stepsize for the next step, we must approximate the local truncation
error. For this purpose, we approximate the principal local truncation error.
So, est(xn) ≈ Cp+1h

p+1y(p+1)(xn), can be calculated as an approximation to
the local truncation error.

For the method of order 4, we use the linear combination of the form

est(xn) = Cp+1

( s∑
i=1

γpih
2g(Y

[n]
i )

)
,

where γ41 = −64, γ42 = 192, γ43 = −192, γ44 = 64.
To control the stepsize in the advancing from the step n to the step n+ 1,

we use the following control

est(xn) ≤ Rtol ·max{‖yn‖, ‖yn+1‖}+Atol, (4.2)

where Atol and Rtol are given the absolute and relative tolerances. If the con-
trol (4.2) is not satisfied, the current step is repeated with the halved stepsize.
Otherwise, the current step is accepted and the new stepsize is chosen according
to the standard step control strategy as the following

hn+1 = min
{
∆,
( ρ · tol
‖est(xn)‖

) 1
p+1
}
hn.

In our numerical experiments, we have used Atol = Rtol = tol, ρ = 0.95 and
∆ = 2.

We consider the following test problems:

Math. Model. Anal., 22(1):60–77, 2017.
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Problem 2. (Chemical Akzo Nobel problem) The non-linear stiff system
of ODEs [31] 

y′1 = −2r1 + r2 − r3 − r4,

y′2 = − 1
2r1 − r4 −

1
2r5 + Fin,

y′3 = r1 − r2 + r3,

y′4 = −r2 + r3 − 2r4,

y′5 = r2 − r3 + r5,

y′6 = −r5,

with y(0) = [0.437, 0.00123, 0, 0, 0, 0.367]T and x ∈ [0, 180], where the ri
and Fin are auxiliary variables, given by

r1 = k1 y
4
1 y

1
2
2 , r2 = k2 y3 y4, r3 = k2

K y1 y5,

r4 = k3 y1 y
2
4 , r5 = k4 y

2
6 y

1
2
2 , Fin = klA

(
p(CO2)

H − y2
)
.

The values of the parameters k1, k2, k3, k4,K, klA, p(CO2) and H are

k1 = 18.7, k2 = 0.58, k3 = 0.09, k4 = 0.42,

K = 34.4, klA = 3.3, p(CO2) = 0.9, H = 737.

Problem 3. (Hires problem) The chemical reaction involving eight re-
actants was proposed [25]

y′1 = −1.71y1 + 0.43y2 + 8.32y3 + 0.0007,

y′2 = 1.71y1 − 8.75y2,

y′3 = −10.03y3 + 0.43y4 + 0.035y5,

y′4 = 8.32y2 + 1.71y3 − 1.12y4,

y′5 = −1.745y5 + 0.43y6 + 0.43y7,

y′6 = −280y6y8 + 0.69y4 + 1.71y5 − 0.43y6 + 0.69y7,

y′7 = 280y6y8 − 1.81y7,

y′8 = −y′7,

with the initial values y(0) = [1, 0, 0, 0, 0, 0, 0, 0.0057]T , x ∈ [0, 321.8122].

Using the mentioned strategies, we have implemented the SGLM with IQS
property of order 4, constructed in Subsection 3.4, in variable stepsize environ-
ment for solving Problems 2 and 3. To compare, we also present the results
of numerical experiments of the L–stable Nordsieck GLM of order p = 4 given
in [6] with the abscissa vector c = [ 14

1
2

3
4 1]T . In Table 3 and Table 4, we

have reported ns as the number of steps, nrs as the number of rejected steps,
nJe as the number of Jacobian evaluations and ge as the global error at the
end of the interval of integration for different given tolerances, tol.

The numerical results confirm the capability of the proposed methods to
solve stiff problems.
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Table 3. Numerical results for Problem 2 solved by the method of order 4 with h0 = 10−3.

tol Method ns nrs nfe nJe ge

10−4 SGLM 47 12 670 438 6.17× 10−5

GLM 68 2 753 427 2.39× 10−3

10−6 SGLM 24 1 286 190 1.34× 10−6

GLM 158 2 1272 636 6.89× 10−5

10−8 SGLM 34 3 325 181 2.14× 10−6

GLM 455 2 3648 1824 3.69× 10−6

10−10 SGLM 64 4 536 268 1.42× 10−9

GLM 1402 1 11216 5608 6.59× 10−8

Table 4. Numerical results for Problem 3 solved by the method of order 4 with h0 = 10−3.

tol Method ns nrs nfe nJe ge

10−4 SGLM 24 3 472 368 2.88× 10−5

GLM 141 12 1844 1236 2.54× 10−3

10−6 SGLM 35 5 723 567 2.90× 10−6

GLM 372 2 3295 1803 8.29× 10−5

10−8 SGLM 68 16 1050 718 6.09× 10−8

GLM 1139 1 9147 4591 6.06× 10−6

10−10 SGLM 142 17 1492 860 2.43× 10−9

GLM 3576 2 28652 14344 8.63× 10−8

5 Conclusions

Construction of SGLMs with quadratic stability property is desirable. To
achieve this aim, we need to solve a large number of nonlinear equations. To
remedy this situation, SGLMs with inherent quadratic stability (IQS) property
is interesting. In this paper, we introduced SGLMs with IQS property, by find-
ing some sufficient conditions on the coefficients matrices of the methods. Some
L–stable IQS methods up to order 4 were constructed and confirmed by some
numerical results. There are some lines of development that can be followed.
One of them can be the construction of high-order implicit SGLMs with IQS
property. It is our plan for future work.
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