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1 Introduction

The Dirichlet problem on the bounded interval for

(ϕ(t, x, x′))′ = f(t, x, x′), t ∈ I = [a, b],

x(a) = A, x(b) = B,

is well studied [1,2,5,10]. The method of lower and upper functions is often used
for proving the existence of a solution of this problem [13]. Let α and β be a
lower and an upper functions. Then under additional conditions of the Nagumo
or Schrader type one can prove the existence of a solution x of the Dirichlet
problem satisfying the estimates α ≤ x ≤ β. In [11] it is proved that there
exists a generalized solution of the Dirichlet problem provided that there only
exist lower and upper functions. A generalized solution has good properties.
The set of generalized solutions of the ϕ-Laplacian between a lower and an
upper function is compact (in the sense of [13]) and has the minimum and
maximum generalized solutions, and the Dirichlet problem is solvable without
additional conditions of the Nagumo or Schrader type [18]. The derivative
of a generalized solution for the ϕ-Laplacian can be equal to +∞ and −∞.
But if we have the additional conditions of the Nagumo or Schrader type then
a generalized solution is a solution (in the sense of Def. 1). A historical
survey of the basic information on the theory of the ϕ-Laplacian can be found
in [1, 2, 3, 4, 5, 6, 10,15].
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2 Results

Consider the boundary value problem

(ϕ(t, x, x′))′ = f(t, x, x′), t ∈ I = [a,+∞), (2.1)

x(a) = A ∈ [α(a), β(a)], α ≤ x ≤ β, (2.2)

where a ∈ R, α is a lower function, β is an upper function and their definitions
will be given later.

Let for each compact interval J = [a, b], b ∈ (a,+∞) and for all x, x′ ∈ R
it will be ϕJ(t, x, x′) = ϕ(t, x, x′), fJ(t, x, x′) = f(t, x, x′). Let us assume
that for all (t, x, x′) ∈ J ×R×R and for each compact interval J the function
ϕJ : J × R2 → R satisfies the conditions: ϕJ ∈ C(J × R2, R) and for fixed t
and x is strictly increasing on x′. The function fJ : J × R2 → R satisfies the
Caratheodory conditions: the function fJ(t, ·, ·) is measurable on J for fixed
x, x′ ∈ R, the function fJ(·, x, x′) is continuous on R2 for fixed t ∈ J and for
each compact set P ⊂ R2 there exists a function g ∈ L(J,R) such that the
inequality |fJ(t, x, x′)| ≤ g(t) holds for all (t, x, x′) ∈ J × P.

Definition 1. The function x ∈ C1(I,R) is a solution of the equation (2.1),
if the function ϕJ(t, x(t), x′(t)) is absolute continuous and the equation (2.1)
fulfils almost everywhere for each J. The set of solutions of the boundary value
problem (2.1)–(2.2) will be denoted by S.

To prove the main theorem, we need the definitions, presented below, of
generalized upper and lower functions and a generalized solution as well as
Theorem 1 (see [11]– [14]).

Definition 2. The class BB+(I,R) consists of functions α : I → R satisfying
the following conditions: for each t ∈ (a, b], there exists a left derivative α′l(t)
and a limit lim

τ→t−
α′l(τ), and moreover α′l(t) ≥ lim

τ→t−
α′l(τ); for each t ∈ [a, b);

there exists a right derivative α′r(t) and a limit lim
τ→t+

α′r(τ), and moreover,

α′r(t) ≤ lim
τ→t+

α′r(τ), and α′l(t) ≤ α′r(t) for each t ∈ (a, b).

The class BB−(I,R) consists of functions β : I → R satisfying the following
conditions: for each t ∈ (a, b] there exists a left derivative β′l(t) and a limit
lim
τ→t−

β′l(τ), and moreover β′l(t) ≤ lim
τ→t−

β′l(τ); for each t ∈ [a, b); there exists a

right derivative β′r(t) and a limit lim
τ→t+

β′r(τ), and moreover, β′r(t) ≥ lim
τ→t+

β′r(τ),

and β′l(t) ≥ β′r(t) for each t ∈ (a, b).

Definition 3. We say that a bounded function α ∈ BB+(I,R) is a generalized
lower function and write α ∈ AG(I,R) if, for any interval [c, d] ⊂ I on which
α satisfies the Lipschitz condition, the inequality

ϕ(t2, α(t2), α′(t2))− ϕ(t1, α(t1), α′(t1)) ≥
∫ t2

t1

f(s, α(s), α′(s)) ds

holds for arbitrary points t1 ∈ (c, d) and t2 ∈ (t1, d) at which the derivative
exists.
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We say that a bounded function β ∈ BB−(I,R) is a generalized upper
function and write β ∈ BG(I,R) if, for any interval [c, d] ⊂ I on which β
satisfies the Lipschitz condition, the inequality

ϕ(t2, β(t2), β′(t2))− ϕ(t1, β(t1), β′(t1)) ≤
∫ t2

t1

f(s, β(s), β′(s)) ds

holds for arbitrary points t1 ∈ (c, d) and t2 ∈ (t1, d) at which the derivative
exists.

A function x : I → R is called a generalized solution if x ∈ AG(I,R) ∩
BG(I,R). A set of generalized solutions will be denoted SG(I,R).

At each point, a generalized solution has a derivative x′ which may be equal
to −∞ or +∞ and is continuous on [−∞,+∞]. If a derivative x′ does not take
the values −∞ and +∞ on some interval, then x is a solution on that interval.

The following assertion was proved in [17].

Theorem 1. Let α ∈ AG(J,R), β ∈ BG(J,R) and α ≤ β. Then there exists
a generalized solution of Dirichle’s problem

(ϕ(t, x, x′))′ = f(t, x, x′), x(a) = A, x(b) = B, α ≤ x ≤ β (2.3)

for all A ∈ [α(a), β(a)] and B ∈ [α(b), β(b)].

For solvability of the boundary value problem (2.1)–(2.2) some conditions
on α and β and additional compactness conditions are needed. The Nagumo
condition [16] for ϕ-Laplacian and the Schrader’s condition [18] are the suffi-
cient conditions of compactness. We use the following compactness condition.

Definition 4. We shall say that the conditions of compactness are fulfilled on
interval J if for every A ∈ [α(a), β(a)] and B ∈ [α(b), β(b)] any generalized
solution of the Dirichlet’s problem (2.3) is a solution.

It is clear that this condition is weaker then the Schrader’s condition. If a
generalized solution has not infinite derivatives then it is usual solution. The
conditions by Nagumo and Schrader forbid solutions with infinite derivatives.
The above condition of compactness allows to improve the Schrader condition
(for details one can consult the work [12]). If the Nagumo function can be found
then a solution of boundary value problem cannot have infinite derivatives. The
Schrader condition simply forbid infinite derivatives. Which condition to use
depends on a problem to be studied.

Remark 1. The Dirichlet’s problem (2.3) has a solution if α ∈ AG(J,R), β ∈
BG(J,R), α ≤ β and the conditions of compactness are fulfilled.

Theorem 2. The boundary value problem (2.1)–(2.2) has a generalized solu-
tion if α ∈ AG(I,R) and β ∈ BG(I,R).

Proof. Suppose a sequence bi ∈ (a,+∞), i = 1, 2, ... is increasing and tends
to +∞, Bi ∈ [α(bi), β(bi)] and xi is a generalized solution of the Dirichlet’s
problem

(ϕ(t, x, x′))′ = f(t, x, x′), x(a) = A, x(bi) = Bi,
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such that α(t) ≤ x(t) ≤ β(t), t ∈ [a, bi].
Without loss of generality we can assume that the sequence xi converges in

all rational points to a function x lying between α and β. Note that without
loss of generality for any compact interval J from boundedness of x and from
the Lagrange’s formula follows that we can found the interval [c, d] ⊂ J, for
which

sup{| x′i(t) |: i ∈ {1, 2, ...}, t ∈ [c, d]} < +∞.

It is evident that x satisfies the Lipschitz’s condition on [c, d]. Consequently,
we may redefine x up to continuity on the whole interval [c, d]. Thus redefined
function x will satisfy the Lipschitz’s condition. The sequence xi(t) converges
to x(t) for all t ∈ [c, d]. It follows from the Lipschitz’s condition.

It is evident that the derivatives x′i(t) converge to the derivatives x′(t)
for all t ∈ [c, d]. Consequently, x(t) is a solution of the equation (2.1) on an
interval [c, d]. Continuing construction of the function x(t) to the right and
to the left, we obtain the existence of a solution of the equation (2.1) on the
maximal interval (c1, d1) or [a, d1). If c1 > a, then lim

t→c1+
x′(t) equals −∞ or

+∞. Similarly, if d1 < +∞, then lim
t→d1−

x′(t) equals −∞ or +∞. Continuing

this construction, we will find an open in I the set J1, where the function x(t)
is defined such that x(t) is a solution of the equation (2.1) on subintervals of
J1.

The set J2 = I \ J1 is closed and nowhere dense. For t ∈ J2 the limit
lim
i→∞

x′i(t) equals −∞ or +∞. Indeed, supposing the contrary and arguing as

above we have that t ∈ J1. Let us define x(t) on irrational points of J2. If
τ ∈ J2 \ {a} then x(τ) = lim

t→τ−
x(t) or if a ∈ J2 then x(a) = lim

t→a+
x(t). Since

x(t) is monotonous near points of J2 such limits exist. Acting as previously
we have that for t ∈ J2 x′(t) = lim

i→∞
x′i(t) and lim

τ→t
x′(τ) = x′(t). Consequently,

x(t) is a generalized solution of equation (2.1). ut

Let us show how Theorem 2 may be used to prove the existence of a solution
to the Thomas-Fermi boundary value problem (see [17], p. 376)

x′′ = t−0.5x1.5, x(0) = 1, lim
t→+∞

x(t) = 0.

Let α = 0 and β = 1. By Theorem 2 there exists a solution x of the
boundary value problem

x′′ = t−0.5x1.5, x(0) = 1, α ≤ x ≤ β.

Let us show, that this solution is a solution of the Thomas-Fermi bound-
ary value problem. If x(t0) = 0 for some t0 ∈ (0,∞), then x′(t0) = 0, and
from uniqueness of a solution of the Caushy problem we have x(t) ≡ 0, but
that contradicts the condition x(0) = 1. Therefore x(t) > 0 t ∈ [0,∞). If
x′(t0) ≥ 0, t0 ∈ [0,∞), then from x′′ ≥ t−0.5x1.5(t0), t ∈ [t0,+∞) it fol-
lows, that x(t) → +∞ for t → +∞, and this contradicts the estimate x ≤ β.
Consequently, x′ < 0, and there exists a limit lim

t→+∞
x(t) = B ≥ 0. If B > 0,
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then from x′′(t) > t−0.5B1.5, t ∈ [t0,+∞) it follows, that x(t) → +∞ for
t→ +∞, and that contradicts the inequality x ≤ β. Consequently, B = 0, and
x is the solution of the Thomas-Fermi boundary value problem.

Let us note that this reasoning is true if we change the condition x(0) = 1
to the condition x(0) = A ∈ (0, 1).

Theorem 3. If α ∈ AG(I,R), β ∈ BG(I,R) and the condition of compact-
ness S = SG fulfils then the boundary value problem (2.1)–(2.2) has a solution.

Remark 2. In conditions of Theorem 3 it follows from properties of lower and
upper functions the existence of the upper and lower solutions s∗, s∗ ∈ S such
that s∗ ≤ x ≤ s∗ for all x ∈ S (remark 1 in [11]).

Let us consider the Dirichle’s problem. First formulate the following three
conditions C1, C2 and C3.

C1. All the functions x ∈ S as well as α and β have finite limits as t→ +∞.

C2. For any B ∈ [α(+∞), β(+∞)] and ε > 0 there exist T ∈ (a,+∞) and
δ > 0 such that for every x ∈ S the condition | B − x(+∞) |< δ implies that
| B − x(t) |< ε for t ≥ T.
C3. For any B ∈ (α(+∞), β(+∞)) there exists T ∈ (a,+∞) such that for every
compact interval J and x ∈ SG(J,R) the conditions [a, T ] ⊂ J, x(a) = A and
x(b) = B imply the existence of s ∈ SG such that s = x on interval J.

Theorem 4. The Dirichlet’s problem

(ϕ(t, x, x′))′ = f(t, x, x′), x(a) = A,

x(+∞) = B ∈ [α(+∞), β(+∞)], α ≤ x ≤ β
(2.4)

has a solution if the conditions C1, C2, C3 hold and the compactness condition
S = SG is fulfilled.

Proof. Fix B ∈ (α(+∞), β(+∞)). Find T from the condition C3. Let the
sequence bi ∈ (T,+∞), i = 1, 2, ... increase and tend to +∞ and xi be a gener-
alized solution of the Dirichlet’s problem

(ϕ(t, x, x′))′ = f(t, x, x′), x(a) = A, x(bi) = B,α(t) ≤ x(t) ≤ β(t), t ∈ [a, bi].

Consequently, the generalized solutions si ∈ SG can be found such that si(t) =
xi(t), t ∈ [a, bi]. It follows from the compactness condition that si ∈ S. With-
out loss of generality we may consider that the sequence si on each compact
interval uniformly converges to s ∈ SG together with the derivatives. Let
us consider the sequence si(+∞). Without loss of generality we can assume
that lim

i→∞
si(+∞) = B0. If B0 = B, then from the condition C2 we obtain

the uniform convergence si to s. Consider the case B0 6= B. Then for B0

and ε = 2−1|B0 − B| from the condition C2 we obtain the contradiction.
Consider the case B = α(+∞). Let Bi ∈ (α(+∞), β(+∞)), i = 1, 2, ...,
lim
i→∞

Bi = α(+∞) and si be a solution of the Dirichlet’s problem (2.4) for

B = Bi. Without loss of generality we shall assume that si converges to s ∈ S
and s(+∞) = α(+∞). Similarly the rest cases can be considered. ut
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Let us consider the solvability of the boundary value problem

(ϕ(t, x, x′))′ = f(t, x, x′), t ∈ I Hx = 0,

x(+∞) = B ∈ [α(+∞), β(+∞)], α ≤ x ≤ β,
(2.5)

where H is a continuous functional. We will need the following conditions to
formulate the theorem:

C4. There exist A∗ ∈ [α(a), β(a)) and A∗ ∈ (A∗, β(a)] such that the maximal
solution α∗ of the Dirichlet’s problem

(ϕ(t, x, x′))′ = f(t, x, x′), x(a) = A∗, x(+∞) = B, α ≤ x ≤ β

and the minimal solution β∗ of the Dirichlet’s problem

(ϕ(t, x, x′))′ = f(t, x, x′), x(a) = A∗, x(+∞) = B, α∗ ≤ x ≤ β

satisfy the inequality Hα∗Hβ∗ ≤ 0.

Theorem 5. Suppose that the conditions C1, C2, C3, C4 are fulfilled, the Cau-
chy problem between α∗ and β∗ has a unique solution and the Shrader’s condi-
tion is satisfied, that is, any generalized solution lying between α∗ and β∗, is a
solution. Then the boundary value problem (2.5) has a solution.

Proof. Let SB be a set of solutions x : I → R, lying between α∗ and β∗. Let
us take an increasing sequence bi ∈ (a,+∞), i = 1, 2, ..., which converges to
+∞. Let xi : [a, bi]→ R be a minimal solution of the Dirichlet’s problem

(ϕ(t, x, x′))′ = f(t, x, x′), x(a) = A∗, x(bi) = α∗(bi),

α∗(t) ≤ x(t) ≤ β∗(t), t ∈ [a, bi]

and xi(t) = α∗(t), t ∈ (bi,+∞). Let further xiγ : [a, bi]→ R be a solution of
the Cauchy problem

(ϕ(t, x, x′))′ = f(t, x, x′), x(bi) = α∗(bi),

x′(bi) = γ ∈ [x′i(bi), α
′
∗(bi)] t ∈ [a, bi],

xiγ = α∗(t), t ∈ (bi,+∞) and Mi = {xiγ : γ ∈ [x′i(bi), α
′
∗(bi)]}, i = 1, 2, ....

From properties of α∗ and β∗ it follows that α∗(t) < xiγ(t) < β∗(t), γ ∈
(x′i(bi), α

′
∗(bi)), t ∈ [a, bi). It is clear that Mi is a continuum. To prove the

convergence xi → β∗ it is sufficient to show that any convergent subsequence
xi∗ → x ∈ SB converges to β∗. It follows from x(a) = A∗ and the minimality of
β∗ that x = β∗. Therefore {α∗, β∗} ⊂ LiMi ⊂ LsMi, where Li is a lower limit
and Ls is an upper limit (see [8], p. 343), LiMi is a continuum (see. [9], p.
180) and α∗, β∗ are lying in the same component of connectedness of the space
SB

⋃
{
⋃
iMi} with ρ(x, y) = sup(| x(t) − y(t) |: t ∈ I). Then the existence

of a solution of the boundary value problem (2.5) follows from the inequality
Hα∗Hβ∗ ≤ 0. ut

Using the equation of Thomas-Fermi as example, let us show another ap-
proach to the boundary value problem (2.5). Let α = 0 and β = 1. It is known
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from the above considerations that all such solutions tend to zero as t→ +∞.
Let us show that a solution of equation with the condition x(0) = A is unique.
Let us assume the contrary. Suppose there exist x1 and x2 such that the condi-
tions x1(0) = x2(0) = A are fulfilled and the difference u = x2−x1 has a positive
maximum at t∗ ∈ (0,+∞). Then u′′(t∗) ≤ 0, but u′′(t∗) = t−0.5∗ (x1.52 −x1.51 ) > 0.
Then the continuous dependence of solutions of A and connectedness of a set
of solutions follows.

3 Conclusion

In the references above mostly boundary value problems for ϕ-Laplacian equa-
tion on a finite interval were considered. However, it is known [7] that problems
with a condition at infinity often arise in mathematical physics. In this arti-
cle the results on existence of a solution for the ϕ-Laplacian equation on a
semi-finite interval are given.
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