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Abstract. We consider the eigenvalue problem with Robin boundary condition
Au+ du = 0 in 2, Ou/Ov + au = 0 on 92, where 2 C R", n > 2 is a bounded
domain with a smooth boundary, v is the outward unit normal, « is a real parame-
ter. We obtain two terms of the asymptotic expansion of simple eigenvalues of this
problem for a — +o00. We also prove an estimate to the difference between Robin
and Dirichlet eigenfunctions.
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1 Introduction

Let 2 Cc R™, n > 2 be a bounded domain with boundary I' of class C>.
Consider the eigenvalue problem

Au+Adu=0 inQ, (1.1)
Ou
m—i—au—o onl, (1.2)

where v is the outward unit normal vector to I', « is a real parameter. By
{Ae(a)}72, we denote the sequence of eigenvalues of the problem (1.1), (1.2)
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enumerated as
Jo IVolPda 4+ a [, v?ds

(@) = sup inf , (1.3)
V1 vn_1€L2(2) v E HY ), Jv3dx
(v, UJ)LQ(Q) =0,
j=1, Jk—1
for k =1,2,... and by {A\P}2° | denote the sequence of eigenvalues of Dirichlet
problem
Au+Adu=01in 2, u=0 onl, (1.4)
enumerated respectively
Vol?dx
AP = sup inf f9|72‘, (1.5)
’Ul,...,’kaleLg(Q) ’UGH (Q) fQU dx
(v, U])LQ(Q) =0
j=1, Jk—1

fork=1,2,....

By {uk.o(2)}22, and {uP(2)}$2, we denote the corresponding sequences of
normalized in Ly(f2) Robin and Dirichlet eigenfunctions (all considered func-
tional and abstract spaces will be real spaces). It is known that the eigenvalues
Ai(a) and AP > 0 are simple and klirgo () = kl;r{)lo AP = +oo. It follows

from (1.3), (1.5) that A\x(a) < AP. As it was noted in ( [3], Chapter 6, Sec-
tion 2, Subsection 1) for n = 2 in the case of a smooth boundary I" we have
lim Ag(a) = AP, k=1,2,.... Later in [19] for n = 2 the following two-side

a—+0o0
estimates for the first eigenvalue A (o) were obtained

)\1
aqi

AP (14 21) <A1()<AD(1+%)_, >0,

where ¢; is the first eigenvalue of Steklov problem

A%u =0 in Q,
ou
u=0, Au—qg— =0 onT.
ov
In [7,8], the estimates for all eigenvalues were proved
D (AY)° D
Ay —Ch <o) <A, a>a; >0 (1.6)

where constants C; and «; are independent on k. In [9] the estimates (1.6)
were sharpened:

D_ (/\D )? D
o
The case a < 0 has recently attracted attention in connection with diffusion
models [12]. It was shown in [12] that for piecewise C' class boundary

lim inf )\1(0;)
a——00 —Q

> 1,
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and in particular when 2 C R? is a triangle with inner half-angles oy, as, a3
the authors have proved that
A(a)

lim 5~ = Inax cosec’aj > 1.
a——00 —Q 1<5<3

In [14] for C' class boundaries the following equality was proved

lim 2@

as oo —q2

=1. (1.8)

These results indicate that the asymptotic behavior of A\j(«) for @ — —oo is
strongly affected by the smoothness of the boundary and C! class is optimal for
the equality (1.8). In [4] it was proved that for C* boundaries for all k = 1,2, ...
we have

The second term of asymptotics of A\ (a)/(—a?) was found in [5] for n = 2
with I € C* and later in [17] for n > 2 with I" € C3:

Ak (@)

— g =1-(n- 1) Hpaxa ™t 4+ 0(Ja|™43), o — —c0 (1.9)

with Hpyax = max H(x) where H(z) is the mean curvature of the surface I" ori-
fas

ented by inner normal at the point . It was proved in [17], that if, additionally,
I" € C*, then the reminder estimate O(|a|~%/3) can be replaced by O(|a|=%/2).
Let us note the result of [7], where the lower estimate for the derivative of the
first eigenvalue A|(«) were obtained:

!
Jim fnf 21(2)
a——00 —Q

> 1.

2 Main results

By m(X) we denote the multiplicity of eigenvalue A.

Theorem 1. For any k = 1,2,... there exists the number ay € R such that
for a > oy, we have

mw(@)) < m(AP).
Theorem 2. Let m(A\P) = 1. Then there exists the number ay, € R such that
for all @ > ay, the eigenvalue A\ () is a differentiable function and

2
d
No(a) = drthads (2.1)

f_Q ui,(xdx

Theorem 3. Let m(A\P) = 1. Then the eigenvalue \.(a) obeys an asymptotic
expansion

Sup \2
p_Jr(Ge)ds —1

Math. Model. Anal., 22(1):37-51, 2017.
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/F(agf)zds > 0. (2.3)
D

If not, the eigenfunction v}’ is a solution of the Cauchy problem

We can see that

Auf + X PuP =0in 2, uf =0ouf /ov =0on I.

So, uP = 0 ( [11], Chapter 1, Theorem 1.46). This is impossible. The relations
(2.2), (2.3) show that the first power of « in the denominator of (1.7) cannot
be replaced by a'*t® with any 6 > 0.

Remark. For the first eigenvalue the expansion (2.2) was obtained in [6].

The next theorem establishes the rate of convergence of the eigenfunction
ug,o of the Robin problem (1.1), (1.2) to the eigenfunction uf of the ”limit”
Dirichlet problem (1.4) at v — 4-00. For any a € R we suppose [, ug quf dz >
0.

Theorem 4. Let m(AP) = 1. Then there exists the number ay € R such that
for all a > ay, we have m(Ap(a)) =1 and

[ur,a = ui |20y < Mi/a (2.4)
where the constant My, is independent of «.

Let us notify the difference of asymptotic behavior of eigenvalues in our case
a > 0 (repulsive Robin condition) with the case a < 0 (attractive Robin con-
dition). Here for smooth boundary the global properties of the eigenfunctions
(2.4) determine the second term of the asymptotics (2.2), while in the attractive
case the second term of the asymptotics (1.9) is determined by a local behavior
of the boundary around the points of the maximum mean curvature.

3 Perturbation of eigenvalues

We use the following inequality ( [16], Lemma 51.1).

Theorem 5. Let A and B be two linear self-adjoint, compact and positive op-
erators on a separable Hilbert space H. Let ﬂ? and ukB be their eigenvalues,
enumerated in the decreasing order according to their multiplicity. Then

i = nil < A= BJ. (3.1)

For h(x) € La(£2) consider the weak solution u(z) € H'({2) of the Robin
boundary value problem

—Au4+u=h inQ, (3.2)
9
a—:j—i—au:O onl, a>0. (3.3)

In domain with C? class boundary surface we have u € H?(£2) ( [15], Chap-
ter 4, Section 2, Theorem 4). For our proofs we need an elliptic estimate ( [9],
Theorem 3) to solution of the problem (3.2), (3.3) at large values of a.



Asymptotic Behavior of Figenvalues and Eigenfunctions 41
Theorem 6. The solution of the problem (3.2), (3.3) satisfies the estimate
[ullz20) < CsllhllL,(2), a>a1>0 (3.4)
with the constant C3 is independent of «.

Remark. Let us note that the estimates of type (3.4) to solution of the problem
(3.2), (3.3) were previously obtained for fixed « (see, for example, [15]). But
we need the estimate (3.4) valid with one constant Cs for o — +o0.

For Robin problem (3.2), (3.3) we define the linear operator A, by
Ay i Lo(02) — HY(Q) C Ly(2) for b u.

The operator A, is a self-adjoint positive compact operator in L2(£2) ( [8],
Section 4) and ||As| = 1/(M(e) + 1) < 1. Now,

(Ak(a) + D) Agup o = g,
thence
() = 1/(Ag(a) +1) (3.5)

are the eigenvalues of A, with the eigenfunctions uy o, € H'(£2).
Let w = (Ag — Aa) h = @ —wu. The function w is a solution of the boundary
value problem

—Aw+w=0 in Q, (3.6)
ow - _
5 +aw=(G@—a)a onT. (3.7

It follows from (3.6), (3.7) that

/(|Vw|2+w2)dx+a/ wzds:(a—d)/ wids.
2 r r

Thence, for a > a1 >0

)
/(IVw|2+w2)dx+§/ wds < (0‘27“)/ @tds < Cy(a — )?(|i]F g
) r « r

and
w2y < Csla — afl|il| g1 (o)

Consequentially,
[(Aa = Aa)hllL,0) < Csla — afl|uf|m (o)
Now, applying the estimate (3.4) for h € Ly(§2) we have the inequalities
1(Aa = Aa)hl|Lo(2) < Csla = all[hllLy(2),
lAa — Aol < Csla —af, «o,&> ay. (3.8)

Math. Model. Anal., 22(1):37-51, 2017.



42 A.V. Filinovskiy
Then by the inequalities (3.1), (3.8) we get
1(@) = ()] < Cslé — al.
Therefore,
k(@) = Ae(@)] < C5(n(@) + 1) (Al@) + 1] - al. (3.9)
Furthermore, consider the Dirichlet problem

—Av+v=~h inQ, (3.10)
v=0 onT. (3.11)

We define the linear operator AP by
AP Ly(2) 5 H'Y(2) € Ly(R), for h s v.

The operator AP is a self-adjoint positive compact operator in Ly (£2) ( [8],
Section 4) and ||AP|| = 1/(A\P + 1) < 1. We have

(A + DA ug = u,

therefore
p =1/ +1), k=12,... (3.12)

are the eigenvalues of AP with the eigenfunctions uf € IZI L(2).
Let w = (AP — A,)h = v —u. By (3.2), (3.3), (3.10), (3.11) the function w
is a solution of the boundary value problem

1o

—Aw+4+w=0 in 2, w=-—
o Ov

on I
where u = A,h € H?(£2) ( [15], Chapter 4, Section 2, Theorem 4). Due to
elliptic regularity ( [2], Par. 11.1d) we have the estimate

Cs

< -
||w||H1(Q) =7

ou

ov

H/2(I)

and consequently by the embedding theorem for Sobolev spaces ( [2], Theorem
5.1.7)

C
(AP = Ao)hll1,0) < ;7||u||H2(Q>~

Now, applying the estimate (3.4) for h € Lo(£2), we have the following inequal-

ities

Cs5Cy
e’

C3C
Hh’HLz(Q)v ||AD_Aa|| < 30[ 77 o> 0. (313)

H(AD_Aa)h”Lz(Q) <

Then by the equalities (3.5), (3.12) and the inequalities (3.1), (3.13) we get the
estimate

|NkD - Nk(a” < 03C7/Oé.
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Therefore,
C5Cr

IAE = Aw(@)] < (A + Do) +1)

and taking into account the inequalities () < )\,’3 , we obtain

Cs3C C
0< AP = Mo(0) < 2P +1)2 < ;2 (A2, (3.14)
Proof of Theorem 1. Let m = m(\f) and
Moot <A = A = = Aot < Alim: (3.15)
Now we consider the eigenvalues \;(a), j = k,k+1,...,k+m—1 as functions

of the variable a. It follows from (3.14) and (3.15) that for any € > 0 there
exists ax € R such that for all o > «y, the following inequalities hold

N(@) <M1 +e =12, k-1, (3.16)
(@) > A, —e, j=k+mk+m+1,.... (3.17)
Let e = min{|A\P —AL_ |, [AE,,,—AP[}/2. Then by (3.16), (3.17) for a > ay, the
interval (AP —e, A +¢) contains only the eigenvalues \;(«), j =k, ..., k+m—1.

The other eigenvalues of the problem (1.1), (1.2) are located outside of this
interval. Thus, for any a > «y only the functions A;(a), j=k,....k+m —1
can be equal and a number of such functions does not exceeds m. Theorem 1
is proved. O

4 Perturbation of eigenvectors: abstract model

Consider a real Hilbert space H with the scalar product (-,-) and the norm
Il - ||- Let e and g be non-zero elements in H.

DEFINITION 1. The non-negative number
3(e,9) = V1= (e, 9)%/llel?llg]? (4.1)
is called a deviation between e and g.

It follows from (4.1) that 0 < d(e,g) < 1, d(e,g) = d(g,¢), d(e,g) < d(e, h) +
0(h, g) and the linear spans of e and g coincides if and only if §(e, g) = 0. There-
fore, the deviation is a metric on the set of one-dimensional linear subspaces of
H.

Lemma 1. Let (e,g) > 0. Then the following estimate holds:

le/llell = g/lgll]| < v23(e, g).

Proof of Lemma 1.

le/llell = g/lgll]” = 2(1 = (e, 9)/llelllg)
=26%(e,9)/ (1 + (e, 9)/llellllgll) < 26%(e, g).

O

Math. Model. Anal., 22(1):37-51, 2017.
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Let A be a linear compact self-adjoint positive operator in H. Let {1, };";1 be a
sequence of its eigenvalues and {e;}32, be an orthonormal basis of correspond-
ing eigenvectors.

DEFINITION 2. The number pj = 121}“C |t; — px| is called an isolation distance
J

of the eigenvalue py,.

The following Lemma 2 generalizes Lemma 1 from [10].

Lemma 2. Let z € H and z #0. Then for any k =1,2,... we have

1(A = )2l = 0 8(2, ex)|2]l-

Proof of Lemma 2. Let z= ) aje;. Then
j=1

s 2
1A = D)=l = | Y05 = medase
j=1
= 3 (- m)Pad = () Y @@= -a). (@2
j=1 j=1
j#k j#k

It follows from (4.1) that a? = (1 — 6%(z,ex))| 2%, so, apply this to (4.2), we
obtain [|(A — url)z||> > (071)%6%(2, ex)|2]|*>. Lemma 2 is proved. O

Let A and B be two linear compact self-adjoint positive operators in H
with the sequences of eigenvalues {uf 1321 {ujB }321 and orthonormal bases of

eigenvectors {e;}5, {g;}52;-
Theorem 7. Let for some k holds max{oj, 02} > 0. Then
2

dex,gx) < ————5—5+ |14 — B 4.3
(06r) < oy 14— B (43)
Proof of Theorem 7. We have the equality

(A= g D) (g = (ery gr)er) = (A = B)gi + (g — piddgr.  (4.4)

Since [|ex|| = [lgx|| = 1 we obtain

d(er, gr) = V1 —(ex,gr)? = llgr — (er, gr)ex|l- (4.5)

Now, if gr = (ex,gx)er, then d(eg,gr) = 0 and the inequality (4.3) holds.
Otherwise, (gr—(ex, gk )ek, ex) = 080 8(gr.— (ex, gk ek, ex) = 1 and by equalities
(4.4), (4.5) and Lemma 2 we obtain
1
d(er, gr) < 97\|(A — i D) (g — (ex gr)er) |
k
1
A
k

< — (1A= Bl + |ui = 1£)).



Asymptotic Behavior of Figenvalues and Eigenfunctions 45
Thence, by the Theorem 5
2

S(er, gk) < o2 A= Bl. (4.6)
k

Interchange operators A and B in (4.6), we have
2
d(ex, gr) < Q*BHA—BH- (4.7)
k

Combine estimates (4.6) and (4.7), we finally obtain
2

S(ens gr) < —————
max{o, 0P}

|A— B
This completes the proof of Theorem 7. O

5 Convergence of eigenfunctions
For &, o € R we suppose [, ug,atk,o dz > 0.

Lemma 3. Let m(A\P) = 1. Then there exists the number oy, € R such that
for all &, a > oy we have m(Ag(a)) = 1 and the following inequality holds

[ur,6 — Ukallm2(0) < Csla — al.

Proof of Lemma 3. 1t follows from the equality m(AP) = 1 and the Theorem 1

that 05> >0, a > ay for some ay. By the estimates (3.8) and (4.3), applying
Theorem 7 for H = Ly(£2) with A = Az, B = A,, we get

2 2Cs5 .
§(unar uka) £ —-llAda — Aall < —~la - al. (5.1)
O O
Thence, it follows from (5.1) and Lemma 1 that
2V/2C5
kg = unallL, o) € —5—ld —al. (5.2)
Ok
Now, we have the problems
- . Qupa |
Aug,q + Ae(@)up,a =0 in £2, 81/7 +augs =0 onl, (5.3)
Aug,q + A(@)up,q =0 in 2, W +aug, =0 onl. (5.4)

By (5.3) — (5.4) the function w = ug,s — U, is a solution of the boundary
value problem

—Aw +w = (M) + Dw + (Ae(@) = Ax(@))upo  in,

22 4 aw = (v — &)uk,a onT.

ov

Math. Model. Anal., 22(1):37-51, 2017.
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Let us note that by ( [1], Theorem 15.2) the following estimate holds

wllz2(2) < Co((Me(a) + 1)lw]l L, (0
+ [ Ak (@) = Ae(@)[||ur,all L. (2) + & — allJug,a

| r1/2(r)) (5.5)

with the constant Cg depends on {2. Thence, by the embedding theorem ( [2],
Theorem 5.1.7) we get

lullsr/2(ry < Crollull (o), we H'(2) (5.6)
and with the inequalities (3.9), (5.2), (5.5) we obtain
lwl #r2(02) < Cr1lé — qf
with the constant Cy; depends on k. Lemma 3 is proved. O

Proof of Theorem 4. Let m(AP) = 1 (the eigenvalue AP is simple). By the
estimates (3.13) and (4.3), applying Theorem 7 for H = Lo(§2) with A = AP,
B = A, we get

2 205C
S(u upa) € — 5 I1AP — Aol < =57, a>ay. (5.7)
0% 0 «

Therefore, for normalized in Lo({2) eigenfunctions ukD and uy, such that
Jo uk.auf dz > 0 it follows from (5.7) and Lemma 1 that

21/203C:
HukD — UgallL,0) < %, o> . (5.8)
0 @
Now, we have the problems
. a'Ulk «@
Aug o + Ap(@)ugo =0 in £2, ay’ +aug, =0 onl, (5.9)
AP +APuP =0 in 2, uP =0 onT. (5.10)

By (5.9) — (5.10) the function w = uP — uy o is a solution of the boundary
value problem

—Aw+w= (A +1) (uf —upa) + (A — M(@)) ua in £,
o lauk,a

= I
v a Ov on

Besides, the function
1 _
ﬁj:w*a(bvvuk,a)v b(x) = (b1(x),...,bn(z)) 602(9)7 blr=v

is a solution of the problem

—AD+W=hg, inf2, w=0 onl,



Asymptotic Behavior of Figenvalues and Eigenfunctions 47

hio = (AF + 1) (uf) —uga) + (AF = Me(@)) up.a
((b, Vuk)a) — A(b7 Vuk,a))
AP+ 1) (uf) —upa) + (AF = A(a ))

+ é((b, V’U,k a) (Ab Vuk a -2 Z fL’z uk a z; (b, VA’U,}C’Q))

1,5=1

=\ +1) (ué’waH(Ade( ) ko

+ é((b—Ab, Vi) — 2 Z Yo ()i, + Ak (@ )(b,vuk,a))

3,7=1

= (W +1) (= una) + (W = Aula )) Uk,

+ é((lﬂk(a))b—m, Vig.a) — 2 Z Ve (o) I) (5.11)

1,j=1
The eigenfunction uy o is a solution of the boundary problem
—Aug o + Uk o = (Ax(a) + Dug,q  in €,
auk:,a
ov
and by (3.4) satisfies the estimate

+ aug,o =0 onI

||Uk»1a||H2(_Q) < Cg()\k(a) =+ 1), o> . (512)

In domain with C? class boundary surface u € H3(£2) ( [15], Chapter 4, Sec-
tion 2, Theorem 4). Further we need an elliptic estimate to solution u of the
problem (3.2), (3.3):

[ull 3 (2) < Cr2llbll i), >0, (5.13)

with the constant Cjs is independent of a. The inequality (5.13) is obtained
by the same method as the estimate (3.4) in ( [9], P. 105-112). Let us give
scheme of the proof. At first we denote:

n n
|VPul? = Z Z uijl___%.

Ji=1 Jp=1

For any function u € C*(2) N C3(£2) consider the equality
IV3u)? = |V Aul® + dw( (1V2ul?) Z AurtVuL), (5.14)

obtained by direct computation. Integrating the relation (5.14) on {2 and
applying Gauss-Ostrogradskiy formula, we have the equality

/ |V3u|?dx :/ |V Auldz + 1, (5.15)
2 2

Math. Model. Anal., 22(1):37-51, 2017.
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where I:/(;aa V2uf?) ZAU%Q )

To obtain the equality (5.15) for u € C?(£2) it is sufficient to take a limit in
(5.15) for the sequence of functions u; € C*(£2) N C3(£2) such that lim |ju —
j—o0

Ujllcs ) = 0. Now, let u € C3(02) be a solution of the problem (3.2), (3.3).
By (3.2) we get

/|V3u|2dx:/ |V (u—h)|?de + 1
2 2

< 2(/ \Vul2dz +/ |Vh|2dx) ¥ (5.16)
2 Q
Moreover, we have the energy estimate ( [9], Formula (35)):

/(|Vu|2+u2)dx+a/ u2d8§/ hidx, a>0 (5.17)
(7] r (9

and the following inequality ( [9], see Formulas (37), (39), (49), (54))

/|V2u|2dx+a/ |V ul?ds
7

/Q(Au) dz + (n—1) /H g:j) ds, (5.18)

a>max max |k;(x)l,
zel 1<j<n—1

where the vector V,u = Vu — 8 “y is a tangential gradient of the function u
on the surface I, H(z) is a mean curvature and k;(z) are main curvatures
of I' oriented by outward normal at the point x. To estimate the surface
integral I in (5.16) we will consider the element of integration in the local
orthogonal coordinate system in the arbitrary point z € I" such that nth axe
direction coincides with v and the origin is in 2. Then, transforming I by the
technique of ( [13], Chapter 1, Section 7, Lemmas 1, 2’, 3, Chapter 2, Section 3,
Lemma 1’; [18]; [9]), with the estimates (5.17), (5.18) we obtain from (5.16)
the inequality

/ |V3u|?dx < 013/ (IVR|* + h*)dz, o >0 (5.19)
7 17}

with the constant C;3 is independent of a. Combine (3.4) and (5.19), we get the
estimate (5.13) for solutions of the problem (3.2), (3.3) from C3(£2). To prove
the estimate (5.13) for solutions from H?(§2) we take a sequence of functions
uj € C3(£2) satisfying (3.3) such that ||u — u;||gs(2) — 0, j — co. Applying
the estimate (5.19) to the functions u; we have

lujll s @) < Crallhjllar @), o> a, (5.20)
where hj = —Au; +u;. Therefore, lim ||h;[| g1 (o) = [|hllg1 (o). Taking a limit
J]—0
n (5.20), we obtain the inequality (5.13) for solutions u € H3({2).
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Combining (1.7), (5.11) and (5.12), we obtain the estimate

hallzae) < OF + 1)l —

C(14
+ (A% = Ak(a) lurallpo2) + - |wk,oll 2 (2)
1
< 015(||UkD —U,allLo(2) + a>, a >y, (5.21)

where the constant Ci5 is independent of «, but may depends on k. It follows
from the inequality ( [15], Chapter 4, Section 2, Theorem 4) that

. 1
Il < Cro(uf = wnaliaey + =), a>a1  (5:22)

Combining (5.8), (5.13), (5.21) with (5.22), we get

1
D — |7 _
luy, — ukallm2(2) = HUHL 5 (b Vo) i)

N 1
<@l z2(2) + S (b, Vur,o) | 2 (2)

1 C
7) + g all sy

C12C17
a

< CIG(HU'kD

+ (AP +1)

< Cu (Iluf = urall oo + lurallan e

< Clﬁ(llukD
My

(%

o)
1) P 41) 3/2 C12C17
a a
) ) a >y (523)

1
< Cl8(||ukD ~ Ukallza@) + 2

with the constant M} independent on o. Theorem 4 is proved. 0O

6 Derivative of eigenvalue and asymptotic expansion

Proof of Theorem 2. For eigenfunctions uy q, Uk, We have the equalities

/ (Vug,ors Vug o) — Mo (@ ) ug o0ty o )de = —0// Uk, o/ Uk, 0 dS,
Q r

/ ((Vug,a, Vug,ar) — Ak(Q)ug ok o )de = —a/ Uk, 0 Uk, o dS.
Q r

Therefore,
Ai(@) = Ap(@) [ ukartir,ads
a —a B fn Up, o/ U0

(6.1)

Now, suppose that [ uj Uk dz > 0. By Lemma 3 and inequality (5.6) we
Q
obtain from (6.1) that

Nfa) = i Jrteetinods _ Jptiads
k a'—a fQ Uk, o' Uk, adm f!? ui’adx'
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Theorem 2 is proved. 0O
Proof of Theorem 3. Let m(A\P) = 1. We suppose [ uy ouf dz > 0. For the
0

normalized eigenfunction uf the relation (2.2) is equivalent to

() = AP OupP \2
lim 2 2k _—/F<—k) ds. (6.2)

a—+oo 1/« ov

Let us note that the numerator Ay(a) — AP in the fraction in (6.2) by (1.7)
tends to zero at a« — +oo. By the formula (2.1) and the boundary condition

(1.2) we have
1 8uk 2
Iy 2 _ b o
)\k(a)—/Fuk7ad3— 2 /F( £ ) ds.

Therefore,
. A() . Oug, o\ 2
aEI—&r-loo —1/@2 - aETwA(W> ds. (63)
Let us prove that
lim (auk"’)st - / (8“’?)2&9 (6.4)
a—r+00 r 81/ o r aV ' '

By the inequality (5.23) and the embedding theorem ( [2], Theorem 5.1.7) we

have
aukD 8uk e 2 D 5
.. - < _
/F( ov ov ) ds _/F|V(uk Ug,a)|"ds

< 019(||V2(UkD - Uk,a)”sz((z) + ||V(UkD - Uk,a)HQLQ(Q))

< Clg||ukD — Uk’a||H2(Q) < CiyoMy/a— 0, a— +oo. (6.5)

Using (6.5), we obtain the relation (6.4). Now, by L’Hopital-Bernoulli theorem
the equality (6.2) follows from (6.3). Proof of the Theorem 3 is completed. O
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