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Abstract. In this paper we investigate a logistic equation with a new free boundary
condition appearing in ecology, we aim to describe the spreading of a new or invasive
species by studying the asymptotic behavior of the radially symmetric solutions of
the problem. We will obtain a trichotomy result: spreading (the solution converges to
a stationary solution defined on the half–line), transition (the solution converges to a
stationary solution with compact support) and vanishing (the solution converges to 0
within a finite time). Besides we can also obtain a dichotomy result (either spreading
or vanishing happens). Moreover, in the spreading case, we give the sharp estimate
of the asymptotic spreading speed of the free boundary.
Keywords: asymptotic behavior of solutions, logistic equation, free boundary, trichotomy

result.
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1 Introduction

We are interested in the asymptotic behavior of the radially symmetric solution
u(t, r) (r = |x|, x = (x1, x2, ..., xN ) ∈ RN , N > 1) of the following logistic
equation with a free boundary:

ut = ∆u+ u(1− u), R < r < h(t), t > 0,
u(t, R) = u(t, h(t)) = 0, t > 0,
h(t)h′(t) = −ur(t, h(t))− α, t > 0,
h(0) = h0, u(0, r) = u0(r), R ≤ r ≤ h0,

(1.1)

where ∆u = urr + N−1
r ur, r = h(t) is a moving boundary to be determined

together with u(t, |x|), R > 0, h0 > R and α ∈ R are given constants. The
initial function u0 belongs to I(h0), where

I(h0) :=
{
φ ∈ C2([R, h0]) : φ(R) = φ(h0) = 0, φ(r) ≥ (6≡)0 in (R, h0)

}
.
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Problem (1.1) can be used to model the spreading of a new or invasive
species. Here u(t, |x|) denotes the population density over an N -dimensional
habitat, which is radically symmetric. The initial function u0(|x|) stands for the
population in its early stage of introduction. Its spreading front is represented
by the free boundary |x| = h(t), which is a sphere ∂Bh(t) with radius h(t)

growing at a speed 1
2 (h2(t))′ = −ur(t, h(t))−α. We mainly study the problem

(1.1) with α ∈ R, with α representing the decay rate of the species caused by
the environment at the boundary, such as food, the climate, other species and
so on. When α > 0, such a boundary condition means that there is a spreading
resistant force at the front for some species. Intuitively, the presence of α > 0
makes the solution more difficult to spread than the case where α = 0. Indeed,
h′(t) > 0 if and only if ur(t, h(t)) < −α. When α < 0, the boundary condition
means that the environment at the free boundary is favorable for spreading of
the species. Indeed, the boundary condition we used can be derived by the
competition–diffusion system (see [14,15] for details).

Moreover, such a boundary condition is also widely used in many biological
models. For example, [4,12,18] studied a protocell model. It mimics the biolog-
ical process of growth and dissolution of an organism under external nutrient
supply. Besides, Friedman [11] used such a free boundary condition to describe
the condensation and evaporation of a isolated drop in three dimensional space.
r = h(t) represents the radius of the drop. When condensation happens, α < 0,
then the isolated drop becomes larger; in the case of evaporation, α > 0, and
the the isolated drop becomes smaller.

Problem (1.1) with α = 0 and h′(t) = −ur(t, h(t)) was studied by [5, 6, 7,
8, 10, 16, 17]. When N = 1, [17] used this model to describe the spreading of
a new or invasive species, and obtained a dichotomy result: the species either
spreads to the whole environment and stabilizes at the positive state defined
on [0,+∞) or it vanishes (u → 0) as time goes to infinity . Later, they stud-
ied the corresponding problem of (1.1) with α = 0 in higher dimension spaces
(see [16]). Moreover, [5,6] also obtained a spreading-vanishing dichotomy result
by studying the problem (1.1) with u(t, R) = 0 being replaced by ur(t, 0) = 0.
Besides the asymptotic behavior of the solution, another interesting problem
is the asymptotic spreading speed of the free boundary when spreading hap-
pens. [7,8,10] proved that, when spreading happens for a solution (u, h) of the
problem (1.1) with α = 0, N = 1 and when the free boundary condition is
h′(t) = −ux(t, h(t)),

c∗ := lim
t→∞

h(t)

t
> 0. (1.2)

Recently, [5] obtained (1.2) for N ≥ 2, and [2] also proved that (1.2) holds
when the free boundary satisfies the condition h′(t) = −ux(t, h(t))− α with a
small α > 0.

In this paper, we mainly study the asymptotic behavior of solutions and the
asymptotic spreading speed of free boundary when spreading happens. Using
the similar arguments as in [2, 7], we have the following basic results:

(a) For any given γ ∈ (0, 1), there is a T ∈ (0,+∞) such that the free

boundary problem (1.1) has a solution (u, h) ∈ C
1+γ
2 ,1+γ(ΩT )×C1+γ/2([0, T ]),

where ΩT := {(t, r) ∈ R2 : r ∈ [R, h(t)], t ∈ (0, T ]}, and the solution can be
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extended to some interval (0, T0) with T0 > T as long as inf0<t<T h(t) > R.
(b) The limit lim

t→T
h(t) exists, denote it by h∞.

We will see in the next section that the asymptotic behavior of the solutions

is influenced by α. (i) There is a critical value α0 :=
√

2
∫ 1

0
s(1− s)ds = 1√

3

such that u converges to 0 and h(t) shrinks to R within a finite time when
α ≥ α0; (ii) when 0 < α < α0, we will obtain a trichotomy result for the
solution u(t, r) of (1.1) (see Theorem 1): spreading (u converges to a stationary
solution defined on [R,∞)), vanishing (u converges to 0 within a finite time)
and transition (u converges to a stationary solution with compact support);
(iii) in the case where α = 0, we will show that, for the solution u(t, r), either
vanishing or spreading happens; (iv) when α < 0, only spreading happens. We
give the details in the following theorems.

Theorem 1. (The case 0 < α < α0). Assume that 0 < α < α0 and (u, h) is a
solution of (1.1) defined on the time maximal interval (0, T ). Then either

(i) spreading: T = +∞, h∞ = +∞ and

lim
t→∞

u(t, r) = V (r) locally uniformly in [R,+∞), (1.3)

where V is the unique positive solution of{
∆v + v(1− v) = 0, r > R,
v(R) = 0,

(1.4)

or
(ii) vanishing: T < +∞, limt→T h(t) = R and

lim
t→T

max
R≤r≤h(t)

u(t, r) = 0, (1.5)

or
(iii) transition: T = +∞, h∞ = lα > R and

lim
t→∞

u(t, ·) = vα(·) locally uniformly in (R, h∞), (1.6)

where (l, v) = (lα, vα) is the unique positive solution of{
∆v + v(1− v) = 0, r ∈ (R, l),
v(R) = v(l) = 0, −v′(l) = α.

(1.7)

Remark 1. There is no transition result as in (iii) when α ≤ 0 or α ≥ α0.
Moreover, when α → 0, one can prove that vα → 0 and lα → R∗, where
R∗ > R is determined by the following eigenvalue problem{

−∆φ = λφ, R < r < l,
φ(R) = φ(l) = 0.

(1.8)

It is well known that (cf. [5]) there is a unique R∗ > 0 such that the principal
eigenvalue λ1 of the above problem satisfies λ1 = 1 when l = R∗, and 1 > λ1
when l > R∗. The conclusion in Theorem 1 (iii) gives an explanation of [16,
Theorem 4], i.e., vanishing happens if h∞ ≤ R∗.

Math. Model. Anal., 22(1):21–36, 2017.
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Remark 2. We now give some explanations of the main results. Assume the
spreading resistant force at the boundary is not large (i.e., α < α0), combining
this and the sufficient conditions in Section 3, we have the following three cases
for the spreading of the species. (a) in the spreading case, the species can
expands to the entire space when the initial density of the species is sufficiently
large; (b) in the vanishing case, the species can not spread and it disappears
in finite time when the initial density is small; (c) the last case means that the
species converges to a stationary state with a certain radius.

Theorem 2. (The case α ≥ α0, α ≤ 0). Assume (u, h) is a solution of (1.1)
defined on the maximal interval (0, T ). Then (i) when α ≥ α0, only vanishing
happens, (ii) when α < 0, only spreading happens, (iii) when α = 0, we have a
dichotomy result: either spreading happens or

T = +∞, R < h∞ < +∞, lim
t→∞

max
R<r<h(t)

u(r, t) = 0. (1.9)

Remark 3. From this theorem, we see that (1.9) is different from (1.5) since
h∞ 6= R and T = +∞ here. We next give an explanation of the theorem.
Ecologically, when the spreading resistant force at the boundary is large (or,
the environment at the boundary is bad), i.e., α > α0, the species shrinks and
disappears in finite time for any initial density. On the other hand, α < 0
means that the environment at the free boundary is favorable for spreading, so
the species will always spreads.

Finally, we show that when spreading happens (see Theorem 1 (i), Theo-
rem 2 (ii)–(iii)), the asymptotic spreading speed of the free boundary h(t) has
the following properties.

Theorem 3. Assume that spreading happens for the solution (u, h) of (1.1),
then

lim
t→∞

h(t)√
t

=
√

2(α0 − α). (1.10)

In this theorem, the limit in (1.10) gives the relation between the asymptotic
spreading speed and α. We can easily derive that the free boundary h(t)

satisfies lim
t→∞

h(t)
t = 0. Moreover, (1.10) implies that the spreading speed of

h(t) is decreasing in α. Therefore, the spreading front |x| = h(t) spreads fast
if the spreading resistant force at the boundary is small (i.e., α is small).

2 Proof of Main Theorems

In this section, we first give some basic results which play key roles in our
approach, then prove Theorem 1 – Theorem 3.

We first consider the radially symmetric solutions for the following elliptic
problem which will be used later:{

∆v + v(1− v) = 0, v(r) > 0, R < r < l,
v(R) = v(l) = 0.

(2.1)
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It is well known that the solution v of (2.1) has the following properties (cf.
[3, 5]): (i) when l ≤ R∗, v ≡ 0 is the unique nonnegative solution of (2.1), (ii)
when l > R∗, (2.1) has a unique positive solution v(r), where the definition of
R∗ is given by Remark 1.

We now prepare the following comparison theorem which will be used to
investigate the asymptotic behavior of solutions for the problem (1.1). The
proof of this lemma is identical to that of [7, Lemma 5.7].

Lemma 1. Suppose that T ∈ (0,∞), h ∈ C1([0, T ]), u ∈ C(ΩT ) ∩ C1,2(ΩT )
with ΩT = {(t, r) ∈ R2 : 0 < t ≤ T,R < r < h(t)}, and

ut ≥ ∆u+ u(1− u), 0 < t ≤ T, R < r < h(t),

u(t, R) ≥ 0, u(t, h(t)) = 0, 0 < t ≤ T,
h(t)h

′
(t) ≥ −ur(t, h(t))− α, 0 < t ≤ T.

If h0 ≤ h(0), u0(r) ≤ u(0, r) in [R, h0], and if (u, h) is a solution of (1.1) with
initial data u0(r). Then

h(t) ≤ h(t), u(r, t) ≤ u(r, t) for t ∈ (0, T ] and r ∈ (R, h(t)).

Remark 4. The pair (u, h) is usually called an upper solution of the problem
(1.1) and one can define a lower solution by revising all the inequalities.

2.1 Proof of Theorem 1

(i) Assume that (u, h) is a solution of (1.1). If h∞ = +∞, then we prove that
(1.3) holds. Choose a bounded continuous function W0(r) ≥ 0 for r ∈ [R,+∞),
W0(r) ≥ u0(r) for r ∈ [R, h0] and W0(R) = 0. Let W (t, r) be the radically
symmetric solution of Wt = ∆W +W (1−W ), t > 0, r > R,

W (t, R) = 0, t > 0,
W (0, r) = W0(r), r > R.

It is well known that

lim
t→∞

W (t, r) = V (r) locally uniformly in [R,+∞), (2.2)

where V (r) is the unique positive solution of (1.4). By the comparison principle,
we can derive that

u(t, r) ≤W (t, r) for (t, r) ∈ (0,+∞)× (R, h(t)). (2.3)

By (2.2) and (2.3) we have

lim sup
t→∞

u(t, r) ≤ V (r) for r ∈ [R,+∞). (2.4)

On the other hand, since h∞ = +∞, for any large l > R∗, there is τ > 0
such that h(τ) = l and h(t) ≥ l for all t > τ . Let ul(t, r) be the solution of the
following problem ut = ∆u+ u(1− u), t > τ,R < r < l,

u(t, R) = u(t, l) = 0, t > τ,
u(0, r) = ψ(r), R < r < l,

Math. Model. Anal., 22(1):21–36, 2017.
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where ψ is a nonnegative continuous function satisfying ψ(R) = ψ(l) = 0 and
ψ(r) ≤ u(τ, r) for R < r < l. Then the comparison principle implies

ul(t, r) ≤ u(t, r) for t > τ,R ≤ r ≤ l. (2.5)

By [3] one can obtain

lim
t→∞

ul(t, r) = vl(r) uniformly in [0, l], (2.6)

where vl is the unique positive solution of{
∆v + v(1− v) = 0, R < r < l,
v(R) = v(l) = 0.

It is well known that liml→∞ vl(r) = V (r) (cf. [5]). Hence, combining this,
(2.5) and (2.6), we have

V (r) ≤ lim inf
t→∞

u(t, r) for r ∈ [R,+∞). (2.7)

Therefore, it follows from (2.4) and (2.7) that

lim
t→∞

u(t, r) = V (r) locally uniformly in [R,+∞).

(ii) Assume that limt→T h(t) = R, then we prove that T < +∞ and (1.5)
holds. By [1, 7] one can prove that there exists a constant C1 independent of
t such that u(t, r) ≤ C1. In order to prove that u converges to 0, we need to
construct the function

U(t, r) := C1[2M(h(t)− r)−M2(h(t)− r)2]

over the region Q := {(t, r) : 0 < t < T, max{h(t) −M−1, R} < r < h(t)},
where

M := max

{
1

2

(
αR+

√
α2/R2 + 2

)
,

4

3C1
‖u0‖C1([R,h0])

}
.

Clearly 0 ≤ U ≤ C1 in Q. We now show that U(t, r) is an upper solution of
(1.1) in Q. By the Hopf lemma, we have

h(t)h′(t) = −ur(t, h(t))− α > −α,

so h′(t) > −α/R. On the other hand, it follows from r > h(t) −M−1 that
Ur = −2C1M − 2C1M

2[r − h(t)] < 0. Therefore, by the definitions of U and
M we have

Ut − Urr −
(N − 1)Ur

r
− U(1− U) ≥ Ut − Urr − U(1− U)

≥ C1(2M2 − 2Mα/R− 1) ≥ 0 in Q.

Moreover,
U(t, h(t)) = u(t, h(t)) = 0 for t ∈ (0, T )
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and
U(t, R) > 0 = u(t, R), when h(t)−M−1 ≤ R.

Therefore, u(t, r) ≤ U(t, r) in Q by the comparison principle. Note that
limt→T h(t) = R, then there exists T1 < T such that h(t) − M−1 < R for
t > T1. Therefore, u(t, r) ≤ U(t, r) for t > T1 and r ∈ [R, h(t)]. For such t and
r we have

U(t, r) ≤ 2MC1(h(t)−R)→ 0 as t→ T,

it follows that
‖u(t, ·)‖L∞([R,h(t)]) → 0 as t→ T. (2.8)

We now prove that T < +∞. By limt→T h(t) = R, there is some H > R
such that h(t) ≤ H for t ∈ [0, T ). Set L := 2(1 +H) and

ξ0(r) := 2ε(1− r2/L2),

where ε > 0 is small such that

16
(
α/R+

√
α2/R2 + 2

)
ε ≤ α, 48ε ≤ α.

Consider the problem
ξt = ∆ξ + 2ξ

(
1− ξ/2ε

)
, R < r < h̄(t), t > 0,

ξ(t, R) = ξ(t, h̄(t)) = 0, t > 0,
h̄(t)h̄′(t) = −ξr(t, h̄(t))− α, t > 0,
h̄(0) = L, ξ(0, r) = ξ0(r), R ≤ r ≤ L.

(2.9)

It is obvious that 2ξ(1− ξ
2ε ) > ξ(1− ξ) for ξ ∈ [0, ε]. By the definition of ξ0(r),

we have ξ(t, r) ≤ 2ε for all t ≥ 0. Construct a function

Uε(t, r) := 4ε[2M(h̄(t)− r)−M2(h̄(t)− r)2]

over Q := {(t, r) : t > 0,max{R, h̄(t) − M−1} ≤ r ≤ h̄(t)}, where M :=
max{α/R +

√
α2/R2 + 2, 3}. Then Uε(t, r) is an upper solution of (2.9) over

Q and so
−ξr(t, h̄(t)) ≤ −Uεr (t, h̄(t)) = 8Mε ≤ α/2.

Therefore, h̄(t)h̄′(t) ≤ −α/2. Thus h̄(t)→ R as t→ T
∗ ≤ (L2 −R2)/α.

On the other hand, (2.8) implies that there exists some T∗ ∈ (0, T ) such
that u(t, r) ≤ ε for all r ∈ [R, h(t)] and t ≥ T∗. Clearly ξ0(r) ≥ ε ≥ u(T∗, r) for
r ∈ [R, h(T∗)]. By the comparison principle we have h(t+ T∗) ≤ h̄(t) for t > 0,
and so T can not be ∞.

(iii) Assume R < h∞ < +∞, then we prove that h∞ = lα and (1.6)
holds. By the definition of h∞, for any ε > 0, there exists t∗ > 0 such that
h∞ − ε < h(t) < h∞ + ε for t > t∗. Let u0(r) be a C2 function defined on
(R, h∞ + ε) and it satisfies

u0(r) ≥ u(t∗, r) for r ∈ (R, h(t∗)) and u0(R) = u0(h∞ + ε) = 0.

By the comparison principle we have

u(t, r) ≤ u(t, r) for (t, r) ∈ (t∗,∞)× (R, h(t)), (2.10)

Math. Model. Anal., 22(1):21–36, 2017.
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where u(t, r) is the solution of ut = ∆u+ u(1− u), t > t∗, R < r < h∞ + ε,
u(t, R) = u(t, h∞ + ε) = 0, t > t∗,
u(t∗, r) = u0(r), R < r < h∞ + ε.

By [3, Corollary 3.4] we have

(a) when h∞ + ε ≤ R∗, limt→∞ u(t, ·) = 0 locally uniformly in (R, h∞ + ε);

(b) when h∞+ε>R∗, limt→∞ u(t, ·)→ u∗ε(·) locally uniformly in (R, h∞+ε),

where u∗ε(r) is a positive function. More precisely, when h∞+ε > R∗, it follows
from Corollary 3.4 of [3] that u∗ε(r) is the unique positive solution of{

∆v + v(1− v) = 0, R < r < h∞ + ε,
v(h∞ + ε) = v(R) = 0.

(2.11)

Hence, by (2.10) we have

lim
t→∞

u(t, r) = 0, or lim sup
t→∞

u(t, r) ≤ u∗ε(r) for R < r < h∞. (2.12)

Similarly

lim inf
t→∞

u(t, r) ≥ u∗ε(r) for R < r < h∞ − ε, when h∞ − ε > R∗, (2.13)

where u∗ε(r) is the unique positive solution of{
∆v + v(1− v) = 0, R < r < h∞ − ε,
v(h∞ − ε) = v(R) = 0.

(2.14)

Moreover, we consider the case that h∞ = R∗. By the properties of the
solution of (2.1), a standard compactness and uniqueness argument, one can
see that u∗ε → 0 as ε → 0+ when h∞ = R∗. Hence, letting ε → 0+ in (2.12),
we derive that limt→∞ u(t, r) = 0 when h∞ = R∗. Combining this, (2.12) and
(2.13), we have

lim
t→∞

u(t, r) = 0 when h∞ ≤ R∗, (2.15)

or, when h∞ > R∗,

lim
t→∞

u(t, r) = u∗(r) locally uniformly in (R, h∞),

where u∗(r) is the unique positive solution of{
∆v + v(1− v) = 0, R < r < h∞,
v(h∞) = v(R) = 0.

(2.16)

We now show that (2.15) is impossible when h∞ > R. Suppose on the
contrary that (2.15) holds when h∞ > R. Since h∞ ≤ R∗, then there exists
H > 0 such that h(t) ≤ H for t > 0. Using the approach of proving T < +∞ in
(ii), we can show that limt→T h(t) = R for some 0 < T < +∞, this contradicts
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the assumption h∞ > R. Hence limt→∞ u(t, r) = u∗(r) locally uniformly in
(R, h∞).

We next prove that h∞ ≡ lα and u∗(r) ≡ vα(r) for r ∈ [R, lα]. Applying
Lp estimates as well as the Sobolev embedding theorem we conclude that,

‖u(t, ·)− u∗(·)‖
C1+

γ
2 ([R,h(t)])

→ 0 (t→∞)

for some γ ∈ (0, 1). It follows that h(t)h′(t) = −ur(t, h(t))−α→ −(u∗)′(h∞)−
α, as t→∞. On the other hand, h(t) is Hölder continuous and h∞ < +∞, so
h′(t) → 0. Hence −(u∗)′(h∞) = α. By the uniqueness of the solution of (1.7)
and (2.16), we have h∞ ≡ lα and u∗(r) ≡ vα(r) or R ≤ r ≤ h∞.

Remark 5. The approaches used in the the proof of Theorem 1 (i) remain true
when α ≤ 0, and the arguments used in the the proof of Theorem 1 (ii)–(iii)
are also valid for α ≥ α0.

Remark 6. Assume T < +∞, then limt→T h(t) = R, which implies vanishing.
Indeed, assume on the contrary that inf0<t<T [h(t)−R] > 0, then by standard
Lp estimates, the Sobolev embedding theorem and the Hölder estimates for
parabolic equations, we can extend the solution to some interval (0, T ) with
T > T as long as inf0<t<T [h(t)−R] > 0, this is a contradiction since (0, T ) is the
maximal existence interval of the solution u(t, x). Therefore, when spreading
and transition happens, we have T = +∞.

2.2 Proof of Theorem 2.

(i) Assume α ≥ α0, we prove that only vanishing happens for the solution (u, h)
of (1.1) defined on the maximal time interval [0, T ) with T ∈ (0,+∞]. Let q
be the unique positive solution of{

qrr + q(1− q) = 0, r > R,
q(R) = 0, q(+∞) = 1, q(r) > 0, r > R.

One can show that q′(R) = α0. For some M,σ > 0, δ ∈ (0, 1), R̂ > R+ σM to
be determined below, we define

h(t) := R̂−σMe−δt, u(t, r) := (1+Me−δt)q(h(t)−r+R), R < r < h(t), t > 0.

Obviously, for any t > 0,

u(t, h(t)) = 0 and u(t, R) > 0 = u(t, R). (2.17)

Based on the property that q′(r) > 0 for r > R, one can calculate directly as
in [10] to show that, when σ > 0 is large,

ut − urr −
N − 1

r
ur − u(1− u) ≥ ut − urr − u(1− u) ≥ 0. (2.18)

On the other hand, when σ > 0 is large we have

h(t)h
′
(t) = (R̂− σMe−δt)Mσδe−δt ≥ RMσδe−δt ≥ −ur(t, h(t))− α. (2.19)
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In the above last inequality, we have used the facts q′(R) = α0, α ≥ α0 and
−ur(t, h(t))− α = (1 +Me−δt)q′(R)− α = Me−δtα0 + α0 − α ≤Me−δtα0.

Moreover, we can choose large R̂ and M > 0 such that h(0) > h(0) and

u(0, r) = (1 +M)q(h(0)− r +R) ≥ u0(r), r ∈ [R, h0]. (2.20)

Hence, by (2.17)–(2.20), one can show that (u, h) is an upper solution of the
problem (1.1) in Q := {(t, r) : R < r < h(t), t > 0}. Therefore, it follows from
the comparison principle Lemma 1 that u(t, r) ≤ u(t, r) in Q and h(t) ≤ h(t)
for t ∈ [0, T ). From this we have h∞ < +∞. We next show that h∞ = R,
suppose on the contrary that R < h∞ < +∞, then using the similar arguments
as in the proof of Theorem 1(iii), we can derive that u converges to vα, this
is impossible since (1.7) has no positive solution when α ≥ α0 (see Section 3
in [13] for details). Hence h∞ = R. It then follows from the proof of Theorem 1
(ii) that vanishing happens.

(ii) Assume α < 0, then only spreading happens for the solution (u, h)
of (1.1). By the Hopf lemma, we have ur(t, h(t)) < 0, hence h(t)h′(t) =
−ur(t, h(t)) − α > −α > 0. Therefore, h(t) → +∞ as t → ∞. It then follows
from Theorem 1 (i) that spreading happens.

(iii) We only consider the case h∞ < +∞ since the spreading phenomenon
(h∞ = +∞) follows from Theorem 1 (i). The proof is similar as that in [5,
Lemma 2.2] and Theorem (iii), for reader’s convenience, we give the proof and
divide it into two steps.

Step 1. We show that if h∞ < +∞, then h∞ ≤ R∗. Assume on the contrary
that h∞ > R∗, then there exists T1 > 0 such that h(t) > R∗ for all t > T1.
Thus the first eigenvalue λ1 of (1.8) with l = h(t) satisfies λ1 < 1 for all t > T1.
Moreover, by the definition of h∞, for any small ε > 0, there is T2 = T2(ε) > T1
such that,

R∗ < h∞ − ε < h(t) < h∞ + ε, t ≥ T2.
Consider the problem ut = ∆u+ u(1− u), t > T2, R < r < h∞ − ε,

u(t, R) = u(t, h∞ − ε) = 0, t > T2,
u(T2, r) = u(T2, r), R < r < h∞ − ε.

(2.21)

Since λ1 < 1, the problem (2.21) has a unique positive solution uε(t, r) (see,
Corollary 3.4 in [3]), and

uε(t, r)→ u∗ε(r) in C2([R, h∞ − ε]) as t→∞,

where u∗ε(r) is the unique positive radially symmetric solution of the problem
(2.14). Meanwhile, by the comparison principle we have u(t, r) ≥ uε(t, r) for
t > T2 and r ∈ [R, h∞ − ε]. Therefore,

lim inf
t→∞

u(t, r) ≥ u∗ε(r) for r ∈ [R, h∞ − ε]. (2.22)

On the other hand, consider the problem wt = ∆w + w(1− w), t > T2, R < r < h∞ + ε,
w(t, R) = w(t, h∞ + ε) = 0, t > T2,
w(T2, r) ≥ ũ(T2, r), R < r < h∞ + ε,

(2.23)
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where

ũ(T2, r) =

{
u(T2, r) R < r < h(T2),
0, h(T2) ≤ r ≤ h∞ + ε.

Similarly, the problem (2.23) admits a unique positive solution wh∞+ε(t, r) and
it converges to u∗ε(r) as t → ∞, where u∗ε(r) is the unique positive solution of
the problem (2.11). Meanwhile, by the comparison principle, we have u(t, r) ≤
wh∞+ε(t, r) for t > T2 and r ∈ [R, h(t)]. Hence,

lim sup
t→∞

u(t, r) ≤ u∗ε(r) for r ∈ [R, h∞]. (2.24)

By (2.22), (2.24), a standard compactness and uniqueness argument, we have

lim
t→∞

u(t, r) = u∗(r) for r ∈ [R, h∞),

where u∗(r) is the solution of (2.16). Moreover,

h(t)h′(t) = −ur(t, h(t))→ −(u∗)′(r)(h∞) > 0 as t→∞,

this implies that h∞ = ∞, which contradicts our assumption that h∞ < ∞.
Therefore we must have h∞ ≤ R∗.

Step 2. We now show that lim
t→∞

max
R<r<h(t)

u(t, r) = 0. Consider (2.23) again,

since h∞ ≤ R∗ and ε is arbitrary small, then limt→∞ wh∞+ε(t, r) = u∗ε(r)→ 0
as ε→ 0+. Therefore, we have

lim
t→∞

max
R<r<h(t)

u(t, r) = 0.

2.3 Proof of Theorem 3.

In order to give the proof, we need to consider the following problem in one
dimensional space:{

q′′ + γq′ + q(1− q) = 0, R < x < +∞,
q(R) = 0, q(+∞) = 1.

(2.25)

By [13], for any γ ∈ (−2, 2), the problem (2.25) has a unique solution (γ, qγ(x))
with the property that q′γ(x) > 0 for x ≥ R. Especially, when γ = 0, denote the
solution by q0(x). By the definition of α0, we see that α0 = q′0(R). Moreover,
for any small ε > 0, there exists γε < 0 such that the problem (2.25) has a
unique positive solution qγε(x) with q′γε(R) = α0 − ε.

We first construct an upper solution. For t > 1, δ ∈ (0, 1) and some
M,R1, σ > 0 to be determined later, we define

h(t) :=
√

2(α0 − α)t+ h(1)−Mσe−δt +R1, t ≥ 1,

u(t, r) = (1 +Me−δt)q0(h(t)− r +R), R < r < h(t), t ≥ 1.

We now check that (u, h) is an upper solution of (1.1) for large M,R1, σ with
R1 > Mσe−δ. Clearly, for any t ≥ 1,

u(t, R) = (1 +Me−δt)q0(h(t)) > 0 = u(t, R), u(t, h(t)) = 0. (2.26)
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Choose M and R1 sufficiently large with R1 > Mσe−δ such that

u(1, r) = (1 +Me−δ)q0(h(1)− r +R) > u(1, r) for R < r < h(1). (2.27)

By the definition of h(t), R1 > Mσe−δ, we have that

h(t)h
′
(t) =

(√
2(α0 − α)t+ h(1)−Mσe−δt +R1

)
×
(

1

2

√
2(α0 − α)t−

1
2 +Mσδe−δt

)
≥ α0 − α+Mσδe−δt

√
2(α0 − α)t.

Moreover,

−ur(t, h(t))− α = (1 +Me−δt)q′0(R)− α
= (1 +Me−δt)α0 − α = α0 − α+Me−δtα0.

Hence if we take σ > 0 such that σδ
√

2(α0 − α) ≥ α0, then

h(t)h
′
(t) ≥ −ur(t, h(t))− α. (2.28)

Using the similar arguments as in [10, Lemma 3.2] and the property q′0(r) >
0 for r ∈ [R,+∞), we can show that, for t ≥ 1,

ut −
N − 1

r
ur − urr − u(1− u) ≥ ut − urr − u(1− u) ≥ 0. (2.29)

By the definition of the upper solution and (2.26)–(2.29), we see that (u, h) is
an upper solution of (1.1) for t ≥ 1. Hence

h(t) ≤ h(t) for all t ≥ 1. (2.30)

We now construct a lower solution. By the property of V (the solution of
(1.4)), for any sufficiently small ε > 0, there exists X > 0 such that V (X) >
1 − ε. Choose X1 > X such that N−1

X1
≤ −γε2 , where (γε, qγε) is the unique

solution of (2.25) with q′γε(R) = α0 + ε. By the monotonicity of V , there is
ν > 0 sufficiently small such that

V (X) < (1− ν)V (X1). (2.31)

Define c := (1− 2ε)(α0 − ε)− α. Since ε > 0 is sufficiently small and α < α0,
one can show that c > 0. Choose T � 1 sufficiently large such that

√
2c

2
T−

1
2 <
−γε

2
, e−δT ≤ ε

2
, σ
√

2/ce−δt < t−
1
2 for t ≥ T, (2.32)

where δ ∈ ( 1
2 , 1), and for all t ≥ T ,

u(t, r) ≥ (1− ν)V (X1) for r ∈ [X1, 2X1]. (2.33)

The above inequalities follow from (1.3) in the spreading case and the mono-
tonicity of V . For some large σ > 0 and a small M1 (0 < M1 � 1) satisfying

M1σ
√

2/c < T−
1
2 to be determined below, we define

h(t) :=
√

2ct+M1σe
−δt −H0, t ≥ T,
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u(t, r) := [V (X)− ε−M1e
−δt]qγε(h(t)− r +R), X1 < r < h(t), t ≥ T,

where H0 is a constant satisfying

√
2cT +M1σe

−δT −H0 ∈ (X1, 2X1]. (2.34)

We next check that (u, h) is a lower solution. Clearly,

u(t, h(t)) = 0 for t ≥ T. (2.35)

By (2.31) and (2.33) we have

u(t,X1) ≤ V (X)− ε−M1e
−δt ≤ V (X) < (1− ν)V (X1) ≤ u(t,X1) for t ≥ T.

(2.36)
Direct computations yield that

− ur(t, h(t))− α = [V (X)− ε−M1e
−δt]q′γε(R)− α

≥ [1− 2ε−M1e
−δt]q′γε(R)− α ≥ c−M1e

−δtq′γε(R).

Here, we have used the fact that V (X) > 1−ε and q′γε(R) = α0−ε. Moreover,

note that M1σ
√

2/c < T−
1
2 , δ ∈ ( 1

2 , 1), then by the definition of h, we have

h(t)h′(t) ≤ c+M1σe
−δt(−

√
2ctδ +

√
c/2t−

1
2 ) ≤ c+M1σe

−δt(−
√

2cδ +
√
c/2).

Hence, if we take σ > 0 such that σ(
√

2cδ −
√
c/2) > q′γε(R), then

h(t)h′(t) ≤ −ur(t, h(t))− α for t ≥ T. (2.37)

By (2.31), (2.33), (2.34) and the definition of u, one can derive that u(T, r) ≤
V (X) ≤ (1− ν)V (X1) ≤ u(T, r) for r ∈ [X1, h(T )].

Finally, using the similar arguments as in [10, Lemma 3.3] and (2.32), one
can calculate directly

ut −
N − 1

r
ur − urr − u(1− u) = M1δe

−δtqγε +
(√2c

2
t−

1
2 +

N − 1

r

)
× [V (X)−ε−M1e

−δt]q′γε−M1σδe
−δt[V (X)−ε−M1e

−δt]q′γε − [V (X)− ε
−M1e

−δt]q′′γε − [V (X)− ε−M1e
−δt]qγε(1− [V (X)− ε−M1e

−δt]qγε)

≤M1δe
−δtqγε−γε[V (X)−ε−M1e

−δt]q′γε −M1σδe
−δt[V (X)−ε−M1e

−δt]q′γε

− [V (X)− ε−M1e
−δt]q′′γε − [V (X)− ε−M1e

−δt]qγε
{

1− [V (X)− ε
−M1e

−δt]qγε
}

= M1δe
−δtqγε + [V (X)− ε−M1e

−δt]qγε(1− qγε)
−M1σδe

−δt[V (X)− ε−M1e
−δt]q′γε

− [V (X)− ε−M1e
−δt]qγε

{
1− [V (X)− ε−M1e

−δt]qγε
}
≤ 0. (2.38)

We used (2.32) in the above first inequality, and in the second equality we
have used that (γε, qγε) is the solution of (2.25). Applying the method in [10,
Lemma 3.3] and (2.32), one can show that the last inequality holds.
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By (2.35)–(2.38) and the definition of the lower solution (see Remark 4),
we see that (u, h) is a lower solution of the problem (1.1). Hence

h(t) ≥ h(t) for t > T. (2.39)

It follows from (2.30), (2.39) and the definition of c that

√
2[(1− 2ε)(α0 − ε)− α] ≤ lim inf

t→∞

h(t)√
t
≤ lim sup

t→∞

h(t)√
t
≤
√

2(α0 − α).

Since ε > 0 can be arbitrarily small, we have

lim
t→∞

h(t)/
√
t =

√
2(α0 − α).

3 Sufficient Conditions

In this section, we give some necessary and sufficient conditions for vanishing
and spreading, and a sufficient condition for transition.

Proposition 1. Assume 0 < α < α0, h0 > 0 and u0(r) ∈ I(h0). Let (u, h)
be the solution of (1.1) with initial data u0(r). Then the following properties
hold:

(i) vanishing happens if and only if there exists t1 such that

u(t1, r) < vα(r) for r ∈ [R, h(t1)] (3.1)

and ‖u(t1, r)‖L∞([R,h(t1)]) is sufficiently small;

(ii) spreading happens if and only if there exists t2 such that

u(t2, r) > vβ(r) for r ∈ [R, lβ ] ⊂ [R, h(t2)], (3.2)

where β ∈ (α, α0), (lβ , vβ) is the unique positive solution of{
∆v + v(1− v) = 0, lα < r < L,
v(R) = 0, v(L) = 0, −v′(L) = β,

(3.3)

(iii) transition happens if h0 = lα and u0(r) ≡ vα(r) for r ∈ [R, h0].

Proof. (i) The condition (3.1) follows from the definition of vanishing. We
only need to show that (3.1) is a sufficient condition for vanishing. By the
comparison principle, we have

u(t, r) ≤ vα(r), r ∈ [R, h(t)], t > t1.

Hence h(t) ≤ lα for all t > t1. Consider the problem (2.9) with L := 2(lα + 1),
then it follows from the last part of the proof of Theorem 1 (ii) that h(t)
converges to R within a finite time if ||u(t1, r)||L∞([R,h(t1)]) is sufficiently small.
Combining this and Theorem 1 (ii), we conclude that vanishing happens.
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(ii) Clearly, inequality (3.2) is a necessary condition. We now prove that
it is a sufficient condition for spreading. By the comparison principle in [9,
Lemma 2.1] and α < β < α0, one can show that (3.3) has a unique positive
solution (lβ , vβ) and lβ > lα. Then it follows from β > α and the definition
of lower solution (see Remark 4) that vβ(r) is an lower solution of (1.1) when
t > t2. Therefore, by the comparison principle Lemma 1 we have

h(t) > lβ > lα, u(t, r) > vβ(r) for r ∈ [R, lβ ], t > t2.

Hence
h∞ := lim

t→∞
h(t) ≥ lβ > lα.

By Theorem 1 (there are only three cases for h∞ : h∞ = +∞, h∞ = R, h∞ =
lα) we have h∞ = +∞ and spreading happens.

(iii) By u0(r) ≡ vα(r) for r ∈ [R, h0] = [R, lα], one can verify directly that
h(t) ≡ lα and u(t, r) ≡ vα(r) for all t > 0 and r ∈ [R, lα]. Then it follows from
Theorem 1(iii) that transition happens. ut

Acknowledgement
The research is sponsored by National Science Foundation of China
(No. 11526134, 1150214 and 61203006), Natural Science Foundation of Shang-
hai (No. 13ZR1454900), and the Innovation Program of Shanghai Municipal
Eduction Commission (No. 14ZZ151). The authors would like to thank the
reviewers who give us helpful comments.

References

[1] J. Cai. Asymptotic behavior of solutions of Fisher–KPP equation with free
boundary conditions. Nonlinear Analysis: Real World Applications, 16:170–177,
2014. https://doi.org/10.1016/j.nonrwa.2013.09.016.

[2] J. Cai, B. Lou and M. Zhou. Asymptotic behavior of solutions of a reaction
diffusion equation with free boundary conditions. Journal of Dynamics and
Differential Equations, 26(4):1007–1028, 2014. https://doi.org/10.1007/s10884-
014-9404-z.

[3] R.S. Cantrell and Ch. Cosner. Spatial Ecology via Reaction–diffusion Equations.
John Wiley & Sons Ltd., Chichester, UK, 2003.

[4] S. Cui and A. Friedman. Analysis of a mathematical model of protocell.
Journal of Mathematical Analysis and Applications, 236(1):171–206, 1999.
https://doi.org/10.1006/jmaa.1999.6444.

[5] Y. Du and Z. Guo. Spreading–vanishing dichotomy in a diffusive logistic model
with a free boundary, II. Journal of Differential Equations, 250(12):4336–4366,
2011. https://doi.org/10.1016/j.jde.2011.02.011.

[6] Y. Du and Z. Guo. The Stefan problem for the Fisher–KPP
equation. Journal of Differential Equations, 253(3):996–1035, 2012.
https://doi.org/10.1016/j.jde.2012.04.014.

[7] Y. Du and Z. Lin. Spreading–vanishing dichotomy in the diffusive logistic model
with a free boundary. SIAM Journal on Mathematical Analysis, 42(1):377–405,
2010. https://doi.org/10.1137/090771089.

Math. Model. Anal., 22(1):21–36, 2017.

https://doi.org/10.1016/j.nonrwa.2013.09.016
https://doi.org/10.1007/s10884-014-9404-z
https://doi.org/10.1007/s10884-014-9404-z
https://doi.org/10.1006/jmaa.1999.6444
https://doi.org/10.1016/j.jde.2011.02.011
https://doi.org/10.1016/j.jde.2012.04.014
https://doi.org/10.1137/090771089


36 J. Cai and Q. Wu

[8] Y. Du and B. Lou. Spreading and vanishing in nonlinear diffusion problems with
free boundaries. Journal of the European Mathematical Society, 17(10):2673–
2724, 2015. https://doi.org/10.4171/JEMS/568.

[9] Y. Du and L. Ma. Logistic type equations on Rn by a squeezing method involv-
ing boundary blow–up solutions. Journal of the London Mathematical Society,
64(1):107–124, 2001. https://doi.org/10.1017/S0024610701002289.

[10] Y. Du, H. Matsuzawa and M. Zhou. Sharp estimate of the spreading speed de-
termined by nonlinear free boundary problems. SIAM Journal on Mathematical
Analysis, 46(1):375–396, 2014. https://doi.org/10.1137/130908063.

[11] A. Friedman. Partial Differential Equations of Parabolic Type. Dover Publica-
tions, USA, 2008.

[12] A. Friedman and B. Hu. A Stefan problem for a protocell model.
SIAM Journal on Mathematical Analysis, 30(4):912–926, 1999.
https://doi.org/10.1137/S0036141098337588.

[13] H. Gu, B. Lou and M. Zhou. Long time behavior of solutions of Fisher–KPP
equation with advection and free boundaries. Journal of Functional Analysis,
269(6):1714–1768, 2015. https://doi.org/10.1016/j.jfa.2015.07.002.

[14] D. Hilhorst, M. Iida, M. Mimura and H. Ninomiya. A competition–
diffusion system approximation to the classical two–phase Stefan problems.
Japan Journal of Industrial and Applied Mathematics, 18:161–180, 2001.
https://doi.org/10.1007/BF03168569.

[15] D. Hilhorst, M. Iida, M. Mimura and H. Ninomiya. Relative compactness in
Lp of solutions of some 2m components competition–diffusion systems. Dis-
crete and Continuous Dynamical Systems – Series A, 21(1):233–244, 2008.
https://doi.org/10.3934/dcds.2008.21.233.

[16] Y. Kaneko. Spreading and vanishing behaviors for radially sym-
metric solution of free boundary problems for reaction–diffusion equa-
tions. Nonlinear Analysis: Real World Applications, 18:121–140, 2014.
https://doi.org/10.1016/j.nonrwa.2014.01.008.

[17] Y. Kaneko and Y. Yamada. A free boundary problem for a reaction–diffusion
equation appearing in ecology. Advances in Mathematical Sciences and Applica-
tions, 21(2):467–492, 2011.

[18] H. Schwegler, K. Tarumi and B. Gerstmann. Physico–chemical model
of a protocell. Journal of Mathematical Biology, 22(3):335–348, 1985.
https://doi.org/10.1007/BF00276490.

https://doi.org/10.4171/JEMS/568
https://doi.org/10.1017/S0024610701002289
https://doi.org/10.1137/130908063
https://doi.org/10.1137/S0036141098337588
https://doi.org/10.1016/j.jfa.2015.07.002
https://doi.org/10.1007/BF03168569
https://doi.org/10.3934/dcds.2008.21.233
https://doi.org/10.1016/j.nonrwa.2014.01.008
https://doi.org/10.1007/BF00276490



