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1 Introduction

We follow here notations and terminology about Hermite interpolating poly-
nomial from [1, p. 62]. Let —co < a<b< oo and a < ay < ag... < ar < b,
(r > 2) be given. For f € C™[a,b] a unique polynomial Py (t) of degree (n—1),
exists, fulfilling one of the following conditions: Hermite conditions:

T
Pia) = 10(a); 0<i<h, L1<j<r Y kj+r=n,
j=1
in particular, simple Hermite or Osculatory conditions, n =2m, r =m, k; =1

for all j:
Po(a;) = flaj), Pola;) = f'(a;), 1<j<m,
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Lagrange conditions, » =n, k; = 0 for all j:
Pr(aj) = f(a;), 1<j<n,
type (m,n—m) conditions, r =2, 1 <m<n—-1,kk=m—-1,k=n—m-—1:
Pin(@) = fP(a), 0<i<m—1,
PO.0) = fYb), 0<i<n—m-1,
two-point Taylor conditions, n =2m, r =2, ky = ko =m — 1:
Py(a) = [ (a), PR(b) = fO0), 0<i<m—1.

The associated error |eg(t)| can be represented in terms of the Green’s
function G (t, s) for the multipoint boundary value problem

M) =0, 29a;)=0, 0<i<k;, 1<j<r,
that is, the following result holds [1]:

Theorem 1. Let F € C™[a,b] and let Py be its Hermite interpolating polyno-
mial. Then

vk
F(t) = Pu(t) +en(t) =SS Hy()F(a / Grt, s)F™ (s)ds, (1.1)

7j=11:=0

where H;; are fundamental polynomials of the Hermite basis defined by

kj—i . (k)
1 w(t) 1 |:(t—at)kj+1] A
Hy(t) =~ —20 5~ Lz a)n e
’ il (t — aj)kit1= kZ:O k;! w(t) t=ay J

where w(t) = [T5_,(t — a; )T and Gy is the Green’s function defined by

GH(t S) _ ZJ 121 0 (a(]n*sz 1)' Hw(t% S S t’
’ o a. Tl i—1

z] =I+1 Z’L =0 (n i) H”(t)’ s >t,
foralla; <s<ap1,0=1,...,7 (ag = a,a,41 = b).

In [4] M. Bessenyei and Zs. Péles considered the following Gauss type quadra-
ture formulae where the coefficients and the base points are to be determined
so that be exact when f is a polynomial of degree at most 2n — 1, 2n, 2n and
2n + 1, respectively (see also [3]):

b n b
[ oswie =" s, [ oo =i +ch‘ &),
a k=1 a

b n
/ OO = 32 el (66 + enia 1)
a k=

b
[ o1t = cofa chf (6) + nsr f(D).

Math. Model. Anal., 21(6):836-851, 2016.
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In this paper we use integral error representation of Hermite interpolating
polynomial and the above formulae to get some new estimations of the remain-
der in quadrature formulae of Hermite type. We will consider a special case, in
which the base points turn out to be the zeros of orthogonal polynomials. We
also use inequalities for the Cebysev functional in terms of the first derivative
(see [5]) for some new bounds for the remainder.

2 Estimations of the remainder in quadrature formulae
of Hermite type

In this section we use integral error representation from Theorem 1 to prove a
number of inequalities for weighted Hermite quadrature rule using L, norms
for 1 < p < 0.

Theorem 2. Suppose that all assumptions of Theorem 1 hold. Assume that
p:la,b] = R is a nonnegative integrable function with f p(t)dt > 0 and (p,q)
is a pair of conjugate exponents, that is 1 < p,q < oo, 1/p+ 1/q = 1. Then we
have

’/abp dthZF(Z aj/ ()Hij(t)dt’

7j=1 =0 . q 1/q
/a p(t)G’H(t,s)dt’ ds> . (2.1)

b
< |F<”>||p( /

The constant on the right-hand side of (2.1) is sharp for 1 < p < co and the
best possible for p = 1.

Proof. First, we multiply identity (1.1) by p(¢) and then integrate on interval
[a,b]. Let’s denote

b
@(8):/ p(t)Gr(t,s)dt. (2.2)

By applying Holder’s inequality we obtain

‘/abp(t) dt*ZZF( / ()Hij(t)dt’

j=11i=0
1/q
‘/ (s)F™(s)ds| < ||[F™ ||p</ |B(s |qu> .

1/q
For the proof of the sharpness of the constant (f: |P(s)]? ds) let us find a

function F for which the equality in (2.1) is obtained. For 1 < p < co take F
to be such that

F™(s) = sgn &(s)|d(s)| 71
For p = oo take F(™)(s) = sgn®(s). For p = 1 we prove that

b
’/ F(") )ds| < max_|P(s |(/
s€la,b] a

F(”)(s)‘ ds) (2.3)
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is the best possible inequality. Suppose that |@(s)| attains its maximum at
S0 € [a, b]. First we assume that #(sg) > 0. For e small enough we define F_(s)
by

0, a<s < s,

F.(s) =< =%(s—s0)", so<s<sp+e,
(n—ll)!(s —50)"", sot+e<s<hb

Then for £ small enough

’ / ’ B(s)F™ (s)ds

Now from the inequality (2.3) we have

1 so+e so+e€ 1
1 / B(s)ds < (so) / Lds = B(s0).

€ S0 S0

So+¢ 1
/ d(s)—ds
S0

€

Since
1 So+e

lim — &(s)ds = D(s0)

e—=0 ¢ s0

the statement follows. In the case @(sg) < 0, we define F,(s) by

(n_ll)!(s — S0 — 5)n717 a < s < sp,
1
F.(s)=1q —ga(s—s0—¢)", S0 <5< s09+¢,
0, sot+e<s<b

and the rest of the proof is the same as above. 0O

Taking n = 2m, r = m, k; = 1 for all j in Theorem 2 we obtain the inequalities
with simple Hermite or Osculatory conditions:

Corollary 1. Let F € C?*™([a,b]),m > 1. Assume that p : [a,b] — R is a non-

negative integrable function with f b p(t)dt > 0 and (p, q) is a pair of conjugate
exponents, that is 1 < p,q < oo, 1/p+ 1/q = 1. Then we have

m

\ / )t - f: Flay) [ o) o (0t — 3 0y / b p(t)Hu(t)dt]

j=1
b
< ||F<2m>||p( /

b q 1/q
/p(t)Ggl(t,s)dt ds) , (2.4)

| P2 (1) Pue),,
HO](t> (t— a]) [ ( )]2 (1 P;n(a])(t J)) )
P

(t = a5) [P} (a))]"

P,(t) = H(t —aj) for a<ai <ag..<an,<b

where

Math. Model. Anal., 21(6):836-851, 2016.
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and
l S —s
Zj:l %HOJ( )+ Zg 1 (GZQm) 2)! Hlj( ), s<t,
_ZT:I+1%HOJ( )— Zj:l—i—l%Hlj( ), s >t

for all a; < s < ajq1,l = 0,...,m (ap = a,ams+1 = b). The constant on the
right-hand side of (2.4) is sharp for 1 < p < oo and the best possible for p = 1.

GH'(t,s)=

Remark 1. If we choose P,, such that it is orthogonal with weight p(t) to all
polynomials of lower degree, i.e.

b
/ p(t) P ()tFdt =0, k=0,1,...,m — 1, (2.5)
we get that
b

Now, a1, as, ..., a, are zeros of the orthogonal polynomial P,,, and using the
relation for coefficient Hy,(t), we get

b b 2 1" . b
/a p(t)Hoj (t)dt = / <t_2§§)£ﬁffaj>]2dt ;,HE g / p(t)Hy;(t)dt.

Now, using (2.5), we have

b p(t) Pt P, (t
5~ 1)dt=
/a e (( a )t 0

(t —a;) P}, (ay)

because
P(t)

(t —aj) P, (aj)

where Q(t) is polynomial of degree m — 2. So,

Vo e [T POPA® [ pO)Pu(t)
/ap(t)Hoj(t)dt—/a ay)? [P;n(aj)}zdt_/a (t—aj)P,g@(aj)dt'

Now, we get inequality

b m b g \ Y4

‘/ pOYF(t)dt = a;F(a;)| < [|FC™], (/ d8> ;
a j=1 a

1 Y p(t) Pt

s = g [ 2R,

where
Py (a; (t —aj)

and for a; < s < aj41, using the following identity (see [1])

—1=(t—a;)Q(),

/ " oG5 b, 5)at

(a; — §)2m—i=1

mHz‘j(t% (2.6)
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we get

m 2m—1 ,, .

4 — 3 ) 1 ’ 2m—1

j=l+1

/ oGSt )t =

Corollary 2. Let p(t) = 1 and for m > 1 the polynomial P,, be defined by the
formulae

1 1
t 2 1
2 1
Pu®)=| . . "
: 1 1
om0 m
Then, the orthogonal polynomial P,,, has m pairwise distinct zeros A1, ..., A

in [0, 1]. Define the coefficients a1, ..., a;, by (see [4]):

[T Pa®)
e /0 (t— /\j)PA@(AJ’)dt'

If f € C*"([a,b]), then it satisfies

’bla/abf(t)dt—i:ajf((l—)\j)a-i-/\jb)‘

2m—11 (2 e C1 s—a
< a2 ([ [ es (122 )

q 1/q
ds) ,
where for \; < s < A4

1 m L <\2m—1 . 1
/ Ggl (t7 S)dt - _ Z ()\j S) Q; + 1 )' / (t . S)Qm_ldt.
0 cJs

Pt (2m —1)! (2m —1

The constant on the right-hand side of inequality is sharp for 1 < p < oo and
the best possible for p = 1.

Proof. Substitute a = 0, b = 1 and p = 1 into Corollary 1. Then P, is
orthogonal polynomial with respect to the weight function p(t) = 1 since first
and (k+1)st columns of the determinant (P, (t),t*~1), k = 1,...,m are linearly
dependent. Therefore, P, has m pairwise distinct zeros0 < A\; < --- < \,,, < 1.
To complete the proof, we apply Remark 1 on the function F' : [0,1] — R
defined by the formula F(¢) = f((1 —t)a+1tb). O

Remark 2. If we put ¢ = 1, then for m = 1 in the above corollary we get the
midpoint formula (see [8], [14], [16] and [17]). For m = 2 we get the Gauss
2-point formula (see [11], [14], [16] and [17]). For m = 3 we get the Gauss
3-point formula (see [11], [14] and [16]). For m = 4 we get the Gauss 4-point
formula (see [10], [14] and [16]).

Math. Model. Anal., 21(6):836-851, 2016.



842 G. Aras-Gazié, J. Pecarié and A. Vukelié

Taking a1 = a in Theorem 2 we obtain the following corollaries:

Corollary 3. Suppose that all assumptions of Theorem 1 hold. Assume that

p : [a,b] = R is a nonnegative integrable function with f p(t)dt > 0 and (p,q)
is a pair of conjugate exponents, that is 1 < p,q < oo, 1/p+ 1/q = 1. Then we
have

b k1 b
/ PO F Mt -3 F)(a) / (1) iy (1)t — Z Z F)(q
a i—0 a

j=2 i=0
</ bp(t)Hm)dt] < |F<")||p( / b / PO qu)l/q. (27)

The constant on the right-hand side of (2.7) is sharp for 1 < p < oo and the
best possible for p = 1.

Corollary 4. Let F € C*"~1([a,b]),r > 2. Assume that p : [a,b] — R is a non-

negative integrable function with f; p(t)dt > 0 and (p, q) is a pair of conjugate
exponents, that is 1 <p,q < oo, 1/p+1/¢ = 1. Then we have

b
| / (6t~ Fla) [ plt) o (00
b ‘ T b
=S [ o003 Fa) [ om0
b b q 1/q
< 1re 1, (7] [ scsi s ) (28)
where
P (t—a)P2 ()
= pr i O R P @ -
_ Py + (@ —a) Py (ay)
<1 @ —aP (@) " )
o) = L OPL0
(t —aj)(a; —a) [Pl_(a )]
P._4(t) = H(t —aj)fora=a1 <az..<a, <b
j=2
and
e Hou (1) + Sy o o (1)
G%‘l(t,s): +Zj ) (aZ;l"S)go)' Hyji(t), s <t,

D %HOJ( ) = X %Hlj( ), s > t,

for all a; < s < aj41,l = 1,...,7 (a,4+1 = b). The constant on the right-hand
side of (2.8) is sharp for 1 < p < co and the best possible for p = 1.
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Proof. We put k; =0 and kj =1 for j =2,...,r in Corollary 3. O

Remark 3. If we choose P._1 such that it is orthogonal with weight (¢ — a)p(¥)
to all polynomials of lower degree, i.e.

b
/(thMﬂRuﬂﬂﬁﬁ:ﬂ,k:QL”WT—2

we get that
b
/ p(t)Hlj(t)dt =0.
a

Now, similar as in Remark 2, as, a3 ..., a, are zeros of the orthogonal polyno-
mial P._;, and we get

b , Cap
[ ot = b [P,

(aj —a)P] (t —ay)

So,

b r
| F®d - @) -3 ;P (a)
a j=2

b g \ e
< ||F(2T_1)||p (/ dS) s
where

IS S L 1 o)t — a) Py (1)
1= <a>/ap“)P’“*1(“dt’ J‘(aj—a)P;_xaj)/a C—a)

r—1

/ OGS (. 5)dt

and for a; < s < a;41, using the identity (2.6), we get

r 27”720[4

b R b
[l P(t)G%l(t, s)dt = — Z (aj(2r )_ ol J 4 (2r i 2)‘ /S p(t)(t — s)2r72dt.

=141

Corollary 5. Let p(t) = 1 and for r > 2 the polynomial P,_; be defined by the
formulae

1 1
S S
3 +1
Pr—l(t) == . " .
1o o
tr T 3
Then, the orthogonal polynomial P._; has r — 1 distinct zeros Ao,..., A, in

[0, 1]. Define the coefficients as, ..., a, by (see [4])

1 /12 1/‘1 tP,_1(t)
a1 = —— | P2 (t)dt, aj=— dt.
VSR Jo T =5 L TP Oy

r—1

Math. Model. Anal., 21(6):836-851, 2016.
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If f € C?~1([a,b]), then it satisfies

/f )dt — on f(a Za]f a+>\b)‘

2r—2)| p(2r—1) ’ Cc4 s—a
< (b a2 D), OGH L) ar

q 1/q
ds> ,
where for a; < s < a1

! 4 - Aj—s QT_QO‘J’ 1 ' 2r—2
/OGg (ts)dt =— > ( (2722)! +(2T_2)!/s(t—s) dt.

j=i+1

The constant on the right-hand side of inequality is sharp for 1 < p < oo and
the best possible for p = 1.

Proof. Substitute a = 0, b = 1 and p = 1 into Corollary 4. Then P,._; is
orthogonal polynomial with respect to the weight function p(t) = ¢. The rest
of proof is similar to the proof of Corollary 2. O

Remark 4. If we put ¢ = 1, then for r = 2 in the above corollary we get the
Radau 2-point formula (see [9], [14] and [16]). For r = 3 we get the Radau
3-point formula (see [9], [14] and [16]).

Remark 5. For a, = b in Theorem 2 we obtain the similar results as above.

Taking a1 = a, a, = b in Theorem 2 we obtain the following corollaries:

Corollary 6. Suppose that all assumptions of Theorem 1 hold. Assume that
p : [a,b] — R is a nonnegative integrable function with f p(t)dt > 0 and (p, q)
is a pair of conjugate exponents, that is 1 < p,q < oo, 1/p+ 1/q = 1. Then we
have

b k1 _ b
[ oora-3 0w [ ot
a i—0 a

r—1 kj } b Ko ] b
DI CEAUTED SEROY Ot
j=2i=0 a i=0 @

b
/ (G (L, s)dt

b q 1/q
<171, ([ i) (29)

The constant on the right-hand side of (2.9) is sharp for 1 < p < oo and the
best possible for p = 1.

Corollary 7. Let F € C*"~2([a,b]),r > 2. Assume that p: [a,b] — R is a non-
negative integrable function with f b p(t)dt > 0 and (p,q) is a pair of conjugate
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exponents, that is 1 <p,q < oo, 1/p+1/¢ = 1. Then we have

r—1 b

b b
[ P~ F@) [ pte)ton ()t =3 Flas) [ ple)os(e)ae

=2 a

r—1 b b

- ZF'(%)/

=2 @

b
<pree2,( [

b—t)P2 —a Pfﬁ
Ho (t) = (t a)(b—1)P? ,(t) i
(a; —a)(b—a;)(t — a;)? [P} _y(ay)]
(2a;—a—b) P _5(a;)—(b—a)(a; — a)PC(aj) \
“(n (= a;)(a — VP _(a;) ),
(t —a)(b—t)P? 5(t)
(t—a;)(a; —a)(b—a;) [PL_5(a;)]”’
r—1
P._o(t) = H(t—aj) fora=a1<ax<...<a,_1<a.=5b
j=2

(050t = F0) [ o0t (01

a

b q 1/q
/ p()GS (t, 5)dt ds) : (2.10)

Hoi(t) =

Hy;(t) =

and

a—s)3" 73 (aj—s
ﬁHM( )+Z] 2 (2r )3): HOJ’( )
+E] =2 (afz_f a1 Hlj( ), s<t,

_Zr—l (aj—s) H () Zr 1 (aj—5)27 4H (t)
J=l+1 " (2r=3)! 0j J=I4+1 " (2r—4)! 1j

2r
_% HOT(t)v s> t7

GICLF(t’ 5):

for all a; < s < ajy1,l = 1,...,7 — 1. The constant on the right-hand side of
(2.10) is sharp for 1 < p < oo and the best possible for p = 1.

Proof. Weput ky =k, =0and k; =1for j =2,...,r—1in Corollary 6. 0O

Remark 6. If we choose P,_5 such that it is orthogonal with weight (¢t —a)(b—
t)p(t), to all polynomials of lower degree, i.e.

b
/ p(t)(t —a)(b—t)Pr_o(t)t'dt =0, 1=0,1,...,7—3,

we get that

/b p(t)Hlj(t)dt =0

Math. Model. Anal., 21(6):836-851, 2016.
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and then similar as in Remark 2, as,as,...,a,._1 are zeros of the orthogonal
polynomial P, 5, and
b b
| p(t)(t = a)(b— ) Pr_a(t)
p(t)Ho;(t)dt = . / dt.
oottt == | t—a)
So,
b
| oF@i - air Zaj (@) . F0)
b b 1/q
<102 ( [ [ otGuttsar] as)
where
L / 06— P2 (1)t
o0 = =5 — ) )
oL@ ), " ’
o 1 /*’ Pt —a)(b—t)Ps(t) .
T (aj —a)(b—a;)P/_y(a;) (t —aj) 7
1 /” )
ap =" | p(t)(t—a)P? ,(t)dt
G- Pz, J, MO0 9=l

and for a; < s < aj41, using the identity (2.6), we get

r )21’—3a

" OGS (L 5)dt = (a; — s i L "Dt — s)Sat
[ o065 e = 30 s [ - ot

=141

Corollary 8. Let p(t) =1 and for r > 3 the polynomial P,_5 be defined by the
formulae

1
(r—ll)r

D)

1
t

. 9‘3‘,_\‘9‘,_.
=W

Pro(t) =
tT'—Q 1 .. 71
r(r+1) (2r—3)(2r—2)

Then, the orthogonal polynomial P._5 has r — 2 distinct zeros Az,...,Ar_1 in
[0,1]. Define the coefficients «y, ..., a, by (see [4]):

1 ! 1 !
PQ(O)/O (1=t)P2,(t)dt, a,= P27(1)/0 tP2_y(t)dt,
r—2 r—2

o 1 L1 — )P _a(t)
“J‘(lmxj/o( P L0

If fe C’Q”_Q([a b]), then it satisfies

o] =

/f Ydt — a1 f(a Za]f (1= Xj)a + A\jb) — a, f(b)

2r—3 | £(2r—2 ’ c7 s—a ! Y
<(b—a)*~ ||f( T—)|p</ /OGH (t7ba)dt dS) ,
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where
! "L\ — 5)3Bay 1 1
GG (t,s)dt = — (; I 4 / (t — s)*—3dt.
/0 " j;l (2r — 3)! (2r —3)! J,

The constant on the right-hand side of inequality is sharp for 1 < p < oo and
the best possible for p = 1.

Proof. Substitute a = 0, b = 1 and p = 1 into Corollary 7. Then P,_5 is
orthogonal polynomial with respect to the weight function p(t) = (1 —t)t. The
rest of proof is similar to the proof of Corollary 2. O

Remark 7. If we put ¢ = 1, then for » = 2 in the above corollary we get the
trapezoid formula (see [7], [14], [16] and [17]). For r = 3 we get the Simpson
formula (see [6], [15], [14] and [16]). For r = 4 we get the Lobatto 4-point
formula (see [12], [14] and [16]). For r = 5 we get the Lobatto 5-point formula
(see [13], [14] and [16]).

Takingr =2, 1<m<n-1, kg =m—1,ks =n—m —1 in Corollary 6
we obtain the inequalities with (m,n —m) type conditions:

Corollary 9. Suppose that all assumptions of Theorem 1 hold. Assume that
p : [a,b] — R is a nonnegative integrable function with f p(t)dt > 0 and (p, q)
is a pair of conjugate exponents, that is 1 < p,q < oo, 1/p+ 1/q = 1. Then we
have

b m—1 b n—m—1
‘/ p(t)F( F@ / Hy(tydt— > FO
@ =0 a =0

b q 1/q
/ P0G (t, 5)dt ds) L (211)

b
<1Fn( |

The constant on the right-hand side of (2.11) is sharp for 1 < p < co and the
best possible for p = 1.

x /bpu)Hﬂwdt

Taking n = 2m, r = 2, k; = ko = m — 1 in Corollary 6 we obtain the
inequalities with two-point Taylor conditions:

Corollary 10. Suppose that all assumptions of Theorem 1 hold. Assume that

p : [a,b] — R is a nonnegative integrable function with f p(t)dt > 0 and (p, q)
is a pair of conjugate exponents, that is 1 < p,q < oo, 1/p+ 1/q = 1. Then we
have

m—1
/b ZF” / Hi( dthF()

i= a

b
< rem, ([

Math. Model. Anal., 21(6):836-851, 2016.
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where
(t—a)i(t—0)" " (= ) £k~ 1) "
H; = —a),
1) 7! — [(m — 1)| (a )m+l~c( )
—a)™(t — i m—1—i k' m
v o [( — D% (b— )7"+

The constant on the right-hand side of (2.12) is sharp for 1 < p < co and the
best possible for p = 1.

3 Inequalities related to the bounds for the Cebysev
functional

For two Lebesgue integrable functions f,h : [a,b] — R we consider Cebysev
functional

/. / 0 tb_la/abf(t)dtbia./abh(t)dt. (3.1)

In [5], the authors proved the following theorems:

Theorem 3. Let [ : [a,b] — R be a Lebesgue integrable function and h :
[a,b] — R be an absolutely continuous function with = — (z—a)(b—x) [/ ()]
L[a,b]. Then we have the inequality

1 L1 b s \?
) 1< 1ol ([ - oo o Wele) . 62

The constant —s in (3.2) is the best possible.
Theorem 4. Assume that h : [a,b] — R is monotonic nondecreasing on [a, b]

and f : [a,b] — R is absolutely continuous with f' € Lo [a,b]. Then we have
the inequality

b
20012 550 | 1 [ (@ =)o - 2)an(e). (33)

The constant & in (3.3) is the best possible.

In this section we obtain some new estimations of the remainder in quadra-
ture formulae of Hermite type by using Theorem 3 and Theorem 4.

Theorem 5. Let F : [a,b] — R be such that F € C"!a,b] for n € N and
let the function @ and functional §2 be defined in (2.2) and (3.1) respectively.
Then

/a dt—ZZ/ (t) FD (a;) dt

Jj=114=0

F=1(p) — F(n=1(q)

b
- (b—a)n! / p(tyw(t)dt + Hy(Fia,b),  (3.4)
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where the remainder H}(F;a,b) satisfies the estimation

Vb—a
V2
Proof. Because F("t1) is continuous function then the function F(™ is abso-

lutely continuous (see Theorem 39.15. from [2]) and we can apply results from
Theorem 3 for f — & and h — F("). So, we obtain

‘b — / &(s)F™ (s)ds — —/ ab (s)ds

< } ﬁ / (s — a)(b—s) [F<n+1>(s)rds

Therefore we have

/ B(s)F™) (5)ds= D= F () / o / Gt $)ds+ H(F: 0.b)

b 3

| HY(F;a,b) |< (2,07 | [ (s—a)(b—s) [F(”“)(s)rds . (3.5)

a

2

[2(e,®)]?

b—a

where the remainder H}(F';a,b) satisfies estimation (3.5). Now from identity
(1.1) (see [1, pg.76]) we obtain (3.4). O

Using Theorem 4 we obtain the following Griiss type inequality.
Theorem 6. Let F : [a,b] — R be such that F € C"*!a,b] for n € N and
F*tD) >0 on [a,b] and let the function @ be defined in (2.2). Then we have
the representation (3.4) and the remainder H(F;a,b) satisfies the bound

200 < [9] (b= a) [F"7D() + FO D (o)

2
- [F("—2>(b) _ p(n=2) (a)} } (3.6)
Proof. Applying Theorem 4 for f — @ and h — F(") we obtain
b
- / B(s)F™ (s)ds — 7/ F™(s)ds
% o / (s —a)(b—s)F" ) (s)ds. (3.7)
—20b—-a) /,

Since

b b
/ (5 — a)(b — s)F+D (5)ds = / 25 — (a + b)) F™ (s)ds

= (b—a) [F(”‘l)(b) + F<"—1>(a>} —2 {F(”_Q)(b) — F=2(g)]
using identities (1.1) and (3.7) we obtain (3.6) O

Remark 8. Similarly as in the second section we can get the special cases of
above theorems from different choices of 7, k; and a;, and also for the zeros of
orthogonal polynomials.

Math. Model. Anal., 21(6):836-851, 2016.
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