
Mathematical Modelling and Analysis Publisher: Taylor&Francis and VGTU

Volume 21 Number 6, November 2016, 811–835 http://www.tandfonline.com/TMMA

http://dx.doi.org/10.3846/13926292.2016.1247303 ISSN: 1392-6292

c©Vilnius Gediminas Technical University, 2016 eISSN: 1648-3510
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Abstract. In this paper, we introduce a new class of operators called fuzzy-Prešić-
Ćirić operators. For this type of operators, the existence and uniqueness of fixed point
inM -complete fuzzy metric spaces endowed withH-type t-norms are established. The
results proved here generalize and extend some comparable results in the existing
literature. An example is included which illustrates the main result of this paper.
Moreover, some applications of our main theorem to the study of certain types of
nonlinear differential equations are provided.
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1 Introduction and preliminaries

The contraction mapping principle appeared in the explicit form in Banach’s
thesis in 1922 [1], where it was used to establish the existence of solution of
integral equations. It states that if (X, d) is a complete metric space and
f : X → X satisfies: there exists λ ∈ [0, 1) such that

d(fx, fy) ≤ λd(x, y), ∀ x, y ∈ X, (1.1)
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then f has a unique fixed point in X and, for each x0 ∈ X, the sequence of
iterates {fnx0} converges to this fixed point. Since then, because of its sim-
plicity and usefulness, this principle has become a very popular tool in solving
existence problems in many branches of mathematical analysis. Prešić [16, 17]
extended the Banach’s principle to product spaces and used this extension to
establish the convergence of some particular sequences.

Let k be a positive integer and T : Xk → X be a mapping. Then a point
x ∈ X is called a fixed point of T if T (x, x, . . . , x) = x. Prešić in his pa-
pers [16, 17] extended the Banach’s contractive condition, that is, the con-
tractivity condition (1.1) for the mapping T : Xk → X, namely, he used the
following condition: there exist nonnegative constants αi, 1 ≤ i ≤ k, such
that

∑k
i=1 αi < 1, d(T (x1, . . . , xk), T (x2, . . . , xk+1)) ≤

∑k
i=1 αid(xi, xi+1), for

all x1, x2, . . . , xk, xk+1 ∈ X, and proved a fixed point result for the mappings
satisfying this condition.

The Prešić’s theorem and its generalizations have various applications (see,
for instance, [2, 6, 11, 16, 17, 19, 20] and the references therein). Ćirić [3] gen-
eralized Prešić’s condition by considering the following condition: there exists
λ ∈ [0, 1) such that d(T (x1, . . . , xk), T (x2, . . . , xk+1)) ≤ λmax1≤i≤k d(xi, xi+1),
for all x1, x2, . . . , xk, xk+1 ∈ X.

On the other hand, fuzzy sets were first introduced by Zadeh [23] in 1965.
He studied the uncertainties occurring in the behaviour of systems of stochastic
nature by means of fuzzy sets. Kramosil and Michálek [12] used the concept
of fuzzy set to define the metric in form of fuzzy sets and introduced the
notion of fuzzy metric spaces. The fixed point theory on fuzzy metric spaces
was introduced by Grabiec in [7], where a fuzzy metric version of Banach
contraction principle was proved. However, it is important to note that no
method is available to obtain metric Banach contraction from Grabiec fuzzy
contraction. In 2002, Gregori and Sapena [9] introduced the notion of fuzzy
contractive mapping and established Banach contraction theorem in various
classes of complete fuzzy metric spaces in the sense of George and Veeramani [4],
Kramosil and Michálek [12] and Grabiec [7]. The results obtained by Gregori
and Sapena [9] have become recently of interest to many authors (see [5, 8, 13,
14,15,21,22]).

Following this direction of research, we extend and generalize here the fuzzy
contractive mappings of Gregori and Sapena [9] by introducing fuzzy-Prešić-
Ćirić operators and prove some fixed point results for such operators in fuzzy
metric spaces under H-type t-norms. The main theorem in this paper is illus-
trated with an example. Moreover, some applications to nonlinear differential
equations are given to show the usability of the obtained results.

First, we recall some definitions and results which will be needed in the
sequel.

Definition 1 [Schweizer and Sklar [18]]. A mapping ∗ : [0, 1]× [0, 1]→ [0, 1] is
called a continuous triangular norm (t-norm for short) if ∗ satisfies the following
conditions:

(i) ∗ is commutative and associative, that is, a ∗ b = b ∗ a and a ∗ (b ∗ c) =
(a ∗ b) ∗ c, for all a, b, c ∈ [0, 1];
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(ii) ∗ is continuous;

(iii) 1 ∗ a = a, for all a ∈ [0, 1];

(iv) a ∗ b ≤ c ∗ d, whenever a ≤ c and b ≤ d, with a, b, c, d ∈ [0, 1].

Some basic examples of t-norm are the minimum t-norm ∗m, a∗mb = min{a, b},
product t-norm ∗p, a ∗p b = ab, the  Lukasiewicz t-norm ∗L, a ∗L b = max{a +
b− 1, 0}, for all a, b ∈ [0, 1].

Let ∗ be a given t-norm. For a1, a2, . . . , an ∈ [0, 1], we use the notation
∗ni=1 ai = a1 ∗ a2 ∗ · · · ∗ an.

Let a ∈ [0, 1]. Then we can define the sequence {∗na}n∈N by ∗1a = a and
∗n+1a = (∗na) ∗ a, for n ≥ 1.

Definition 2 [Hadžić and Pap [10]]. A t-norm T is said to be of H-type if the
sequence {∗na}n∈N is equicontinuous at 1, that is, for all ε ∈ (0, 1), there exists
δ ∈ (0, 1) such that, a ∈ (1− δ, 1] implies ∗na > 1− ε for all n ∈ N.

An important H-type t-norm is ∗m. Some other examples of H-type t-norms
can be found in [10]. We denote the class of all Hadžić-type t-norms by H.

Definition 3 [George and Veeramani [4]]. A triple (X,M, ∗) is called a fuzzy
metric space if X is a nonempty set, ∗ is a continuous t-norm and M : X2 ×
(0,∞)→ [0, 1] is a fuzzy set satisfying the following conditions:

(GV1) M(x, y, t) > 0, for all x, y ∈ X and t > 0;

(GV2) M(x, y, t) = 1 for all t > 0 if and only if x = y;

(GV3) M(x, y, t) = M(y, x, t), for all x, y ∈ X and t > 0;

(GV4) M(x, z, t+ s) ≥M(x, y, t) ∗M(y, z, s), for all x, y, z ∈ X and s, t > 0;

(GV5) M(x, y, ·) : (0,∞)→ [0, 1] is a continuous mapping, for all x, y ∈ X.

For the topological properties of a fuzzy metric space, the reader is referred
to [4].

Definition 4 [George and Veeramani [4]; Schweizer and Sklar [18]]. Let
(X,M, ∗) be a fuzzy metric space and {xn} be a sequence in X. Then {xn} is
called an M -Cauchy sequence if for all ε ∈ (0, 1) and t > 0, there exists n0 ∈ N
such that M(xn, xm, t) > 1 − ε, for all n,m > n0. On the other hand, {xn}
is called a G-Cauchy sequence if limn→∞M(xn, xn+m, t) = 1 for each m ∈ N
and t > 0 or, equivalently, limn→∞M(xn, xn+1, t) = 1 for all t > 0.

The sequence {xn} is called convergent and converges to x if, for all ε ∈ (0, 1)
and t > 0, there exists n0 ∈ N such that M(xn, x, t) > 1− ε, for all n > n0.

We say that the space (X,M, ∗) is M -complete (resp., G-complete) if every
M -Cauchy (resp., G-Cauchy) sequence in X is convergent to some x ∈ X.

Theorem 1 [George and Veeramani [4]]. Let (X,M, ∗) be a fuzzy metric
space, {xn} be a sequence in X and x ∈ X. Then {xn} converges to x if and
only if

lim
n→∞

M(xn, x, t) = 1, ∀ t > 0.

Math. Model. Anal., 21(6):811–835, 2016.
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Remark 1 [George and Veeramani [4]]. Let (X, d) be a metric space, then

(X,Md, ∗p) is a fuzzy metric space, where Md(x, y, t) =
t

t+ d(x, y)
, for all

x, y ∈ X and t > 0. We call this Md the standard fuzzy metric induced by the
metric d. Further, (X, d) is complete if and only if (X,Md, ∗p) is M -complete.

Note that the above result remains true if we take ∗m instead of ∗p. We call
the space (X,Md, ∗m) the min-fuzzy metric space induced by d.
In the next three sections, we state our main results.

2 Fixed point theorems

First, we define Prešić-Ćirić operators in the framework of fuzzy metric spaces.

Definition 5. Let (X,M, ∗) be a fuzzy metric space, k a positive integer and
T : Xk → X be a mapping. Then T is called a fuzzy-Prešić-Ćirić operator if

1

M(T (x1, . . . , xk), T (x2, . . . , xk+1), t)
−1≤λ max

1≤i≤k

{ 1

M(xi, xi+1, t)
−1
}
, (2.1)

for all x1, . . . , xk, xk+1 ∈ X and t > 0, where λ ∈ (0, 1). Alternatively, the
above condition may be written as

M(T (x1, . . . , xk), T (x2, . . . , xk+1), t) ≥
[
λ · max

1≤i≤k

{ 1

M(xi, xi+1, t)
−1
}

+1
]−1

,

(2.2)
for all x1, . . . , xk, xk+1 ∈ X and t > 0, where λ ∈ (0, 1).

Remark 2. Taking M as Md in condition (2.1) (or (2.2)), we get

d(T (x1, . . . , xk), T (x2, . . . , xk+1)) ≤ λmax{d(xi, xi+1) : 1 ≤ i ≤ k},

for all x1, . . . , xk, xk+1 ∈ X, where λ ∈ (0, 1).

Next, we prove a fixed point theorem for the fuzzy-Prešić-Ćirić operators
in M -complete fuzzy metric spaces.

Theorem 2. Let (X,M, ∗) be an M -complete fuzzy metric space, k a positive
integer and T : Xk → X a fuzzy-Prešić-Ćirić operator. Suppose that one of the
following conditions holds:

(H1) ∗ ∈ H and there exist x1, x2 . . . , xk ∈ X such that

inf
t>0

M(xi, xi+1, t) > 0, i = 1, 2, . . . , k−1, inf
t>0

M(xk, T (x1, . . . , xk), t) > 0.

(H2) There exist x1, x2 . . . , xk ∈ X such that the following property holds: for
each ε ∈ (0, 1) and t > 0, there exists n0 ∈ N such that, for m, n > n0,

with m > n, we get ∗m−1j=n

[
1 + µ(ts

(n)
j )λ

j
k

]−1
> 1−ε, where s

(n)
j = 1

2j−n+1 ,

j = n, . . . ,m − 2, s
(n)
m−1 = s

(n)
m−2 and µ(z) := max

{
max1≤i≤k−1

1

λ
i
k

×
[

1
M(xi,xi+1,z)

− 1
]
, 1
λ

[
1

M(xk,T (x1,...,xk),z)
− 1
]}

.



Fuzzy-Prešić-Ćirić Operators and Applications to Certain Nonlinear DEs 815

Then T has a fixed point in X. If, in addition, we suppose that, on the diagonal
∆ ⊂ Xk,

M(T (u, . . . , u), T (v, . . . , v), t) > M(u, v, t), ∀ t > 0 (2.3)

holds for u, v ∈ X with u 6= v, then T has a unique fixed point.

Proof. Let x1, x2, . . . , xk be the points in X given by hypothesis. Define a
sequence {xn} by xn+k = T (xn, xn+1, . . . , xn+k−1), ∀ n ∈ N. For notational
convenience, set M(xn, xn+1, t) = Mn(t), for all n ∈ N and t > 0 and consider

µ(t) := max

{
1

θi

[
1

Mi(t)
− 1

]
: 1 ≤ i ≤ k

}
, where θ = λ

1
k . By mathematical

induction, we show that

1/Mn(t)− 1 ≤ µ(t)θn, ∀ n ∈ N, ∀ t > 0. (2.4)

By the definition of µ(t), it is obvious that (2.4) is true for n = 1, 2, . . . , k. Let

the following k inequalities, for t > 0,
1

Mn(t)
− 1 ≤ µ(t)θn,

1

Mn+1(t)
− 1 ≤

µ(t)θn+1, . . . ,
1

Mn+k−1(t)
− 1 ≤ µ(t)θn+k−1 be the induction hypothesis. Since

θ = λ
1
k < 1, from (2.1) we have

1

Mn+k(t)
− 1 =

1

M(T (xn, xn+1, . . . , xn+k−1), T (xn+1, xn+2, . . . , xn+k), t)
− 1

≤ λmax

{
1

M(xn+i−1, xn+i, t)
− 1: 1 ≤ i ≤ k

}
= λmax

{
1

Mn+i−1(t)
− 1: 1 ≤ i ≤ k

}
≤ λmax

{
µ(t) θn+i−1 : 1 ≤ i ≤ k

}
≤ λµ(t)θn = µ(t)θn+k, t > 0.

Hence, by induction, (2.4) is true for all n ∈ N.
Next, we show that {xn} is an M -Cauchy sequence. Consider ε ∈ (0, 1) and

t > 0 fixed. For n,m ∈ N with m > n, we have, using (2.4), that

M(xn, xm, t) ≥M(xn, xn+1, t/2) ∗M(xn+1, xm, t/2)

≥M(xn, xn+1, t/2) ∗M(xn+1, xn+2, t/2
2)

∗ · · · ∗M(xm−2, xm−1, t/2
m−n−1) ∗M(xm−1, xm, t/2

m−n−1)

=
(
∗m−2j=n Mj(t/2

j−(n−1))
)
∗Mm−1(t/2m−n−1)

≥
(
∗m−2j=n

[
1 + µ(t/2j−(n−1))θj

]−1)
∗
[
1 + µ(t/2m−n−1)θm−1

]−1
≥
(
∗m−2j=n

[
1 + µ(t/2j−(n−1))θn

]−1)
∗
[
1 + µ(t/2m−n−1)θn

]−1
.

Under condition (H1), it is easy to check that µ := sup
t>0

µ(t) ∈ [0,∞), since

sup
t>0

µ(t) ≤ max
1≤i≤k

{
1

θi
sup
t>0

[
1

Mi(t)
− 1

]}
= max

1≤i≤k

{ 1

θi

[ 1

inf
t>0

Mi(t)
− 1
]}

Math. Model. Anal., 21(6):811–835, 2016.
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and inf
t>0

Mi(t) = inf
t>0

M(xi, xi+1, t) > 0, i = 1, 2, . . . , k − 1,

inf
t>0

Mk(t) = inf
t>0

M(xk, xk+1, t) = inf
t>0

M(xk, T (x1, . . . , xk), t) > 0.

In these conditions, for n,m ∈ N with m > n, we have that

M(xn, xm, t) ≥ [1 + µθn]
−1 ∗ · · · ∗ [1 + µθn]

−1
= ∗m−n [1 + µθn]

−1
. (2.5)

Since ∗ ∈ H, there exists δ ∈ (0, 1) such that: if [1 + µθn]
−1 ∈ (1 − δ, 1], then

∗m−n [1 + µθn]
−1

> 1 − ε, for m > n. As 0 < θ < 1, given δ > 0 there

exists n0 ∈ N such that [1 + µθn]
−1 ∈ (1 − δ, 1], for all n > n0 (it suffices

to take n0 ∈ N such that 1 + µθn0 < 1
1−δ ). With this choice, we obtain

∗m−n [1 + µθn]
−1

> 1 − ε, ∀ n > n0, m > n. The above inequality with (2.5)
and the properties of M give M(xn, xm, t) > 1− ε, ∀ n, m > n0, ∀ t > 0.

On the other hand, if (H2) holds, there exists n0 ∈ N such that, for m, n >
n0, with m > n, we get

M(xn, xm, t) ≥
(
∗m−2j=n

[
1 + µ(t/2j−(n−1))θj

]−1 )
∗
[
1 + µ(t/2m−n−1)θm−1

]−1
=
m−1∗
j=n

[
1 + µ(ts

(n)
j )θj

]−1
> 1− ε.

Thus, in both situations, {xn} is an M -Cauchy sequence. By M -completeness
of X, there exists u ∈ X such that

lim
n→∞

M(xn, u, t) = 1, ∀ t > 0. (2.6)

Now, we show that u is a fixed point of T. Indeed, for any n ∈ N and t > 0, we
have

M(xn+k, T (u, . . . , u), t) = M(T (xn, . . . , xn+k−1), T (u, . . . , u), t)

≥M(T (xn, . . . , xn+k−1), T (xn+1, . . . , xn+k−1, u), t/2)

∗M(T (xn+1, . . . , xn+k−1, u), T (xn+2, . . . , xn+k−1, u, u), t/22)

∗ · · · ∗M(T (xn+k−2, xn+k−1, u, . . . , u), T (xn+k−1, u, . . . , u), t/2k−1)

∗M(T (xn+k−1, u, . . . , u), T (u, . . . , u), t/2k−1). (2.7)

Using (2.2), (2.4) and θ ∈ (0, 1), we have

M(T (xn, . . . , xn+k−1), T (xn+1, . . . , xn+k−1, u), t)

≥
[
λmax

{
max

1≤i≤k−1

{ 1

M(xn+i−1, xn+i, t)
−1
}
,

1

M(xn+k−1, u, t)
− 1
}

+1
]−1

=
[
λmax

{
max

1≤i≤k−1

{ 1

Mn+i−1(t)
− 1
}
,

1

M(xn+k−1, u, t)
− 1
}

+ 1
]−1

≥
[
λmax

{
max

1≤i≤k−1

{
µ(t)θn+i−1

}
,

1

M(xn+k−1, u, t)
− 1
}

+ 1
]−1

≥
[
λmax

{
µ(t)θn,

1

M(xn+k−1, u, t)
− 1
}

+ 1
]−1

.
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Using (2.6) and the fact that 0 < θ < 1, it follows from the above inequality that
lim
n→∞

M(T (xn, . . . , xn+k−1), T (xn+1, . . . , xn+k−1, u), t) = 1, ∀ t > 0. Similarly,

lim
n→∞

M(T (xn+1, . . . , xn+k−1, u), T (xn+2, . . . , xn+k−1, u, u), t) = 1, ∀ t > 0, . . . ,

lim
n→∞

M(T (xn+k−1, u, . . . , u), T (u, . . . , u), t) = 1, ∀ t > 0. The above properties

with (2.7) imply that

lim
n→∞

M(xn+k, T (u, . . . , u), t) = 1, ∀ t > 0. (2.8)

Therefore, for any n ∈ N and t > 0, we have

M(u, T (u, u, . . . , u), t) ≥ M(u, xn+k, t/2) ∗M(xn+k, T (u, . . . , u), t/2),

which, together with (2.6) and (2.8), gives M(u, T (u, u, . . . , u), t) = 1, ∀ t > 0.
Thus, T (u, u, . . . , u) = u, that is, u is a fixed point of T.

Finally, for uniqueness, suppose that v ∈ X is another fixed point of T with
u 6= v. Then, from (2.3), we have M(u, v, t) = M(T (u, . . . , u), T (v, . . . , v), t) >
M(u, v, t), for every t > 0. This contradiction shows that u = v. Thus, under
condition (2.3), the fixed point of T is unique. ut

Remark 3. The uniqueness condition (2.3) in Theorem 2 is reduced, for M =
Md, to d(T (u, . . . , u), T (v, . . . , v)) < d(u, v), ∀ u, v ∈ X with u 6= v. From the
proof of Theorem 2, it is obvious that uniqueness is also derived just considering
the following weaker hypothesis:

for each u, v ∈ X fixed with u 6= v, there exists t > 0 such that
M(T (u, . . . , u), T (v, . . . , v), t) > M(u, v, t).

(2.9)

Corollary 1. Let (X,M, ∗) be an M -complete fuzzy metric space and T : X →
X be a fuzzy contractive mapping (see Gregori and Sapena [9]), that is,

1

M(Tx, Ty, t)
− 1 ≤ λ

(
1

M(x, y, t)
− 1

)
, ∀x, y ∈ X, ∀t > 0,

where λ ∈ (0, 1). Suppose that one of the following conditions holds:

(h1) ∗ ∈ H and there exists x1 ∈ X such that inf
t>0

M(x1, T (x1), t) > 0.

(h2) There exists x1 ∈ X such that the following property holds: for each
ε ∈ (0, 1) and t > 0, there exists n0 ∈ N such that, for m, n > n0, with

m > n, we get ∗m−1j=n

[
1 + µ(ts

(n)
j )λj

]−1
> 1 − ε, where s

(n)
j = 1

2j−n+1 ,

j = n, . . . ,m− 2, s
(n)
m−1 = s

(n)
m−2 and µ(z) := 1

λ

[
1

M(x1,T (x1),z)
− 1
]
.

Then T has a unique fixed point in X.

Proof. Take k = 1 in Theorem 2, then the existence of a fixed point u ∈ X
follows. Further, for x, y ∈ X fixed with x 6= y, we get 1

M(x,y,t)−1 > 0 for some

t > 0, thus, since T is a fuzzy contractive mapping, we have 1
M(Tx,Ty,t) − 1 <

1
M(x,y,t) − 1, for some t > 0, that is, M(Tx, Ty, t) > M(x, y, t), for some t > 0,

where x, y ∈ X are fixed with x 6= y. Hence, the uniqueness condition (2.9) of
Remark 3 is satisfied. Therefore, the fixed point of T is unique. ut

Math. Model. Anal., 21(6):811–835, 2016.
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Remark 4. Note that, if we select M = Md, conditions (H1) in Theorem 2 and
(h1) in Corollary 1 are valid only if the mapping T has fixed points. Indeed,
for k = 1, inft>0Md(x1, T (x1), t) = inft>0

t
t+d(x1,T (x1))

= 1, if T (x1) = x1 and

inf
t>0

Md(x1, T (x1), t) = 0, if T (x1) 6= x1. Similarly, in the general case k ∈ N, for

the validity of (H1) it is obliged that x1 = x2 = · · · = xk = T (x1, x2, . . . , xk).
Thus, for the standard fuzzy metric induced by the metric d, the restriction
(H1) is not useful, since it requires to start the process with a fixed point.

However, condition (H2) is interesting in the general case and, in particular,
for the standard fuzzy metric induced by the metric d. Indeed, for k = 1,
M = Md and any x1 ∈ X, we have

µ(z) :=
1

λ

[z + d(x1, T (x1))

z
− 1
]

=
d(x1, T (x1))

λz

and, thus, for t > 0 and m, n ∈ N with m > n, ∗m−1j=n

[
1 + µ(ts

(n)
j )λj

]−1
=

∗m−1j=n

[
1 + d(x1,T (x1))

t
λj−1

s
(n)
j

]−1
. Note that, if T (x1) = x1, then µ is null and, for

every ε > 0, it is satisfied that
m−1∗
j=n

[
1 + µ(ts

(n)
j )λj

]−1
= 1 > 1 − ε, for all

m, n ∈ N with m > n. Consider the general case T (x1) 6= x1 or T (x1) = x1. If
we take ∗ = ∗m, then, for t > 0 and m, n ∈ N with m > n,

m−1∗
j=n

[
1 + µ(ts

(n)
j )λj

]−1
= min
n≤j≤m−1

[
1 +

d(x1, T (x1))

t

λj−1

s
(n)
j

]−1
=

[
1 +

d(x1, T (x1))

t
max

n≤j≤m−1

λj−1

s
(n)
j

]−1
.

Replacing s
(n)
j = 1

2j−n+1 , j = n, . . . ,m− 2 and s
(n)
m−1 = s

(n)
m−2, we have for t > 0

and m, n ∈ N with m > n,

max
n≤j≤m−1

λj−1

s
(n)
j

= max
{

2λn−1, 4λn, . . . , 2m−n−1λm−3, 2m−n−1λm−2
}

= max
{

(2λ)n−12−n+2, (2λ)n2−n+2, . . . , (2λ)m−32−n+2, (2λ)m−22−n+1
}

≤ max
{

(2λ)n−12−n+2, (2λ)n2−n+2, . . . , (2λ)m−32−n+2, (2λ)m−22−n+2
}

≤ max
{

(2λ)n−1, (2λ)n, . . . , (2λ)m−3, (2λ)m−2
}

2−n+2.

If λ ∈ (0, 12 ], since m > n, we get 0 ≤ max
n≤j≤m−1

λj−1/s
(n)
j ≤ (2λ)n−12−n+2 =

2λn−1 → 0, as n→∞, so that, for ε ∈ (0, 1) and t > 0 fixed, there ex-

ists n0 ∈ N such that, for m, n > n0, with m > n, max
n≤j≤m−1

λj−1/s
(n)
j <

t

d(x1, T (x1))

ε

1− ε
and, hence,

m−1∗
j=n

[
1 + µ(ts

(n)
j )λj

]−1
=
[
1 +

d(x1, T (x1))

t
max

n≤j≤m−1
λj−1/s

(n)
j

]−1
> 1− ε.
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This proves that condition (h2) holds for M = Md and ∗ = ∗m if λ ∈ (0, 12 ],
independently of the choice of x1 ∈ X. Moreover, for a general k ∈ N, taking
M = Md and any x1, . . . , xk ∈ X, we get

µ(z) := max
{

max
1≤i≤k−1

1

λ
i
k

[z+d(xi, xi+1)

z
−1
]
,

1

λ

[z+d(xk, T (x1, . . . , xk))

z
−1
]}

= max
{

max
1≤i≤k−1

1

λ
i
k z
d(xi, xi+1),

1

λz
d(xk, T (x1, . . . , xk))

}
=

1

z
max

{
max

1≤i≤k−1

d(xi, xi+1)

λ
i
k

,
d(xk, T (x1, . . . , xk))

λ

}
.

Hence, for t > 0 and m, n ∈ N with m > n, ∗m−1j=n

[
1 + µ(ts

(n)
j )λ

j
k

]−1
is equal

to

m−1∗
j=n

[
1+

1

ts
(n)
j

max

{
max

1≤i≤k−1

d(xi, xi+1)

λ
i
k

,
d(xk, T (x1, . . . , xk))

λ

}
λ

j
k

]−1
.

Taking ∗ = ∗m, we have, for t > 0 and m, n ∈ N with m > n, that the previous
expression is[

1 +
1

t
max

n≤j≤m−1

1

s
(n)
j

max

{
max

1≤i≤k−1

d(xi, xi+1)

λ
i
k

,
d(xk, T (x1, . . . , xk))

λ

}
λ

j
k

]−1
.

Now, since λ > 0 and s
(n)
j > 0, for every j = n, . . . ,m− 1, we get

max
n≤j≤m−1

1

s
(n)
j

max

{
max

1≤i≤k−1

d(xi, xi+1)

λ
i
k

,
d(xk, T (x1, . . . , xk))

λ

}
λ

j
k

= max
n≤j≤m−1

max

{
max

1≤i≤k−1

d(xi, xi+1)λ
j
k

s
(n)
j λ

i
k

,
d(xk, T (x1, . . . , xk))λ

j
k

s
(n)
j λ

}

≤ max

{
max

1≤i≤k−1
max

n≤j≤m−1

d(xi, xi+1)λ
j
k

s
(n)
j λ

i
k

, max
n≤j≤m−1

d(xk, T (x1, . . . , xk))λ
j
k

s
(n)
j λ

}

= max

{
max

1≤i≤k−1

d(xi, xi+1)

λ
i
k

max
n≤j≤m−1

λ
j
k

s
(n)
j

,
d(xk, T (x1, . . . , xk))

λ
max

n≤j≤m−1

λ
j
k

s
(n)
j

}

= max

{
max

1≤i≤k−1

d(xi, xi+1)

λ
i
k

,
d(xk, T (x1, . . . , xk))

λ

}
max

n≤j≤m−1

λ
j
k

s
(n)
j

.

For s
(n)
j = 1

2j−n+1 , j = n, . . . ,m − 2 and s
(n)
m−1 = s

(n)
m−2, we have for t > 0 and

m, n ∈ N with m > n,

max
n≤j≤m−1

λ
j
k

s
(n)
j

= max
{

2λ
n
k , 4λ

n+1
k , . . . , 2m−n−1λ

m−2
k , 2m−n−1λ

m−1
k

}
= max

{
(2λ

1
k )n2−n+1, (2λ

1
k )n+12−n+1, . . . , (2λ

1
k )m−22−n+1, (2λ

1
k )m−12−n

}
≤ max

{
(2λ

1
k )n, (2λ

1
k )n+1, . . . , (2λ

1
k )m−2, (2λ

1
k )m−1

}
2−n+1.
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If λ ∈ (0, 1
2k

], then 2λ
1
k ≤ 1 and, since m > n, we get 0 ≤ maxn≤j≤m−1

λ
j
k

s
(n)
j

≤

(2λ
1
k )n2−n+1 = 2λ

n
k → 0, as n→∞, so that, for ε ∈ (0, 1) and t > 0 fixed,

there exists n0 ∈ N such that, for m, n > n0, with m > n,

max
n≤j≤m−1

1

s
(n)
j

max

{
max

1≤i≤k−1

d(xi, xi+1)

λ
i
k

,
d(xk, T (x1, . . . , xk))

λ

}
λ

j
k < t

ε

1− ε

and ∗m−1j=n

[
1 + µ(ts

(n)
j )λ

j
k

]−1
> 1− ε. Therefore, (H2) holds for M = Md and

∗ = ∗m if λ ∈ (0, 1
2k

], independently of the choice of x1, . . . , xk ∈ X.

Next, we give an example which illustrates Theorem 2.

Example 1. Let 0 < α < 1
2 , xn = 2α+2n−1−1

2n , n ∈ N, and consider the set
X = {1} ∪ {xn : n ∈ N} . Define the fuzzy set M : X2 × (0,∞)→ [0, 1] by

M(x, y, t) =

{
x ∗m y, if x 6= y;
1, if x = y;

∀x, y ∈ X, ∀t > 0.

Then (X,M, ∗m) is an M -complete fuzzy metric space and ∗m ∈ H.
For k = 2, let T : X2 → X be defined by

T (x, y) =

{
2(xi ∗m xj), if x = xi, y = xj , i < j;
1, otherwise.

Now, by some routine calculations, one can see that T satisfies

1

M(T (y1, y2), T (y2, y3), t)
− 1 ≤ λmax

{ 1

M(y1, y2, t)
− 1,

1

M(y2, y3, t)
− 1
}
,

for all y1, y2, y3 ∈ X and t > 0, where λ = 1
2 . Therefore, T is a fuzzy-Prešić-

Ćirić operator with λ = 1/2.
We prove that condition (H1) is satisfied. Indeed, ∗m ∈ H and, besides,

starting with the points x1 = α < x2 = 1
4 + α

2 in X, we get inf
t>0

M(x1, x2, t) =

min{x1, x2} = x1 = α > 0 and

inf
t>0

M(x2, T (x1, x2), t) = inf
t>0

M(x2, 2 min{x1, x2}, t) = inf
t>0

M
(1

4
+
α

2
, 2α, t

)
=

{
1, if α = 1

6 ,
min{ 14 + α

2 , 2α}, if α 6= 1
6

> 0.

Also, by definition of T , for x, y ∈ X with x 6= y, we have

M(T (x, x), T (y, y), t) = M(1, 1, t) = 1 > M(x, y, t), ∀t > 0.

Hence, all the conditions of Theorem 2 are satisfied and, thus, we can conclude
the existence of a unique fixed point of T. In fact, 1 is the unique fixed point
of T.
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Next, we give a sufficient condition for the validity of condition (2.3) under
hypothesis (2.1) (or, equivalently, (2.2)) provided that k ≥ 2. This condition
is related to M and the t-norm selected ∗ and allows to establish the following
corollary of Theorem 2.

Corollary 2. Let (X,M, ∗) be an M -complete fuzzy metric space, k an integer
with k ≥ 2 and T : Xk → X a fuzzy-Prešić-Ćirić operator. Suppose that one
of the conditions (H1) or (H2) holds. Then T has a fixed point in X. If, in
addition, we suppose that

for each u, v ∈ X fixed with u 6= v, there exists t > 0 such that

k∗
i=1

[λ (1/zi − 1) + 1]
−1

> M(u, v, t), (2.10)

where zi = M(u, v, t/2i), for i = 1, . . . , k − 1, and zk = zk−1, then T has a
unique fixed point.

Proof. The first part of the corollary follows from the proof of Theorem 2.
Now, for the uniqueness of fixed point, suppose that u, v ∈ X are fixed points
of T with u 6= v. Then, for any t > 0, we have

M(u, v, t) = M(T (u, . . . , u), T (v, . . . , v), t) (2.11)

≥M(T (u, . . . , u), T (u, . . . , u, v), t/2) ∗M(T (u, . . . , u, v), T (v, . . . , v), t/2)

≥M(T (u, . . . , u), T (u, . . . , u, v), t/2)∗M(T (u, . . . , u, v), T (u, . . . , u, v, v), t/22)

∗ · · · ∗M(T (u, u, v, . . . , v), T (u, v, . . . , v), t/2k−1)

∗M(T (u, v, . . . , v), T (v, . . . , v), t/2k−1).

Using (2.2), we get, for every t > 0, M(T (u, . . . , u), T (u, . . . , u, v), t/2) ≥[
λ
(

1
M(u,v,t/2) − 1

)
+ 1
]−1

and, similarly,

M(T (u, . . . , u, v), T (u, . . . , u, v, v), t/22) ≥
[
λ
(

1
M(u,v,t/22) − 1

)
+ 1
]−1

, . . . ,

M(T (u, u, v, . . . , v), T (u, v, . . . , v), t/2k−1) ≥
[
λ
(

1
M(u,v,t/2k−1)

− 1
)

+ 1
]−1

M(T (u, v, . . . , v), T (v, . . . , v), t/2k−1) ≥
[
λ
(

1
M(u,v,t/2k−1)

− 1
)

+ 1
]−1

.

In consequence, by (2.11), for every t > 0, the following inequality holds

M(u, v, t) ≥
[
λ

(
1

M(u, v, t/2)
− 1

)
+ 1

]−1
∗
[
λ

(
1

M(u, v, t/22)
− 1

)
+ 1

]−1
∗ · · · ∗

[
λ

(
1

M(u, v, t/2k−1)
− 1

)
+ 1

]−1
∗
[
λ

(
1

M(u, v, t/2k−1)
− 1

)
+ 1

]−1
.

From the previous inequality and (2.10), we can affirm that there exists t > 0
such that M(u, v, t) > M(u, v, t), which is a contradiction, so that u = v and
the fixed point of T is unique. ut

Next, we present the following extension of Theorem 2, which is very inter-
esting to the applications included in the last section.

Math. Model. Anal., 21(6):811–835, 2016.
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Theorem 3. Let (X,M, ∗) be an M -complete fuzzy metric space, k a positive
integer and T : Xk → X a fuzzy-Prešić-Ćirić operator. Suppose that one of the
following conditions holds:

(H1*) Condition (H1).

(H2*) There exist x1, x2 . . . , xk ∈ X such that the following property holds:
for each ε ∈ (0, 1) and t > 0, there exists n0 ∈ N such that, for m, n >

n0, with m > n, we get ∗m−1j=n

[
1 + µ(ts

(n,m)
j )λ

j
k

]−1
> 1 − ε, for some

collection of values s
(n,m)
j > 0, j = n, . . . ,m− 1, with

∑m−1
j=n s

(n,m)
j ≤ 1,

where µ(z) is given in the statement of Theorem 2.

Then T has a fixed point in X. If, in addition, we suppose that, on the diagonal
∆ ⊂ Xk, condition (2.3) holds for u, v ∈ X with u 6= v, then T has a unique
fixed point.

Proof. It is similar to the proof of Theorem 2. In order to prove that {xn} is an

M -Cauchy sequence, we consider the choice for s
(n,m)
j given in the statement.

Using the nondecreasing character of M(x, y, ·) for every x, y ∈ X and following
the proof of Theorem 4.8 [9], we have, for t > 0 and n,m ∈ N with m > n,

M(xn, xm, t) ≥M(xn, xn+1, ts
(n,m)
n ) ∗M(xn+1, xn+2, ts

(n,m)
n+1 )

∗ · · · ∗M(xm−2, xm−1, ts
(n,m)
m−2 ) ∗M(xm−1, xm, ts

(n,m)
m−1 )

=
m−1∗
j=n

Mj(ts
(n,m)
j ) ≥ m−1∗

j=n

[
1 + µ(ts

(n,m)
j )θj

]−1
.

The case (H1*) is analogous to the proof of Theorem 2. Under condition (H2*),
given ε > 0, there exists n0 ∈ N such that, for m, n > n0 with m > n, we get

M(xn, xm, t) ≥ ∗m−1j=n

[
1 + µ(ts

(n,m)
j )θj

]−1
> 1 − ε. The proof is completed

similarly to that of Theorem 2. ut

Corollary 3. Let (X,M, ∗) be an M -complete fuzzy metric space and T : X →
X be a fuzzy contractive mapping, that is, 1

M(Tx,Ty,t) − 1 ≤ λ
(

1
M(x,y,t) − 1

)
,

∀x, y ∈ X, ∀t > 0, where λ ∈ (0, 1). Suppose that one of the following condi-
tions holds:

(h1*) Condition (h1) is satisfied.

(h2*) There exists x1 ∈ X such that the following property holds: for each
ε ∈ (0, 1) and t > 0, there exists n0 ∈ N such that, for m, n > n0, with

m > n, we get ∗m−1j=n

[
1 + µ(ts

(n,m)
j )λj

]−1
> 1− ε, for some collection of

values s
(n,m)
j > 0, j = n, . . . ,m − 1, with

∑m−1
j=n s

(n,m)
j ≤ 1, where µ is

given in Corollary 1.

Then T has a unique fixed point in X.
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Remark 5. Theorem 3 and Corollary 3 are more general than Theorem 2 and
Corollary 1, respectively. Conditions (H2*) and (h2*) show that the relevant

point in the choice of the values s
(n,m)
j is the fact that s

(n,m)
j > 0, for every

j = n, . . . ,m − 1, and
∑m−1
j=n s

(n,m)
j ≤ 1. Hence, we can select different values

of s
(n,m)
j as long as these requirements are fulfilled. Note also that it is possible

to take the expressions of s
(n,m)
j to be independent of m, that is, in the form

s
(n)
j , if we select them as positive numbers such that

∑∞
j=n s

(n)
j ≤ 1. Moreover,

we can take the expressions of s
(n,m)
j to be independent of n and m, that is, in

the form sj , if we select them as positive numbers such that
∑∞
j=1 sj ≤ 1.

Remark 6. It is important to note that, in the case where M = Md and ∗ = ∗m,
condition (H2*) (resp. (h2*)) is trivially valid for arbitrary choices of x1, . . . , xk
(resp., x1) and for any value of λ ∈ (0, 1), since we can choose s

(n,m)
j = 1

j(j+1) ,

for j = n, . . . ,m− 1, which are positive and such that
∑∞
j=1

1
j(j+1) = 1.

We start with the case k = 1. For M = Md, ∗ = ∗m, any x1 ∈ X and

taking s
(n,m)
j = 1

j(j+1) , j = n, . . . ,m − 1, we have, for t > 0 and m, n ∈ N
with m > n, maxn≤j≤m−1

λj−1

s
(n,m)
j

= maxn≤j≤m−1 j(j + 1)λj−1. We study the

function ϕ(x) := x(x + 1)λx−1, whose derivative is ϕ′(x) = (2x + 1)λx−1 +
x(x + 1) log(λ)λx−1 = λx−1 (2x+ 1 + x(x+ 1) log(λ)). Since λ ∈ (0, 1), the
quadratic function ψ(x) := log(λ)x2+(log λ+2)x+1 is concave and has its ver-
tex at x = − 1

2 −
1

log(λ) , which is arbitrarily large if λ is arbitrarily close to zero.

However, there exists n1 ∈ N large enough (depending just on λ) such that, for
every x > n1, ψ(x) < 0. Therefore, for every x > n1, ϕ′(x) < 0 and, thus, ϕ is
decreasing on (n1,+∞). In consequence, if we take t > 0 and m, n ∈ N with

m > n > n1, then maxn≤j≤m−1
λj−1

s
(n,m)
j

= n(n+ 1)λn−1 → 0, as n→∞. Hence,

for ε ∈ (0, 1) and t > 0 fixed, there exists n0 ∈ N with n0 ≥ n1 such that,

for m, n > n0, with m > n, maxn≤j≤m−1
λj−1

s
(n,m)
j

< t
d(x1,T (x1))

ε
1−ε and, in con-

sequence, ∗m−1j=n

[
1+µ(ts

(n,m)
j )λj

]−1
= ∗m−1j=n

[
1 + d(x1,T (x1))

t j(j + 1)λj−1
]−1

>

1 − ε. Here, we have considered that d(x1, T (x1)) > 0 since the condition
T (x1) = x1 leads to a trivial case. Therefore, since λ ∈ (0, 1), condition (h2*)
holds for M = Md and ∗ = ∗m, independently of the choice of x1.

Now, we consider the general case k ∈ N. For M = Md, ∗ = ∗m and
any x1, . . . , xk ∈ X, we get, for t > 0 and m, n ∈ N with m > n, taking

s
(n,m)
j = 1

j(j+1) , j = n, . . . ,m− 1, that

max
n≤j≤m−1

λ
j
k

s
(n,m)
j

= max
{
n(n+1)λ

n
k , . . . , (m−2)(m−1)λ

m−2
k , (m−1)mλ

m−1
k

}
.

We consider the function ϕ̃(x) := x(x+ 1)νx, being ν = λ
1
k , where ϕ̃′(x) =

νx (2x+ 1 + x(x+ 1) log(ν)). The sign of ϕ̃′ coincides with the sign of the

function ψ̃, given by ψ̃(x) := log(ν)x2+(log ν+2)x+1. Since λ ∈ (0, 1), also ν ∈
(0, 1) and the graph of ψ̃ is a concave parabola with vertex at x = − 1

2 −
1

log(ν) .

Math. Model. Anal., 21(6):811–835, 2016.
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Similarly to the case k = 1, there exists ñ1 ∈ N large enough (depending on λ)

such that, for every x > ñ1, ψ̃(x) < 0, hence, for every x > ñ1, ϕ̃′(x) < 0 and ϕ̃
is decreasing on (ñ1,+∞). Therefore, for fixed t > 0 and taking m, n ∈ N with

m > n > ñ1, we get maxn≤j≤m−1
λj−1

s
(n,m)
j

= n(n + 1)λ
n
k → 0, as n→∞. This

proves that, for ε ∈ (0, 1) and t > 0 fixed, there exists n0 ∈ N with n0 ≥ ñ1
such that, for m, n > n0, with m > n,

max
n≤j≤m−1

λ
j
k

s
(n,m)
j

<
t

max

{
max

1≤i≤k−1

d(xi, xi+1)

λ
i
k

,
d(xk, T (x1, . . . , xk))

λ

} ε

1− ε
.

Since λ > 0 and s
(n,m)
j > 0, for every j = n, . . . ,m− 1, we have, following the

calculations in Remark 4, for t > 0 and m, n ∈ N with m > n, that

m−1∗
j=n

[
1 + µ(ts

(n,m)
j )λ

j
k

]−1
≥
[
1 +

1

t

×max

{
max

1≤i≤k−1

d(xi, xi+1)

λ
i
k

,
d(xk, T (x1, . . . , xk))

λ

}
max

n≤j≤m−1

λ
j
k

s
(n,m)
j

]−1
.

Hence, we have proved that, for ε ∈ (0, 1) and t > 0 fixed, there exists n0 ∈ N

such that, for m, n > n0 with m > n, ∗m−1j=n

[
1 + µ(ts

(n,m)
j )λ

j
k

]−1
> 1 − ε. In

the previous inequalities, we have assumed that

max

{
max

1≤i≤k−1

d(xi, xi+1)

λ
i
k

,
d(xk, T (x1, . . . , xk))

λ

}
> 0,

since the opposite situation leads to a trivial case.
Again, since λ ∈ (0, 1), condition (H2*) holds for M = Md and ∗ = ∗m,

independently of the choice of x1, . . . , xk.

Corollary 4. Let (X,M, ∗) be an M -complete fuzzy metric space, k an integer
with k ≥ 2 and T : Xk → X a fuzzy-Prešić-Ćirić operator. Suppose that one
of the conditions (H1*) or (H2*) holds. Then T has a fixed point in X. If, in
addition, we suppose that

for each u, v ∈ X fixed with u 6= v, there exists t > 0 such that

k∗
i=1

[
λ
( 1

zi
− 1
)

+ 1
]−1

> M(u, v, t), (2.12)

where zi = M(u, v, t ri), for i = 1, . . . , k, for some sequence of values ri > 0,

i = 1, . . . , k, with

k∑
i=1

ri ≤ 1, then T has a unique fixed point.

Proof. The existence of fixed points follows from the proof of Theorem 3. For
the uniqueness of fixed point, we suppose that u, v ∈ X are fixed points of
T with u 6= v. Then, using the nondecreasing character of M(x, y, ·), for all
x, y ∈ X, we have, for any t > 0,

M(u, v, t)=M(T (u, . . . , u), T (v, . . . , v), t)≥M(T (u, . . . , u), T (u, . . . , u, v), t r1)
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∗M(T (u, . . . , u, v), T (u, . . . , u, v, v), t r2) ∗ · · · ∗M(T (u, u, v, . . . , v),

T (u, v, . . . , v), t rk−1) ∗M(T (u, v, . . . , v), T (v, . . . , v), t rk). (2.13)

Similarly to the proof of Corollary 2, using (2.2), we get, for every t > 0,

M(T (u, . . . , u), T (u, . . . , u, v), t r1) ≥
[
λ
(

1
M(u,v,t r1)

−1
)

+1
]−1

and, similarly,

M(T (u, . . . , u, v), T (u, . . . , u, v, v), t r2) ≥
[
λ
(

1
M(u,v,t r2)

− 1
)

+ 1
]−1

, . . . ,

M(T (u, u, v, . . . , v), T (u, v, . . . , v), t rk−1) ≥
[
λ
(

1
M(u,v,t rk−1)

− 1
)

+ 1
]−1

M(T (u, v, . . . , v), T (v, . . . , v), t rk) ≥
[
λ
(

1
M(u,v,t rk)

− 1
)

+ 1
]−1

.

Therefore, the previous inequalities and (2.13) imply, for every t > 0, that

M(u, v, t) ≥ ∗ki=1

[
λ
(

1
M(u,v,t ri)

− 1
)

+ 1
]−1

. Hence, from (2.12), there exists

t > 0 such that M(u, v, t) > M(u, v, t) and we obtain a contradiction again, so
that the fixed point of T is unique. ut

Remark 7. Concerning condition (2.12), we note that the expression of the val-

ues ri, i = 1, . . . , k, can be of similar type to s
(n,m)
j in (H2*) or different,

provided that the requirements ri > 0, i = 1, . . . , k, and
∑k
i=1 ri ≤ 1 are

fulfilled.

Remark 8. As a final remark concerning the fixed point results, instead of
(X,M, ∗) an M -complete fuzzy metric space, we consider the hypothesis that
(X,M, ∗) is a G-complete fuzzy metric space. Then we can remove the restric-
tions (H1), (H2) in Theorem 2 and Corollary 2 and (h1), (h2) in Corollary
1. This comes from the proof of Theorem 2, in this case we can start with
arbitrary points x1, . . . , xk in X and, to prove that the sequence defined is
G-Cauchy, we just note that, for t > 0 and p ∈ N fixed, we have

M(xn, xn+p, t) ≥
n+p−1
∗
j=n

M(xj , xj+1, ts
(n)
j )

=
n+p−1
∗
j=n

Mj(ts
(n)
j ) ≥

n+p−1
∗
j=n

[
1 + µ(ts

(n)
j )θn

]−1
,

where s
(n)
j = 1

2j−n+1 , j = n, . . . , n+ p− 1.
Note that the last term in the previous inequality consists of a fixed number

of terms (for every n), that is, p terms, each of one tends to 1 as n → ∞ due

to θ ∈ (0, 1) and the fact that s
(n)
j represents a constant sequence for each j

fixed, in the sense that s
(n)
n = 1

2 , for every n, s
(n)
n+1 = 1

22 , for every n, . . . ,

s
(n)
n+p−1 = 1

2p , for every n. Hence lim
n→∞

M(xn, xn+p, t) = 1∗
p)
· · · ∗1 = 1, for each

t > 0 and p > 0, and {xn} is G-Cauchy.

3 Some properties of fuzzy contractive sequences

We include some conclusions on fuzzy contractive sequences that are derived
from the proof of the main results in the previous section.

Math. Model. Anal., 21(6):811–835, 2016.
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Definition 6. Let (X,M, ∗) be a fuzzy metric space and k a positive integer.
We say that {xn} ⊂ X is a fuzzy contractive sequence if there exists λ ∈ (0, 1)
such that

1

M(xn+k, xn+k+1, t)
− 1 ≤ λ max

1≤i≤k

{
1

M(xn+i−1, xn+i, t)
− 1

}
, (3.1)

for all t > 0 and n ∈ N. Condition (3.1) can also be written as

M(xn+k, xn+k+1, t) ≥
[
λmax1≤i≤k

{
1

M(xn+i−1,xn+i,t)
− 1
}

+ 1
]−1

, for all t >

0 and n ∈ N, where λ ∈ (0, 1).

This notion is a generalization of Definition 3.8 [9] since, for k = 1, it is

reduced to 1
M(xn+1,xn+2,t)

− 1 ≤ λ
(

1
M(xn,xn+1,t)

− 1
)
, for all t > 0 and n ∈ N,

where λ ∈ (0, 1).
For the case k = 1, it is proposed in [9] the following open question: Is

a fuzzy contractive sequence a Cauchy sequence in George and Veeramani’s
sense (that is, an M -Cauchy sequence). We study this problem for an arbitrary
k ∈ N, by imposing sufficient conditions which guarantee the validity of this
assertion.

For a given sequence {xn}, consider µ(z) := max1≤i≤k
1

λ
i
k

[
1

M(xi,xi+1,z)
− 1
]

and the hypotheses:

(HS1) ∗ ∈ H and inf
t>0

M(xi, xi+1, t) > 0, for all i = 1, 2, . . . , k.

(HS2) For each ε ∈ (0, 1) and t > 0, there exists n0 ∈ N such that, for

m, n > n0, with m > n, we get ∗m−1j=n

[
1 + µ(ts

(n,m)
j )λ

j
k

]−1
> 1 − ε,

for some collection of values s
(n,m)
j > 0, j = n, . . . ,m − 1, such that∑m−1

j=n s
(n,m)
j ≤ 1.

Theorem 4. Let (X,M, ∗) be a fuzzy metric space and k a positive integer. Let
{xn} ⊂ X be a fuzzy contractive sequence. Suppose that one of the conditions
(HS1) or (HS2) holds. Then {xn} is an M -Cauchy sequence.

Proof. As in the proof of Theorem 2, we denote Mn(t) := M(xn, xn+1, t),

for n ∈ N and t > 0 and µ(t) = max1≤i≤k

{
1
θi

[
1

Mi(t)
− 1
]}

, where θ = λ
1
k .

Similarly to the proof of Theorem 2, by induction, we prove that

1/Mn(t)− 1 ≤ µ(t)θn, ∀ n ∈ N, ∀ t > 0. (3.2)

Indeed, it is true for n = 1, 2, . . . , k. Assuming that it is true for n, n+1, . . . , n+
k − 1, we have, from (3.1),

1

Mn+k(t)
− 1 =

1

M(xn+k, xn+k+1, t)
− 1 ≤ λ max

1≤i≤k

{
1

M(xn+i−1, xn+i, t)
− 1

}
= λ max

1≤i≤k

{
1

Mn+i−1(t)
− 1

}
≤ λ max

1≤i≤k

{
µ(t) θn+i−1

}
≤ λµ(t)θn = µ(t)θn+k,
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for t > 0, where we have used that θ = λ
1
k < 1.

To check that {xn} is an M -Cauchy sequence, we take ε ∈ (0, 1) and t > 0
fixed. Then, by (3.2), using the nondecreasing character of M(x, y, ·) for every
x, y ∈ X and following the proof of Theorem 4.8 [9], we have, for n,m ∈ N with

m > n, that M(xn, xm, t) ≥ ∗m−1j=n Mj(ts
(n,m)
j ) ≥ ∗m−1j=n

[
1 + µ(t s

(n,m)
j )θj

]−1
,

for any collection of values s
(n,m)
j > 0, j = n, . . . ,m−1, with

∑m−1
j=n s

(n,m)
j ≤ 1.

If (HS1) holds, then µ := sup
t>0

µ(t) ∈ [0,∞), therefore, for n,m ∈ N with

m > n, we get M(xn, xm, t) ≥ ∗m−n [1 + µθn]
−1
. Since ∗ ∈ H, the proof is

complete similarly to the proof of Theorem 2.
On the other hand, (HS2) provides trivially the character of M -Cauchy

sequence for {xn}. ut

Remark 9. If M = Md, condition (HS1) is satisfied only for constant sequences
{xn}.

We conclude the paper with some applications of our Theorem 3 (and Corol-
lary 4) to certain nonlinear differential equations subject to initial conditions.

4 Applications to differential equations

In this section, we study the initial value problem for some classes of second
order differential equations. First, we consider the autonomous case, as follows.

Let T > 0, I = [0, T ] and consider the problem:

x′′(t) = ξ(x(t), x(t), . . . , x(t)), t ∈ I, x(0) = α, x′(0) = β, (4.1)

where α, β ∈ R and ξ : Rk = R×
(k)
· · · ×R→ R is a continuous function.

The Green’s function associated with (4.1) is given by G(t, τ) = t− τ for t > τ ,
and G(t, τ) = 0 for 0 ≤ t ≤ τ , in such a way that, as it can be easily seen,
the solution to (4.1) is given by the solution of the integral equation of the
following form:

x(t) =

∫ T

0

G(t, τ)ξ(x(τ), x(τ), . . . , x(τ))dτ + ζ(t)

=

∫ t

0

(t− τ)ξ(x(τ), x(τ), . . . , x(τ))dτ + ζ(t), for t ∈ I, (4.2)

where ζ(t) = α+ βt.
To define the concept of solution to (4.1), we consider C2(I,R), the space

of all functions from I into R having continuous second order derivative on I.
A solution to (4.1) is a function x ∈ C2(I,R) which satisfies the conditions in
(4.1). The procedure we follow to prove the existence of solutions to problem
(4.1) is to establish a connection between them and the solutions to the integral
equation (4.2).

To study the existence of solutions to the integral equation (4.2), we con-
sider C(I,R), the Banach space of all continuous functions from I = [0, T ] into

Math. Model. Anal., 21(6):811–835, 2016.
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R, endowed with the supremum norm, defined as: ‖x‖∞ := supt∈I | x(t) |,
x ∈ C(I,R). Notice that C(I,R) is also a Banach space with the Bielecki norm
given by ‖x‖B := supt∈I

{
| x(t) | e−bt

}
, x ∈ C(I,R), where b > 0 is arbitrary

but fixed. It is easy to see that the two norms ‖ · ‖∞ and ‖ · ‖B are equivalent
on I = [0, T ]. For our purpose, we use the Bielecki norm instead of the supre-
mum norm. The Bielecki metric induced by the Bielecki norm is given by the
expression dB(x, y) := supt∈I

{
| x(t)− y(t) | e−bt

}
, x, y ∈ C(I,R). The stan-

dard fuzzy metric MdB : [C(I,R)]2 × (0,∞) → [0, 1] induced by dB is defined

as: MdB (x, y, a) =
a

a+ dB(x, y)
, ∀x, y ∈ C(I,R), ∀a > 0.

Then, it is easy to see that the min-fuzzy metric space (C(I,R),MdB , ∗m) is an
M -complete fuzzy metric space. Define an operator Φ : [C(I,R)]k → C(I,R)

by [Φ(x1, x2, . . . , xk)](t) =
∫ t
0
(t−τ)ξ(x1(τ), x2(τ), . . . , xk(τ))dτ+ζ(t), for t ∈ I

and x1, . . . , xk ∈ C(I,R).
It is obvious that the solutions to the integral equation (4.2) coincide with the
fixed points of the operator Φ, i.e., x ∈ C(I,R) such that [Φ(x, x, . . . , x)](t) =
x(t), for every t ∈ I. Moreover, a solution to (4.1) trivially satisfies the integral
equation (4.2) and, if x ∈ C(I,R) is a solution to the integral equation (4.2),
then we can prove that x ∈ C2(I,R) and the conditions in (4.1) are fulfilled.
Hence, the solutions to the initial value problem (4.1) are the fixed points of
the operator Φ. All these considerations allow us to prove the existence and
uniqueness of solution to the initial value problem (4.1), as established in the
following theorem.

Theorem 5. Let k be a positive integer and suppose that the following condi-
tions are satisfied:

(a) ξ : Rk → R is a continuous function;

(b) there exists L > 0 such that, for all z1, z2, . . . , zk, zk+1 ∈ R, we have
| ξ(z1, . . . , zk)− ξ(z2, . . . , zk+1) | ≤ L max1≤i≤k | zi − zi+1 | .

Then the initial value problem (4.1) has a unique solution.

Proof. We consider (C(I,R),MdB , ∗m) the min-fuzzy metric space induced by
the Bielecki metric dB on C(I,R). Since b > 0 can be selected arbitrarily, we
choose b = kLT > 0 then, for all x1, . . . , xk, xk+1 ∈ C(I,R), we have

dB(Φ(x1, . . . , xk), Φ(x2, . . . , xk+1))

= sup
t∈I

∣∣∣∣∫ t

0

(t− τ)[ξ(x1(τ), . . . , xk(τ))− ξ(x2(τ), . . . , xk+1(τ))]e−btdτ

∣∣∣∣
≤ sup

t∈I

∫ t

0

(t− τ) | ξ(x1(τ), . . . , xk(τ))− ξ(x2(τ), . . . , xk+1(τ)) | e−btdτ

≤ sup
t∈I

∫ t

0

(t− τ)L max
1≤i≤k

{| xi(τ)− xi+1(τ) |} e−bτeb(τ−t)dτ

≤ L max
1≤i≤k

{dB(xi, xi+1)} sup
t∈I

{
e−bt

∫ t

0

(t− τ)ebτdτ

}
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≤ L max
1≤i≤k

{dB(xi, xi+1)} sup
t∈I

{
te−bt

∫ t

0

ebτdτ

}
≤ LT

b
(1− e−bT ) max

1≤i≤k
{dB(xi, xi+1)} .

Since b = kLT , we have, for all x1, . . . , xk, xk+1 ∈ C(I,R),

dB(Φ(x1, . . . , xk), Φ(x2, . . . , xk+1)) ≤ λ max
1≤i≤k

{dB(xi, xi+1)} ,

where 0 < λ = LT
b (1− e−bT ) = 1

k (1− e−bT ) < 1. Therefore,

MdB (Φ(x1, . . . , xk), Φ(x2, . . . , xk+1), a)=
a

a+dB(Φ(x1, . . . , xk), Φ(x2, . . . , xk+1))

≥ a

a+λ max
1≤i≤k

{dB(xi, xi+1)}
=

[
λ max

1≤i≤k

{
1

MdB (xi, xi+1, a)
−1

}
+1

]−1
,

for all x1, x2, . . . , xk+1 ∈ C(I,R) and a > 0. Thus, Φ is a fuzzy-Prešić-Ćirić
operator. Besides, it is clear that condition (H2*) holds for arbitrary choices

of x1, . . . , xk ∈ C(I,R), since λ ∈ (0, 1), taking sj = s
(n,m)
j = 1

j(j+1) , for

j = n, . . . ,m− 1 (see Remark 6). Hence, by Theorem 3, Φ has a fixed point in
C(I,R), which gives a solution to (4.1). Furthermore, for x, y ∈ C(I,R), we
have, by (b),

dB(Φ(x, . . . , x), Φ(y, . . . , y))

= sup
t∈I

∣∣∣∣∫ t

0

(t− τ)[ξ(x(τ), . . . , x(τ))− ξ(y(τ), . . . , y(τ))]e−btdτ

∣∣∣∣
≤ sup

t∈I

∫ t

0

(t− τ)
[
| ξ(x(τ), . . . , x(τ))− ξ(x(τ), . . . , x(τ), y(τ)) |

+ · · ·+ | ξ(x(τ), y(τ), . . . , y(τ))− ξ(y(τ), . . . , y(τ)) |
]
e−btdτ

≤ sup
t∈I

∫ t

0

(t− τ) k L | x(τ)− y(τ) | e−btdτ

≤ kLdB(x, y) sup
t∈I

{
te−bt

∫ t

0

ebτdτ
}
≤ kLT

b
(1− e−bT ) dB(x, y).

Since b = kLT , we have

dB(Φ(x, . . . , x), Φ(y, . . . , y)) ≤ (1− e−bT )dB(x, y) < dB(x, y),

for all x, y ∈ C(I,R) with x 6= y. Therefore, by the definition of MdB ,

MdB (Φ(x, . . . , x), Φ(y, . . . , y), a) > MdB (x, y, a), ∀ a > 0. (4.3)

Thus, all the conditions of Theorem 3 are satisfied and, in consequence, Φ has
a unique fixed point in C(I,R), which is the unique solution to the initial value
problem (4.1). ut
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Remark 10. Note that, in the proof of Theorem 5, if k ≥ 2, an alternative way
to check the validity of (4.3) in order to achieve the uniqueness of solutions is
to use the ideas in Corollary 4, since, with the selection of the minimum t-norm
∗m and, for example, ri = 1

2i , i = 1, . . . , k, condition (2.12) is reduced to the
following one: for each u, v ∈ X fixed with u 6= v, there exists t > 0 such that[
λ
(

1
M(u,v,t/2i) − 1

)
+ 1
]−1

> M(u, v, t), for every i = 1, . . . , k − 1.

To check its validity, we take u, v ∈ X fixed with u 6= v. For M = MdB and
a > 0, we have[

λ

(
1

MdB (u, v, a/2i)
− 1

)
+ 1

]−1
=

[
λ

(
a/2i + dB(u, v)

a/2i
− 1

)
+ 1

]−1
=

[
λ
dB(u, v)

a/2i
+ 1

]−1
=

a/2i

λdB(u, v) + a/2i
=

a

λ2idB(u, v) + a
,

so that, since dB(u, v) > 0, this expression is greater than MdB (u, v, a), for
every i = 1, . . . , k−1, if and only if λ ·2i < 1, for every i = 1, . . . , k−1, that is,

λ < 21−k. Note that λ is taken as λ =
LT

b
(1−e−bT ) in the proof of Theorem 5.

Thus, in order to prove that Φ is a fuzzy-Prešić-Ćirić operator, we just have to
choose b > 0 such that b > LT . Now, for the validity of (2.12), it suffices to

choose b > 0 with
LT2k−1

b
(1− e−bT ) < 1, that is, b > LT2k−1. This provides

uniqueness of solution for k ≥ 2.

Instead of problem (4.1), we could have considered a non-autonomous prob-
lem of the type

x′′(t) = ξ(t, x(t), x(t), . . . , x(t)), t ∈ I = [0, T ], x(0) = α, x′(0) = β, (4.4)

where α, β ∈ R and ξ : I × Rk → R is continuous.
Taking ζ(t) = α + βt, t ∈ I, it is clear that the solutions to (4.4) coincide

with those of the integral equation

x(t) =

∫ T

0

G(t, τ)ξ(τ, x(τ), x(τ), . . . , x(τ))dτ + ζ(t)

=

∫ t

0

(t− τ)ξ(τ, x(τ), x(τ), . . . , x(τ))dτ + ζ(t), for t ∈ I

and also with the fixed points of the mapping Φ̃ : [C(I,R)]k → C(I,R) defined

as [Φ̃(x1, x2, . . . , xk)](t) =
∫ t
0
(t − τ)ξ(τ, x1(τ), x2(τ), . . . , xk(τ))dτ + ζ(t), for

t ∈ I and x1, . . . , xk ∈ C(I,R). Thus, the following extension of Theorem 5
follows.

Theorem 6. Let k be a positive integer and suppose that the following condi-
tions are satisfied:

(a) ξ : I × Rk → R is a continuous function;
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(b) there exists a nonnegative and integrable function L : I → R such that, for
all t ∈ I and z1, z2, . . . , zk, zk+1 ∈ R, we have

| ξ(t, z1, . . . , zk)− ξ(t, z2, . . . , zk+1) | ≤ L(t) max
1≤i≤k

| zi − zi+1 |

and there exists b > 0 such that

k sup
t∈I

{
e−bt

∫ t

0

(t− τ)L(τ)ebτ dτ
}
< 1. (4.5)

Then the initial value problem (4.4) has a unique solution.

Proof. We consider again (C(I,R),MdB , ∗m) the min-fuzzy metric space in-
duced by the Bielecki metric dB on C(I,R), where b > 0 is given by the
statement. Hence, similarly to the proof of Theorem 5, we have, for all
x1, . . . , xk, xk+1 ∈ C(I,R),

dB(Φ̃(x1, . . . , xk), Φ̃(x2, . . . , xk+1))

≤ sup
t∈I

∫ t

0

(t− τ)L(τ) max
1≤i≤k

{| xi(τ)− xi+1(τ) |} e−bτeb(τ−t)dτ

≤ λ max
1≤i≤k

{dB(xi, xi+1)} ,

where 0 < λ := supt∈I

{
e−bt

∫ t
0
(t− τ)L(τ)ebτdτ

}
< 1

k ≤ 1.

Besides, if x, y ∈ C(I,R), by (b),

dB(Φ̃(x, . . . , x), Φ̃(y, . . . , y))

≤ sup
t∈I

∫ t

0

(t− τ)
[
L(τ) | x(τ)− y(τ) | + · · ·+ L(τ) | x(τ)− y(τ) |

]
e−btdτ

= k sup
t∈I

∫ t

0

(t− τ)L(τ) | x(τ)− y(τ) | e−bτeb(τ−t)dτ ≤ k dB(x, y)λ,

so that dB(Φ̃(x, . . . , x), Φ̃(y, . . . , y)) < dB(x, y), for all x, y ∈ C(I,R) with
x 6= y (dB(x, y) > 0). Since (H2*) also holds, then Theorem 3 applies. ut

Remark 11. Condition (4.5) trivially holds if there exists b > 0 such that

supt∈I
{
e−bt

∫ t
0
L(τ)ebτdτ

}
< 1
kT , or if limb→∞

(
supt∈I

{
e−bt

∫ t
0
L(τ)ebτdτ

})
< 1
kT ,

since k supt∈I
{
e−bt

∫ t
0
(t− τ)L(τ)ebτ dτ

}
≤ kT supt∈I

{
e−bt

∫ t
0
L(τ)ebτ dτ

}
. In

particular, if L is nonnegative, integrable and bounded (there exists L > 0 such
that L(t) ≤ L, t ∈ I), then

k sup
t∈I

{
e−bt

∫ t

0

(t−τ)L(τ)ebτdτ
}
≤ kTL sup

t∈I

{
e−bt

∫ t

0

ebτdτ
}

=kTL1−e−bT

b
,

so that it is enough to choose b > kTL.
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Finally, we consider an impulsive problem of the type{
x′′(t) = ξ(t, x(t), x(t), . . . , x(t)), t ∈ I = [0, T ], t 6= tj , j = 1, . . . , l,

x(t+j ) = αj , x′(t+j ) = βj , j = 0, . . . , l,
(4.6)

where αj , βj ∈ R, j = 0, . . . , l, 0 = t0 < t1 < t2 < · · · < tl < tl+1 = T and
ξ : I×Rk → R is such that, for every j = 0, . . . , l, its restriction to (tj , tj+1]×Rk
is continuous and admits a continuous extension to the set [tj , tj+1]× Rk.

To define the concept of solution to problem (4.6), we consider the spaces

PC(I,R) = {x : I → R : x is continuous in I \ {t1, . . . , tl}
and ∃x(t+j ), x(t−j ) = x(tj), j = 1, . . . , l}

= {x : I → R : x ∈ C((tj , tj+1),R), j = 0, . . . , l, and ∃x(0+) = x(0),

x(T−) = x(T ), x(t+j ), x(t−j ) = x(tj), j = 1, . . . , l},
E := {x ∈ PC(I,R) : x ∈ C2(I \ {t1, . . . , tl},R)

and ∃x′(t+j ), x′(t−j ), x′′(t+j ), x′′(t−j ), j = 1, . . . , l}
= {x ∈ PC(I,R) : x ∈ C2((tj , tj+1),R), j = 0, . . . , l, and ∃x′(0+) = x′(0),

x′′(0+) = x′′(0), x′(T−) = x′(T ), x′′(T−) = x′′(T ),

x′(t+j ), x′(t−j ), x′′(t+j ), x′′(t−j ), j = 1, . . . , l}.

Hence, a solution to (4.6) is a function x ∈ E satisfying the conditions in
(4.6). For this problem (4.6), the Green’s function G : I × I → R is given by

G(t, τ) =

{
t− τ, tj < τ < t ≤ tj+1, for some j = 0, . . . , l,
0, otherwise.

We can also use the functions Gj : [tj , tj+1]×[tj , tj+1]→ R, j = 0, . . . , l, defined
byGj(t, τ) = t−τ, if tj ≤ τ < t ≤ tj+1, andGj(t, τ) = 0, if tj ≤ t ≤ τ ≤ tj+1, in
such a way that G(t, τ) = Gj(t, τ), for (t, τ) ∈ (tj , tj+1)× (tj , tj+1). Therefore,
taking ζj(t) = αj + βj(t− tj), for t ∈ (tj , tj+1], and j = 0, . . . , l, the solutions
to (4.6) are the solutions x ∈ PC(I,R) to the family of integral equations:

x(t) =

∫ T

0

G(t, τ)ξ(τ, x(τ), x(τ), . . . , x(τ))dτ + ζj(t)

=

∫ tj+1

tj

Gj(t, τ)ξ(τ, x(τ), x(τ), . . . , x(τ))dτ + ζj(t)

=

∫ t

tj

(t− τ)ξ(τ, x(τ), x(τ), . . . , x(τ))dτ + ζj(t), t ∈ (tj , tj+1].

The space PC(I,R) is a Banach space with the supremum norm defined as
‖x‖PC := supt∈I | x(t) |= max0≤j≤l supt∈(tj ,tj+1] | x(t) |, x ∈ PC(I,R) and

also with the equivalent norm ‖x‖PCB := max
0≤j≤l

sup
t∈(tj ,tj+1]

{
| x(t) | e−b(t−tj)

}
,

x ∈ PC(I,R), where b > 0 is arbitrary but fixed. The distance induced by
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‖ · ‖PCB is dPCB(x, y) := max0≤j≤l supt∈(tj ,tj+1]

{
| x(t)− y(t) | e−b(t−tj)

}
, for

x, y ∈ PC(I,R).

We consider the mapping Φ̂ : [PC(I,R)]k → PC(I,R), given by

[Φ̂(x1, x2, . . . , xk)](t) =

∫ t

tj

(t− τ)ξ(τ, x1(τ), x2(τ), . . . , xk(τ))dτ + ζj(t),

for t ∈ (tj , tj+1], j = 0, . . . , l, and x1, . . . , xk ∈ PC(I,R), whose fixed points
are the solutions sought.

We prove the following existence and uniqueness result for problem (4.6).

Theorem 7. Let k be a positive integer and suppose that the following condi-
tions are satisfied:

(a) ξ : I × Rk → R is such that its restriction to (tj , tj+1] × Rk is continuous
and admits a continuous extension to the set [tj , tj+1]×Rk, for j = 0, . . . , l.

(b) there exists a nonnegative and integrable function L : I → R such that, for
all t ∈ I and z1, z2, . . . , zk, zk+1 ∈ R, we have

| ξ(t, z1, . . . , zk)− ξ(t, z2, . . . , zk+1) | ≤ L(t) max
1≤i≤k

| zi − zi+1 |

and there exists b > 0 such that

k max
0≤j≤l

sup
t∈(tj ,tj+1]

{
e−bt

∫ t

tj

(t− τ)L(τ)ebτ dτ
}
< 1. (4.7)

Then the initial value problem (4.6) has a unique solution.

Proof. We take (PC(I,R),MdPCB
, ∗m) the min-fuzzy metric space induced

by the metric dPCB on PC(I,R), where b > 0 is given in the statement.
Analogously to the proof of Theorem 6, we have, for all x1, . . . , xk, xk+1 ∈
PC(I,R),

dPCB(Φ̂(x1, . . . , xk), Φ̂(x2, . . . , xk+1))

≤ max
0≤j≤l

sup
t∈(tj ,tj+1]

∫ t

tj

(t− τ)L(τ) max
1≤i≤k

{| xi(τ)− xi+1(τ) |} e−b(τ−tj)eb(τ−t)dτ

≤ λ max
1≤i≤k

{dPCB(xi, xi+1)} ,

where 0 < λ := max0≤j≤l supt∈(tj ,tj+1]

{
e−bt

∫ t
tj

(t− τ)L(τ)ebτdτ
}
< 1

k ≤ 1.

Moreover, for x, y ∈ PC(I,R), by condition (b),

dPCB(Φ̂(x, . . . , x), Φ̂(y, . . . , y))

≤ max
0≤j≤l

sup
t∈(tj ,tj+1]

∫ t

tj

(t− τ) k L(τ) | x(τ)− y(τ) | e−b(t−tj)dτ

= k max
0≤j≤l

sup
t∈(tj ,tj+1]

∫ t

tj

(t− τ)L(τ) | x(τ)− y(τ) | e−b(τ−tj)eb(τ−t)dτ

≤ k dPCB(x, y)λ,
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in consequence, dPCB(Φ̂(x, . . . , x), Φ̂(y, . . . , y)) < dPCB(x, y), for all x, y ∈
PC(I,R) with x 6= y (dPCB(x, y) > 0). The proof is concluded by Theorem 3,
due to the validity of (H2*). ut

Remark 12. If L is nonnegative, integrable and bounded (with upper bound
L > 0), then condition (4.7) trivially holds since

k max
0≤j≤l

sup
t∈(tj ,tj+1]

{
e−bt

∫ t

tj

(t− τ)L(τ)ebτ dτ
}

≤ kTL max
0≤j≤l

sup
t∈(tj ,tj+1]

{
e−bt

∫ t

tj

ebτ dτ
}

=
kTL
b

max
0≤j≤l

{
1− e−b(tj+1−tj)

}
and the same choice of b > kTL is useful.
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